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Abstract: This chapter presents a low power architecture of a Java processor. We show 
that the use of techniques like pipeline and the implementation of the stack in a 
register bank instead of using the main memory allow aggressive reduction of 
power dissipation, with a very small area overhead. Besides, thanks to the 
forwarding technique and to the specific stack machine organization, huge 
power savings can be obtained when applying this technique to a pipelined 
implementation of the architecture. Several examples of embedded 
applications are used to show the power savings obtained through the 
architecture optimization 
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1. INTRODUCTION 

The embedded system market grows day by day. The production of 
specific processors to be used inside microwaves, videogames, printers, mp3 
players, digital cameras, cellular phones and others appliances, is following 
the same growing path\ Particularly in portable embedded systems, where 
the battery lifetime is a crucial factor, some special care is needed in terms of 
power consumption of the system. 

Java is becoming increasingly popular in embedded environments. It is 
estimated that devices with embedded Java such as cellular phones, PDAs 
and pagers will grow from 176 million in 2001 to 721 million in 2005 ,̂ 
Nevertheless, is predicted that at least 80 percent of mobile phones will 
support Java by 2006 ^ As one can observe, the importance of Java in 
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embedded systems is growing. This means a careful look on embedded Java 
processors and their performance versus power tradeoffs must be taken into 
account. 

In this chapter we show a study about three different architectures 
capable of executing Java bytecodes and discuss their area, performance and 
mainly power requirements, focusing on embedded systems applications. 
We demonstrate that by the use of inexpensive techniques, one can optimize 
the execution of instructions and obtain a drastic reduction in the energy 
consumption, by a factor of more than 10. Moreover, it is demonstrated that 
the use of the forwarding technique, besides increasing the performance, 
allows further benefits to stack-like architectures, since power consumption 
is reduced because of the small number of writes in the stack. Less writes in 
the stack means a smaller number of register or memory writes, hence 
reducing memory accesses, one of the major sources of power dissipation in 
embedded processors" '̂̂ '̂ . Our experiments are supported by simulation, 
using three different architectures of the Femtojava Processor^'^, executing 
different algorithms used in embedded system domain. The area was 
computed in number of logic cells, after synthesis of different VHDL 
versions of the processors. 

This chapter is organized as follows: Section 2 shows a brief review of 
the existing Java processors. In Section 3 we discuss the different 
architectures of Java machines that will be evaluated, and present the 
advantages of using the forwarding technique in stack machines. Section 4 
presents the simulation environment: the power simulator and the test case 
algorithms executed in the processors. Section 5 shows the results regarding 
power consumption, performance and area. The last Section draws 
conclusions and introduces future work. 

2. RELATED WORK 

A large number of Java processors aimed at the embedded systems 
market have already been proposed. Sun's Picojava I ,̂ a four stage pipelined 
processor, and Picojava II ^̂ , with a six stage pipeline, are probably the most 
studied ones. Even though the specification of such processors allows a 
variable size for the data and instruction caches, and the floating point unit is 
optional, there is no special care on the underlying microarchitecture in order 
to reduce the area and power consumption of the system. 

The same occurs to others Java processors: Komodo^\ a multithreaded 
Java microcontroller concerned especially with real time applications; and 
Traja^ ,̂ a dual issue pipelined processor that makes use of instruction 
reordering to avoid data dependencies. All of these and other examples of 
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native Java execution machines always focus on obtaining the maximum 
possible performance, in order to leverage Java execution v îth RISC and 
VLIW architectures. However, in the domain of embedded systems, not only 
plain throughput is the correct metric. Other issues like power dissipation 
and software compatibility play a major role. This way, the research on low 
power Java processors, able to maintain enough performance to execute the 
target application with the smallest possible power budget, is the goal of this 
work. 

3, ARCHITECTURE OF THE JAVA PROCESSORS 

The Femtojava processor is a stack-based microcontroller that executes 
Java bytecodes. General characteristics of the Femtojava processor are: 
reduced instruction set, Harvard architecture and small size. This processor 
was designed specifically for the embedded system market. The size of its 
control unit is directly proportional to the number of different instructions 
used by the application. From an available tool^, the Java bytecodes of the 
application are analyzed, and the control unit is generated, supporting only 
the instructions used by that application. 

The first architecture evaluated is a multicycle version of Femtojava^ that 
takes three to fourteen cycles to execute an instruction. Its microarchitecture 
can be observed in Figure 1, 

The pipelined version^ has five stages: instruction fetch, instruction 
decoding, operand fetch, execution, and write back, as shown in Figure 2. 
One of the main characteristics of the pipelined Femtojava is the presence of 
registers playing the role of operand stack and local variable storage. 

The first stage, instruction fetch, is composed by an instruction queue of 
9 registers of one byte each. The first instruction in the queue is sent to the 
instruction decoder stage. The decoder has three functions: the generation of 
the control word for that instruction, to handle data dependencies and to 
inform to the instruction queue the size of the current instruction, in order to 
put the next instruction of the stream in the first place of the queue. This is 
necessary because of the use of variable length instructions: they can have 
one or two immediate operands, or none at all. When at least 4 registers in 
the instruction queue are empty, a word of 32 bits comes from the instruction 
memory, pointed by the program counter. 

The operands fetch is done in a variable size register bank, defined a 
priori in earlier stages of the design. Stack and the local variable pool of the 
methods are available in the register bank. There are two registers: SP and 
VARS. They point to the top of the stack and to beginning of the local 
variable storage, respectively. Depending on the instruction, one of them is 
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used as base for the operands fetch. Once the operands are fetched, they are 
sent to the fourth stage, where they will be executed. There is no branch 
prediction, in order to save area. All branches are supposed to be not taken. 
If the branch is taken, a penalty of three cycles is paid. 

Figure 1. Multicycle Java Processor̂  

The write back stage saves, if necessary, the result of the execution stage 
back to the register bank, using the SP or VARS as base. As the register 
bank can not be simultaneously read and written, when an instruction in the 
fifth stage writes back its result and an instruction in the third stage wants to 
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read an operand, a bubble is inserted in the pipeline. There is a unified 
register bank for the stack and local variable pool, because this facilitates the 
call and return of methods, taking advantage of the JVM specification, where 
each method is located by a frame pointer in the stack. 

Finally, the third architecture evaluated is the same pipelined one 
described before, plus the increment of the forwarding technique: if there is 
an instruction in the execution stage that will write its result in the stack, and 
the following instruction accesses the stack in the operand fetch stage, a true 
dependency (RAW - read after write) is characterized. One of the solutions 
is to stall the pipeline, inserting bubbles on it, until the first instruction 
finishes the write back stage. Another solution is to make use of the 
forwarding technique^^, passing directly the result from the execution stage 
to the operand fetch stage. 

In operand stack based processors, the use of such technique brings an 
advantage when comparing to register-like processors: in instructions that 
manipulate the stack, the operands forwarded to earlier stages will not be 
used anymore. As a consequence, there is no need to write back these 
operands to the stack. The result is the reduction on the power consumption, 
because the diminishing number of writes in the stack. 

Two types of forwarding can occur: when the instruction in the execution 
stage consumes one operand from the top of the stack (like istore, which 
saves the top of stack in some place of the local variable pool); or when the 
instruction consumes two operands from the stack (like arithmetic 
operations: iadd, isub, ior). In the first case, the operand forwarded comes 
from the execution stage to the operand fetch. In the second case, the second 
operand comes from the write back stage. 
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4. SIMULATION ENVIRONMENT 

4.1 Power Simulator 

CACO-PS^, a compiled-code cycle-accurate simulator, was used to 
provide data on the energy consumption, memory usage and performance. 
Power dissipation is evaluated in terms of switching capacitances, and as the 
processor has separated instruction and data memories, we also included an 
evaluation module concerning RAM and ROM memories, besides the 
register bank. This way, one can verify the relative power dissipation of the 
CPU, instruction memory, and data memory. It is important to measure the 
impact of each one of these blocks, so that one can better explore the design 
space. 

We used the power simulator to collect the amount of capacitances that 
switch during the execution of a certain algorithm. This power estimation 
technique is comparable to the component-based approach ''̂ ''̂ '̂ .̂ 

4.2 Algorithms 

Five different types of algorithms were implemented and simulated over 
the architectures described in Section 3. Sin Calculation, as a representative 
of arithmetic libraries; sort and search, used in schedulers; IMDCT (Inverse 
Modified Discrete Cosine Transformation), an important part of the MP3 
decompression algorithm; and a library to emulate sums of floating numbers, 
since the Femtojava processors does not have a floating point unit in order to 
save area. 

Sequential algorithms are used as representative of scalar computations. 
The first one is Sequential 1 that performs the search in a sequential fashion 
in a non-ordered table. Even if the value has already been found, the 
algorithm stops just at the end of the table. The second algorithm 
(Sequential!) stops right after the required value is found in a table that has 
been previously ordered. The last search algorithm performs a binary search 
in the vector. 

The sort algorithms arrange a set of ten numbers putting them in 
increasing order. Three different kinds of sort are performed: bubble sort, 
insert sort and select sort. The floating point sum algorithm makes 20 sums 
of two floating point numbers and puts its results in a vector in the memory. 
Finally, the sin algorithm uses the cordic method to calculate the result. 
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5. RESULTS 
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Table 1 shows the area occupied by the three different versions of the 
Femtojava processor. It is important to note that the register bank, used as 
stack and local variable pool, has 32 registers, the maximum required among 
all the applications. The computed area includes the control unit that 
supports all the Femtojava instruction set. The area was evaluated using the 
Leonardo Spectrum for Windows ^̂ , and it is presented in logic cells. More 
details about the VHDL implementation can be found in '^ 

Table 1. Area occupied by the VHDL version of the architectures 
PROCESSOR Multicycle Low-Power 

AREA 1345 LCs 2916 LCs 

Low-Power with 
forwarding 

3016 LCs 

Table 2 shows the performance in number of cycles of the processors for 
each application. 

Table 2. Performance of the different architectures 
ALGORITHM 

Sin 

Sort-Bubble 

Sort - Select 

Sort - Insert 

Search - Binary 

Search - Sequencial 1 

Search - Sequencial 2 

IMDCT 

Floating Point Sums 

Multicycle 

l^^l 

6774 

5335 

4093 

1162 

8497 

7586 

140300 

30747 

NUMBER OF CYCLES 
Low-Power 

1237 
3234 

2703 

2071 

602 

3803 

2779 

61841 

18735 

Low-Power with 
forwarding 

755 
2468 

1930 

1571 

403 

2765 

1997 

40306 

14531 

Operating at the same frequency, the core of the pipelined version with 
forwarding is the architecture which has the major power consumption per 
cycle, since this architecture is the more complex one, with several extra 
registers. This behavior can be observed in figure 3. 
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Figure 3. Power consumed per cycle 

Even though the power consumed per cycle in the pipelined versions is 
greater then the multicycle one, the total energy consumption of the system 
is decreased, because of the high throughput reached by the pipelined 
versions and the decrease in the number of accesses in the memory. 

As it can be observed in figures 4 and 5, the overall energy consumption 
is drastically reduced in some algorithms, when one changes the architecture 
of Femtojava. Others, like the algorithm of sums of floating point numbers, 
do not show such a great gain. The reason is that the implementation of this 
algorithm makes a lot of method calls, with a consequent increase in the 
main memory power consumption. Moreover, the algorithm makes an 
intensive use of the local variable pool of the methods, and although the 
forwarding technique is applied to the local variable pool as well, the 
forwarded operands must be written back in the registers, because there is no 
warranty that they will not be used in the future. The IMDCT and floating 
point sum algorithms are presented in a separated figure in order to ease the 
visualization. 
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Figure 4. Energy consumption in the three architectures 

Figure 5. Continuation: Energy consumption in the three architectures 

Figures 6 and 7 show the energy consumed because of RAM accesses. 
As Femtojava Multicycle uses the main memory as stack and variable pool, 
there is a big difference between this architecture and the pipelined ones. 
These last, in turn, just make accesses in the main memory in calls and 
returns of methods, and while executing specific instructions, such as 
putstatic and getstatic. Figures 6 and 7 show the advantage of implementing 
the stack and local variable pool in a register bank instead of using the main 
memory. 



Low Power Java Processor for Embedded Applications 223 

Sin 

Sort-Bubble 

Sort - Select 

Sort- Insert 

-^1^Search- Binary 

- • -Search - Sequencial 1 

—<--Search - Sequencial 2 

Figure 6. Energy caused by main memory accesses 
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Figure 7. Continuation: Energy caused by main memory accesses 

Figures 8 and 9 show the energy consumed by the core of the presented 
architectures. As one can observe, the power consumed in the core is 
reduced in the pipelined version with forwarding, in comparison to the 
version that does not use the technique. The difference on the energy 
consumption has two reasons: the better utilization of the functional units 
because of the reduction of pipeline stalls; and the decrease of the number of 
registers writes, since the average of power consumed in registers writes per 
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cycle was reduced by almost 70%, showing the advantage of using the 
forwarding technique. 

10000000 
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-Search - Sequencial 2 

Figure 8. Energy consumed in the cores 

Figure 9. Continuation: Energy consumed in the cores 

In embedded applications, many of them with real time requirements, a 
specific throughput must be warranted for the application. Assuming that 
this throughput is reached by the multicycle version, the frequency of 
operation of the pipelined versions can be decreased in order to save power, 
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since these architectures can execute more instructions per cycle, as was 
showed in table 1. 

Moreover, when assuming that the dynamic power is the dominant in the 
power consumed in the system, and all the gates of the microprocessor form 
a collective switching capacitance C with a common switching frequency f, 
one obtains: 

P = C,f. Vdcf (1) 

As can be observed in , the voltage of the processor Transmeta TM5400 
(known as Crusoe) ^̂ , designed for embedded systems, can be decreased by a 
factor of 4,6% when the operation frequency is reduced by 10%. 

Figure 10 shows the relative decrease in the energy consumption when 
the frequency of the pipelined version (without forwarding) is reduced to 
reach exactly the same throughput of the multicycle version, and when the 
voltage is reduced thanks to the decrease in the frequency, using as base the 
equation (1). 

Figure 10, Energy consumed in the cores with the frequency and voltage reduced 

Applying the forwarding technique, the energy consumption is reduced 
even more, as can be observed in figure 11, when it is shown the relative 
decrease in the power consumption comparing the pipelined version without 
forwarding with the one that uses the technique. Both had the frequency and 
voltage reduced to reach the same throughput of the multicycle version. 
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Figure 11. Comparison between the architectures without and with forwarding, both with the 
frequency and voltage reduced 

Finally, we show the advantage of increasing the area of the processor in 
order to support pipeline and forwarding, trading it for a huge saving in the 
energy consumption. Figure 12 shows a relative comparison between the 
area overhead and the average of the power consumed by all the 
applications. 

-20 

-Power Consumption 
-Area Overhead 

Figure 12. Area versus energy consumption 

As can be observed, for twice the area overhead, one obtains a factor of 
16 in the energy reduction. 
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6, CONCLUSION AND FUTURE WORK 

We demonstrated that for embedded applications, which need a small 
stack for its operations, one can obtain a huge decrease in the power 
consumption with a proportionally small increase in the overall area of the 
system. Particularly for these machines, the use of the forwarding technique 
brings a large reduction in the power consumption of the core, taking 
advantage of the stack architecture and of algorithms that uses the stack 
intensively, like the IMDCT one. We believe that this behavior is true for 
others stream-based algorithms, since these are algorithms that make 
intensive use of the stack. 

For future work, we will evaluate more algorithms of the embedded 
system domain, like an MP3 player. Moreover, we are studying the impact 
of applying the VLIW technique in Java machines, concerning mainly the 
power consumption^^ as well as alternatives to increase the VLIW 
performance, such as the use of techniques to fmd the instruction parallelism 
inside the program, like software pipelining, superblocks, and static 
speculative execution. Other techniques such as the use of a reconfigurable 
array working together with binary translation to detect the sequence of 
instructions and reconfigure the array at runtime, and CMP, where a set of 
processors with the same ISA work together in the same die, will also be 
evaluated, always giving special concern to the advantages and 
particularities of stack processors in these techniques. 
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