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Abstract. As a result of the impersonation of a user of a mobile terminal, sensi- 
tive information kept locally or accessible over the network can be abused. The 
means of masquerader detection are therefore needed to detect the cases of im- 
personation. In this paper, the problem of mobile-masquerader detection is con- 
sidered as a problem of classifying the user behaviour as originating from the 
legitimate user or someone else. Different behavioural characteristics are anal- 
ysed by designated one-class classifiers whose classifications are combined. The 
paper focuses on selecting the classifiers for mobile-masquerader detection. The 
selection process is conducted in two phases. First, the classification accuracies of 
classifiers are empirically evaluated, and inaccurate classifiers are excluded. Af- 
ter that, the accuracies of different classifier combinations are explored, and the 
combination with the best classification accuracy is identified. The experimental 
results suggest that, in order to achieve better accuracy, the individual classifiers 
with both high classification accuracy and a small number of non-classifications 
need to be selected. 

1 Introduction 

An impersonation of the user of a contemporary mobile terminal, such as a smart-phone 
or PDA, may result in an abuse of critical private or corporate information. Imperson- 
ating the legitimate user (later called user) to obtain an unauthorised access to sensitive 
data or services authorised for that user is referred to as the masquerade attack. In order 
to resist such attack, the so-called detective security means [I] can be implemented (in 
addition to preventive security means) to perform masquerader detection. During last 
years, great efforts have been devoted to the problem of detecting masquerade attacks, 
e.g. [2-51, also in the context of mobile terminals [6]. 

In this paper, the problem of mobile-masquerader detection is approached as an 
anomaly detection problem [2]. To detect anomalies, a user model is learnt through the 
monitoring of the user behaviour during the so-called learning phase, and the learnt 
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model is stored in a user profile. The detection may be performed by matching a cur- 
rently observed behaviour of a claimant (a person whose identity claim is being ver- 
ified) against the model. Multiple behavioural characteristics have been proposed as 
potentially useful in masquerader detection [6,7,3]. Recently, a set of characteristics 
for mobile-masquerader detection have been suggested [S]; however, an empirical ev- 
idence indicating how well these characteristics can be used in practise has not been 
provided so far. 

We formulate the problem of anomaly detection as a one-class classification prob- 
lem [9],  where a claimant's behaviour, represented by a set of feature values, is classified 
as belonging to the user class reflecting the behaviour of the user, or not. In the latter 
case, the decision is made that the behaviour belongs to the impostor class summing up 
the behaviours of all other individuals but the user. 

In anomaly detection, one-class classifiers are often based on probability estima- 
tion [lo, 2,4], and they often analyze the whole set of features simultaneously. How- 
ever, due to difficulties with learning when the features are lumped into a single high- 
dimensional vector, difficulties with the normalization of features having different phys- 
ical meaning, and partial availability of the feature values at the time the detection is 
performed, the use of an alternative approach based on combining classifiers is justi- 
fied [l 11. Following this approach, the features can be divided into subgroups processed 
by individual one-class classifiers. Each of them is aimed at classifying the current 
values of assigned features. By employing a combining rule, the final classification is 
produced based on the classifications of the individual classifiers. 

In this paper, we empirically evaluate one-class classifiers to be used in mobile- 
masquerader detection. For the purposes of the evaluation, the dataset describing the 
behaviour of nine mobile users was employed. The selection of features and classifiers 
was constrained by the attributes available in this dataset. The authors are not aware 
of any other empirical study on mobile-masquerader detection, where more than one 
behavioural aspect is taken into account. 

The evaluation was conducted in two phases. In the first phase, classification accu- 
racies of classifiers were evaluated, and the classifiers with low accuracy were filtered. 
In the second phase, we investigated which of the remaining classifiers are reasonable 
to use in combination so that the accuracy of final classification would increase. For 
this, the accuracies of different classifier combinations were compared. When selecting 
the classifiers to add to the combination, a variety of criteria can be used; some of them 
were tested. The best results were achieved, when the classifiers selected had both high 
classification accuracy and a low number of non-classifications. 

The paper is organised as follows. In the next Section, the features employed are 
described, the design of individual classifiers is discussed, and the details of the utilised 
combining scheme are provided. The employed dataset is described in Section 3. The 
experimental settings and the results of experiments are presented in Section 4. Finally, 
in Section 5, the experimental findings and their limitations are discussed, and the topics 
for further work are outlined. 
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2 Design of individual classifiers and their combination 

In this section, the measures employed for masquerader detection and the design of in- 
dividual classifiers to process these measures are considered, and the scheme for com- 
bining individual classifications is described. 

2.1 Design of individual classifiers 

In our approach, the anomaly detection problem is seen as a classification problem, 
where the object Z (claimant) is to be classified as belonging either to the user class 
( Z  E Cu) or to the class of impostors ( Z  E Cr), but not to both of them, i.e. 
{ZIZ E Cu)  u {ZIZ E CI) = 8. The object Z is represented by the set of n f  fea- 
tures (21, . . . , x,,) from the feature space X, and is analysed by the set of R individ- 

( i )  ual classifiers. Classifier i takes as input the observation vector xi  - ( x r ) ,  . . . , E n f x ) ,  

The classification process consists of the learning and the classification phases. In 
the learning phase, using a training set DST,  the classifier i learns the set of parameters 
Oi constituting the model of the classifier. DST includes the vectors of feature values 
of the user: DST = { ( ( x l ,  . . . , ~ , , ) ~ , y ~ ) J j  = 1 , .  . . , JDSTJ), where y j  = Cu is 
the class label. In the classification phase, the learnt model is used to classify into the 
user class or the impostor class unlabeled observation vectors from a dataset D S  c = 
{((xi,. . . , ~ , ) ~ ) l j  = 1,. . . , IDSCI). 

Observation vectors of individual classifiers are initialised with available feature 
values gathered by employing a sliding window [rl,  T ~ ]  of the length I ,  = 7 2  - TI 

(determining the time interval, within which the feature values are collected), with an 
increment for the window 6,. Given an unlabeled observation vector x i ,  each classifier 
outputs the individual classification ui = ui(xi ,  @ )  indicating how likely Z E Cu. 
Below, the descriptions of the employed features and the individual classifiers are pro- 
vided. 

In [8], the authors considered personality factors in order to identify suitable char- 
acteristics and measures for mobile-masquerader detection. They suggest that, while 
personality factors are latent, they are reflected in different aspects of user behaviour 
and environment. The characteristics describing these aspects can be directly observed. 
It is hypothesized that the superposition of characteristics describing one's behaviour 
and environment is also individual, and can be used to verify the identity of a person. 

To measure quantitatively the characteristics of user behaviour and environment, 
one or more appropriate observable variables, or measures should be assigned to each of 
them. A list of tentative characteristics and measures has been proposed; the interested 
reader may consult [8] for the detailed description of these characteristics. Some of the 
measures described in [8] are not available in the dataset (described in Section 3) which 
was employed in the experiments. The available measures were assigned as features to 
individual classifiers. To each of the measures, an individual classifier was assigned as 
described below. 

Type ofprogram or service evoked. Active applications evoked by the user are reg- 
istered in the dataset. This measure is referred to as active applications (ACT APP).  
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For each application j, the classifier based on active applications maintains a counter 
a,,,, that stores the number of times the user evokes the application. The proba- 
bility of an application j being evoked out of m applications is approximated as 
p ( a p p j l U )  = (a,,,, + l ) / (C,  a,,,,, + 1) .  Assuming the independence of con- 
sequent application evocations, the probability of application evocations within a time 
window [ T I ,  rz] is approximated as 

where appi is the last application evoked within the time window, and nap, is the 
average number of applications evoked within the window. The application evocations 
within previous window(s) can be taken into account if needed (the same is valid for the 
other classifiers, too). Given the current active applications to be classified, the classifier 

- - 

outputs the classification ui  = i)(aPPi-n,p,+l,. . . , appilU). 
Sequence of cells traversed. The dataset records the identifiers of the cells (Cell IDS) 

wherein the mobile terminal is registered. The information about consecutive Cell IDS 
can be utilised in order to create the sequences of cells traversed measure (MOVE). 

The model of the assigned classifier includes the matrix of cell-to-cell transition 
probabilities, and, in fact, represents a first-order Markov model. An element a ,elld cell j  

of the matrix is a counter that stores the number of times the terminal's Cell ID changed 
from cell i to cell j .  The matrix values are used in approximating the probability 
~ ( c e l l j  Icelli, U )  of a handover: 

where cell, are the cells to which traversals from celli were registered, and nneighbo,, i 

is the number of such cells. Given the parameters 1, and 6, of sliding windows, the 
average number of handovers nho within a window was estimated. Assuming the inde- 
pendence of consequent handovers, the probability of a sequence of cell changes within 
a time window [ T I ,  T Z ]  was approximated as 

i-1 

- n o  . . . , c e l l U )  = IT p (ce l l j f l  lcellj, U ) ,  (3) 
j=i-nh, 

where celli is the last cell registered within the time window. In the classification phase, 
given the current route to be classified, the classifier outputs the classification u i  = 
~ ( c e l l i - ~ ~ ,  , . . . , celli / U ) .  

Speed of move. The speed of terminal movements is not available in the dataset. 
  ow ever, the timestamps of the Cell ID records can be used to estimate the time the 
terminal spends in a cell, which, in turn, can be used to roughly estimate the terminal's 
speed (e.g. in terms of "cell per second") referred as speed ( S P E E D )  measure. 

The speed-based classifier was constructed as follows. For each cell, the user speed 
is modelled separately based on the empirical distribution of the user speed in this cell. 
The value of the speed can be approximated as a ratio of the length of the user's path 
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within the cell to the time the user spent in the cell. The time spent in the cell is esti- 
mated as the time interval [ rho l ,  rho21 between consequent handovers. It is assumed that 
the user follows the same path within the cell; hence, the length of the path is assumed 
constant and is omitted from the expression for speed calculation, i.e. the speed in the 
cell is estimated as v,,ll% = 1/(rho2 - rhol) (in "cell per second"). Only smaller values 
(rstay < 11 minutes) are processed by the speed-based classifier, while greater values 
are assumed to indicate that the terminal is not moving. Using the accumulated empiri- 
cal distribution function (EDF) of vce~l,, the probability density p(vcell,) of the current 
speed for cell i is evaluated by using k-Nearest-Neighbours method [12]. Assuming 
independence of the speed in subsequent cells, the likelihood of a user speed within a 
time window [rl, r2] is approximated as 

where cell, is the last cell registered within the time window, and n ,  is the average 
number of cell changes within a window. Given the current speed values, the classifier 
outputs the classification ui = Lspeed(~elli-n,+l, . . . , celli/U). 

Locations where prolonged stops were made. The information about the Cell IDS 
and the time spent in cells can be used to identify those locations (in terms of Cell IDS) 
where the terminal stays for a relatively long period of time. This measure is named 
places visited (PLACES). 

The design of the classifier based on this measure is similar to the design of the 
classifier based on active applications. The difference is that the locations (Cell IDS) of 
prolonged stops, as defined in the description of the speed-based classifier, are taken as 
input instead of the application identifiers. 

Temporal interval between two consecutive evocations of aprogram or service of a 
same type. In the dataset, the evocations of services (calls and SMS) are recorded and 
time-stamped; using this information, the intervals between evocations of these services 
can be evaluated. These measures will be referred to as arrival of calls (ARRCALL) 
and arrival of SMS (ARRSMS) .  

For both services, classifiers of the same type are employed. These classifiers anal- 
yse the mean inter-arrival time r" within a window [TI, 721 for a given service type. 
The value of ria is calculated as ?;ia = & )'&-n,,+l r y ,  where r!a is the last 
inter-arrival time observed within the window, and n ,, is the average number of service 
anivals within windows. Using the accumulated EDF of the ea values, the probabil- 
ity density p(7ia) of the current mean inter-arrival time is evaluated using k-Nearest- 
Neighbours method. Given the current inter-arrival time values, the classifier outputs 
the classification ui = p ( ~ i a ) .  

Temporal lengths of actions. In the dataset, the durations of calls are recorded; they 
are used as a call duration (DURCALL) measure. The design of the classifier based 
on call duration time is similar to the design of the previous classifier. The difference is 
that the durations of calls are taken as input instead of the service inter-arrival times. 

Address information of the people contacted. Phone numbers contacted via calls 
or SMS are available in the dataset. This measure is referred to as contact numbers 
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(CONT-NUM). Besides, the identifiers (MAC-addresses) of neighbouring Bluetooth- 
devices are logged in the dataset and are employed as neighbouring Bluetooth devices 
(BT D E V )  measure. 

The classifier based on the phone numbers of contacted people, and the classifier 
based on the MAC-addresses of neighbouring Bluetooth devices are designed similarly 
to the classifier based on active applications. The difference is that contact numbers or 
MAC-addresses, respectively, are taken as input instead of the application identifiers. 

2.2 Combining individual classifications 

Combining the classifications produced by several classifiers has been extensively ex- 
plored as a mean to compensate the weaknesses of individual classifiers. Different com- 
bining rules have been investigated [ l  1,131, and it has been shown that combining may 
result in a significant reduction of classification errors [13,14]. However, in combin- 
ing one-class classifiers, where only the knowledge regarding one class is available, 
relatively few rules can be used. Among them are different modifications of voting 
rules as investigated by Xu et al. [ l  11. Tax [9 ]  reported the applicability of mean vote, 
mean weighted vote, product of weighted votes, mean of the estimated probabilities, 
and product combination of probabilities as combining rules for one-class classifiers. 
In [15], the mean of the estimated probabilities (MP) rule was justified to be among the 
most suitable ones in the context of mobile masquerader detection, and an improved 
version of it (modified MP rule) was proposed. This modified MP rule is adopted in the 
experiments as a scheme for combining individual classifications. Below, the details of 
this rule are provided. 

The modified MP rule assumes that each classifier i outputs its classification as an 
estimation of the probability density function (pdf) for the user class p(x , lCu). Given 
R classifiers to be combined, the rule represents the average of the classifier confidences 
u,.: 

where ul reflects the degree of the classifier's confidence in the hypothesis that an object 
Z belongs to the user class. The confidence values can be calculated as [15]: 

where p(xi ICu) is the mean value of the estimated probability p(xi ICu). This mean 
value is equal to the probability of a random variable uniformly distributed in the feature 
space Xi. 

The final classification result using the modified MP combining rule is made by 
comparing the obtained urn, value with a threshold t,,: 

Decide Z E Cu if urn, > t,,, 
otherwise decide Z E C I .  
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3 Dataset 

The dataset used in this study was obtained from the Context project at the Univer- 
sity of Helsinki and was gathered using the ContextPhone sofiware [16]. ContextPhone 
runs in the background on Series 60 smartphones, collects data and sends it to a server 
automatically, without the need for user interaction. The data describes the users' move- 
ments (GSM cell changes), phone usage (phone profile, application use, idle and active 
time, charger), physical social interaction (bluetooth environment) and mobile phone 
communication (phone calls and text messages). 

The data comes from two field studies conducted to test ContextContacts, a 
social awareness service [17]. The first study was done with a family of four: 
mother and three children aged 10 to 16. The second group consisted of five 
high-school students, aged 16 to 18, who ran a small company together. Both 
studies lasted approximately three months. All subjects were Finns living in the 
greater Helsinki area. The anonymized version of the dataset is available from 
http://www.cs.helsinki.fi/group/context/data/. 

4 Experimental results 

In this section, the experimental settings are described, and the results of the experi- 
ments are presented. 

4.1 Experimental settings 

The experiments were conducted in two phases. The purpose of the first phase was 
to evaluate the classification accuracy of the individual classifiers and to exclude the 
classifiers with low accuracy. In turn, the experiments in the second phase were aimed at 
identifying the classifiers, the combination of which would allow the final classification 
accuracy to be improved, as compared with the accuracies of individual classifiers. To 
identify the individual classifiers to be combined, the classifiers were ranked according 
to several criteria. After that, the best classifiers (according to the ranks) were added 
one by one to the classifier combination, and the resulting classification accuracy was 
estimated. 

The holdout cross-validation [18] was used in the experiments to assess the accura- 
cies. The model of each classifier was leamt using the training data-set DST, and was 
subsequently used to classify the instances of the classification data-set DS c. In gen- 
eral, the classification data-set DSc should include both the instances originated from 
the user and the instances originated from impostors. However, since the data originated 
from impostors was not available, the other users' data was employed as the impostor's 
data. 

For each user, the data was split into two parts in the relation 2 : 1 commonly used in 
classifier evaluation [18]. The first part formed the training data-set DS T that was used 
to learn the model for this user only. The second part was included into the classification 
data-set DSc that was used by all the classifiers within the same user group in the 
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classification phase. The sliding window of the length of 1, = 1800 seconds with the 
increment of 6 ,  = 900 seconds was used. 

In order to evaluate the accuracy of a classifier distinguishing between a user and 
impostors, the values of the probability of correct detection Po and false rejection (FR) 
error rates PFR are usually employed. A correct detection happens if an impostor is 
correctly classified as belonging to the impostors, and a false rejection occurs when a 
legitimate user is classified as an impostor. The ideal accuracy, corresponding to the 
values PD = 1 and PFR = 0 is extremely difficult, if at all possible, to achieve. 
Therefore, in practice, a trade-offbetween PFR and PD is set as a goal. The dependence 
between PD and PFR values can be represented by a so-called receiver-operating curve 
(ROC-curve) depicting the Po values as a function of PFR. The area under the curve 
(AUC) [19] was employed in the experiments, as it reflects the classifier accuracy; in 
general, the greater area corresponds to the classifier with the better accuracy. 

Base ROC-curves, along with corresponding AUCs, reflect how accurate single 
classifications are, provided that the classifications can be made by the classifier. How- 
ever, they do not take into account those observation vectors, for which no classification 
can be provided by the classifier, due to the absence of corresponding feature values in 
a particular window. The number of such non-classifications is different for different in- 
dividual classifiers; therefore, their classification accuracies cannot be compared using 
such base ROC-curve and AUC. 

Therefore, along with the base ROC-curve, a normalised ROC-curve and nor- 
malised AUC were introduced. A normalised ROC-curve depicts P y m  as a function 
of P;gm, where P r m  and P;gm represent respectively the normalisations of PD 
and PFR, wherein the cases of non-classifications are taken into account. For classifier 
i, the values of PFgm and Pygm are calculated as: 

where nc, denotes the number of classifications made by classifier i, and nc ,,, is 
the maximum number of classifications that can be made by individual classifiers or 
combinations thereof. Furthermore, for the values of PEym and P;gm greater than 
nci/nC mas, we assume P;pTrn = P;gm; this reflects the behaviour of a classifier 
randomly guessing whenever it is unable to make a classification. Given the value of 
base AUC,, the normalised AUC can be calculated as: 

Thus, the base AUC reflects how accurate a single classification is provided that 
the classification can be made, while the normalised AUC reflects how many accurate 
classifications can be made in general, taking into account both classifications made 
and non-classifications. 

4.2 Evaluating classifiers' accuracy 

In this subsection, the accuracy of individual classifiers is considered. For each user, 
the accuracy is evaluated individually by using base and normalised AUCs. In Table 1, 
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the base AUCs for individual classifiers averaged over all users are presented. As can 
be seen from the table, the A R R C A L L  and A R R S M S  classifiers had low accuracy - 
(AUC x 0.5), and hence they were excluded fiom further consideration. The low ac- 
curacy of these classifiers suggests that the service inter-arrival times are similar across 
different users, and hence neither of them is a good differentiator between users. On the 
other hand, the relatively low accuracy of the S P E E D  classifier might be attributed to 
the fact that the Cell IDS, on which this classifier relies, may change sporadically [20], 
e.g. due to the effect of interference. As a result, the produced estimation of the speed 
is both biased and noisy. 

Table 1. Averaged base and normalised AUCs for individual classifiers. 

The normalised AUCs for remaining seven classifiers are also provided in Table 1. 
As could be seen, should the classifiers be ranked according to their accuracy, the pro- 
duced accuracy ranks would differ significantly depending on whether the base or nor- 
malised AUC is taken into account. Specifically, while CONT JVUM is the most ac- 
curate classifier according to the base AUC, it is rather poor according to the normalised 
AUC. On the contrary, the M O V E  classifier, while not performing well according to 
the base AUC, is the most accurate classifier according to the normalised AUC. This is 
due to the difference in the number of classifications that different classifiers are able 
to produce. For example, the abovementioned MOVE classifier in average produced 
4840 classifications per user, while the C O N T N U M  classifier was able to produce in 
average only 1237 classifications. Consequently, for a same number of windows, more 
true detections can be produced by (generally less accurate) M O V E  classifier. 

4.3 Selecting classifiers to combine 

Classifier 

AUC xz''orm 

In this phase of the experiments, different combinations of classifiers were explored. 
The classifiers were added to the combination on a one-by-one basis. In order to select 
the next classifier to add, the individual classifiers were ranked according to several 
criteria, including: 

PLACES 
0.7429 
0.5429 

- Classification accuracy according to the base AUC; 
- Classification accuracy according to the normalised AUC; - 
- Heuristic accuracy measure AUC x ncz taking into account both the classifica- 

tion accuracy (base AUC) and the number of classifications the classifier is able to 
produce. 

ARR-CALL 
0.5006 

- 

The resulting ranks are shown in Table 2. As reflected in the table, in many cases, clas- 
sifiers' ranks differ depending on the criteria used. Therefore, several configurations 

SPEED 
0.5370 
0.5059 

ARRSMS 
0.5007 

- 

MOVE 
0.5775 
0.5489 

DUR-CALL 
0.5036 
0.5003 

CONTNUM 
0.8062 
0.5176 

BTDEV 
0.7090 
0.5358 

ACTAPP 
0.5436 
0.5125 
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Table 2. Ranks of individual classifiers. 

Table 3. Averaged base and normalised AUCs for classifier combinations. 

Classifier - 
Rank acc. AUC 
Rank acc. AUC,,,, 
Rankacc. AUC x nci 

of classifier combinations were tried, and better configurations were subsequently se- 
lected. The resulting classification accuracy for different configurations is reported in 
Table 3. 

As indicated by the normalised AUCs, the best combinations of two, three, 
and four classifiers are produced by adding sequentially PLACES,  BT D E V ,  
CONT-NUM, and MOVE.  Thus, for two-, three-, and four-classifier combinations, 
the best configurations of classifiers is produced, when the classifiers - are added to the 
combination in accordance with the heuristic accuracy measure AUC x n c, introduced 
above. This suggests that the best resulting classification accuracy may be achieved, 
when the classifiers to be added both i) have high individual classification accuracy 
(manifested in the base AUC) and ii) produce few non-classifications (manifested in 
nc, value). 

Note that the best base AUCs increase when the second and the third classifier are 
added, while adding subsequent classifiers reduces the resulting base AUCs. Mean- 
while, the best normalised AUCs increase also when the forth and the fifth classifiers 
are added, and deteriorate when the sixth and the seventh are included. This indicates 
that the benefits from being able to make more classifications with the forth and the fifth 
classifier overweigh the decrease in the accuracy of separate classifications. It should 
be also noted that, while the normalised AUCs increase when the forth and the fifth 
classifiers are added, the analysis of the normalised ROC-curves reveals, that the ROC- 
curves for the four- and five-classifier combinations surpass the ROC-curves for the 
best three-classifier combination only for high values of FR rate (greater than 0.5). 
The three-classifier combination was also found superior by analysing partial AUCs, 
produced by restricting the ROC-curves to the FR rate lower than 0.4. Thus, for the 

DUR-CALL 
7 
7 
7 

PLACES SPEED 
2 6 4  
2 6 1  
1 6 4  

MOVE CONTNUM 
1 
4 
3 

BTDEV 
3 
3 
2 

ACTAPP 
5 
5 
5 
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applications where low values of FR rate are important, the use of the three-classifier 
combination may in fact be a better choice. 

5 Discussion and concluding remarks 

The means of masquerader detection can be used to resist unauthorised use of sensi- 
tive information accessible on mobile terminals. In this paper, the problem of mobile- 
masquerader detection is approached as an anomaly detection problem. The profile of 
normal user behaviour is built by monitoring the user over a long period of time. After 
that, the current user behaviour is matched against the profile, and, should significant 
discrepancies be found, they are flagged as potential masquerade attacks. 

A number of measures have been proposed as potentially useful for mobile- 
masquerader detection. In this paper, the appropriateness of some of them was empir- 
ically tested by using the data describing the behaviour of nine mobile users. Individ- 
ual one-class classifiers were constructed for each of the measures being verified, and 
the accuracy of these classifiers and combinations thereof was empirically compared. 
As a result of experiments, two classifiers (ARR-CALL, A R R S M S )  were found 
inaccurate; this suggests that the corresponding measures are not useful in mobile- 
masquerader detection. The accuracies of classifiers and their combinations were com- 
pared by using normalised AUCs. The best accuracy was achieved when several classi- 
fiers were combined. Furthermore, the best classifier combination was produced when 
the classifiers both i) produced accurate individual classifications (as reflected in the 
values of the base AUC) and ii) were able to make many classifications (as reflected in 
the average numbers of classifications made). 

For smaller values of FR rate, the best accuracy was found to be produced by the 
combination of PLACES,  CONTiVUM,  and B T D E V  classifiers. Noteworthy, 
the corresponding measures describe the environment of a mobile user from different 
viewpoints: locations of visited places describe a user's global physical environment, 
the contacted numbers describe a user's global virtual (social) environment, and neigh- 
bouring Bluetooth devices describe a user's local virtual (social) environment. The in- 
volvement of several measures into the process of masquerader detection makes the 
detection more difficult to subvert, since several aspects of the legitimate user's en- 
vironment need to be mimicked simultaneously by a masquerader. The personal data 
employed for masquerader detection can be collected, stored, and processed directly 
on the terminal, without the need to be transmitted and stored on a remote server, and, 
therefore, this data does not need to be disclosed to a trusted party. 

Due to the use of real data in the experiments, the results are likely to be generalis- 
able. On the other hand, due to the peculiarities of the employed dataset, used classifiers, 
etc., some bias may be contained in the results obtained. Below, these peculiarities are 
discussed. 

First, in the experiments, an attempt was made to distinguish users within groups, 
wherein the users were acquainted with each other and, hence, shared some of the char- 
acteristics (e.g. places visited). Therefore, for some of the classifiers the task of distin- 
guishing between users was more challenging, and their classification accuracy might 
be underestimated. Second, the design of some of the individual classifiers is likely 
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to be suboptimal. For instance, the low accuracy of the SPEED classifier may be at- 
tributed to the inaccurate estimation of  the speed that was based on the Cell ID changes; 
the use of a location recognition algorithm [20] to pre-process the data might improve 
the classifier's accuracy significantly. Third, in the experiments, it was assumed that the 
behaviour of  impostors may be approximated by the behaviour of  other users. Whether 
such approximation is accurate enough remains to be a question for further study. 

In addition to the classification accuracy, the memory requirements and the com- 
putational overhead imposed by the proposed masquerader detection approach, need to 
be  evaluated. Their evaluation, however, depends on the number and type of classifiers 
used, among other parameters. Since the current work was focused on the evaluation of 
individual classifiers and combinations thereof, the evaluation of  the required computa- 
tional resources was left for further work. 

Finally, the behaviour of  a limited number of users was described by the dataset, 
and these users may not reflect accurately the behaviour of mobile users in general. 
Therefore, the reported results may need to be refined in further research, using bigger 
datasets describing the behaviour of a larger population of  mobile users. 
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