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Abstract The efficiency of the network flow techniques can be exploited in the solution of 
nonlinearly constrained network flow problems by means of approximate sub- 
gradient methods. In particular, we consider the case where the side constraints 
(non-network constraints) are convex. We propose to solve the dual problem 
by using &-subgradient methods given that the dual function is estimated by 
minimizing approximately a Lagrangian function with only network constraints. 
Such Lagrangian function includes the side constraints. In order to evaluate the 
efficiency of these E-subgradient methods some of them have been implemented 
and their performance computationally compared with that of other well-known 
codes. The results are encouraging. 
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1. Introduction 
Consider the nonlinearly constrained network flow problem (NCNFP) 

minimize f (x) 

subject to x E 3 

c(x) < 0; 
where: 

m The set 3 is 

where A is a node-arc incidence m x n-matrix, b is the productiodde- 
mand m-vector, x are the flows on the arcs of the network represented 
by A, and Z are the capacity bounds imposed on the flows of each arc. 
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The side constraints (3) are defined by c  : Rn -+ RT, such that c  = 
[q, . . . , c,It, where c i (x )  is linear or nonlinear and twice continuously 
differentiable on the feasible set 3 for all i = 1, . . . , r.  

rn f : Rn -+ R is nonlinear and twice continuously differentiable on 3. 

Many nonlinear network flow problems (in addition to the balance constraints 
on the nodes and the capacity constraints on the arc flows) have nonlinear side 
constraints. These are termed nonlinearly constrained network flow problems, 
NCNFP. In recent works [ l l ,  121, NCNFP has been solved using partial aug- 
mented Lagrangian methods with quadratic penalty function and superlinear- 
order multiplier estimates (ALM). 

In this work we focus on the primal problem NCNFP and its dual problem 

maximize q(p) = min l ( x ,  p )  = min { f ( x )  + ptc(x) )  (4) 
xE? ~ € 3  

subject to: p  E M ;  ( 5 )  

where M = { p  I p  2 0, q(p)  > -m). We assume throughout this paper 
that the constraint set M is closed and convex, and q  is continuous on M, 
and for every p  E M some vector x ( p )  that minimizes l ( x ,  p )  over x  E 3 
can be calculated, yielding a subgradient c ( z ( p ) )  of q  at p. We propose to 
solve NCNFP by using primal-dual methods, see [2]. 

The minimization of the Lagrangian function l(x, p)  over 3 can be 
performed by means of efficient techniques specialized for networks, see [21]. 

Since q(p)  is approximately computed, we consider approximate subgradi- 
ent methods [13] in the solution of this problem. Author's purpose is to improve 
the efficiency obtained by using the multiplier methods with asymptotically ex- 
act minimization [ l  1,121. Moreover, these methods allow us to solve problems 
of the kind of NCNFP where the dual function might be nondifferentiable in 
spite of having a differentiable Lagrangian function, as this could happen if the 
conditions given by the Proposition 6.1.1 in [2] are not fulfilled. The basic 
difference between these methods and the classical subgradient methods is that 
they replace the subgradients with inexact subgradients. 

Different ways of computing the stepsize in the approximate subgradient 
methods have been considered. The diminishing stepsize rule (DSR) suggested 
by Correa and LemarCchal in 141. A dynamically chosen stepsize rule based 
on an estimation of the optimal value of the dual function by means of an ad- 
justment procedure (DSAP) similar to that suggested by NediC and Bertsekas 
in [ la]  for incremental subgradient methods. A dynamically chosen stepsize 
whose estimate of the optimal value of the dual function is based on the re- 
laxation level-control algorithm (DSRLC) designed by Brannlund in [3] and 
analyzed by Goffin and Kiwiel in 191. The convergence of these methods was 
studied in the cited papers for the case of exact subgradients. The convergence 
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of the corresponding approximate (inexact) subgradient methods is analyzed in 
[13], see also [lo]. 

The main aim of this work is to evaluate the efficiency of the approximate 
subgradient methods when we use DSR, DSAP, and DSRLC over NCNFP 
problems, for which we compare it with that of the augmented Lagrangian 
method (ALM) when it uses superlinear-order estimates [ l  1, 121, and with that 
of the well-known codes filterSQP [7] and MINOS [17]. Also, we compare 
the quality of the computed solution by the E-subgradient methods. 

This paper is organized as follows: Section 2 presents the approximate sub- 
gradient methods; Section 3, the solution to the nonlinearly constrained network 
flow problem; and Section 4 puts forward the numerical tests. 

2. Approximate subgradient methods 
When, as happens in this work, for a given p  E M, the dual function value 

q(p)  is calculated by minimizing approximately 1 ( x ,  p) over x  E 3 [see (4)], 
the subgradient obtained, as well as the value of q(p) ,  will involve an error. 

In order to put forward such methods, it is useful to introduce a notion of 
approximate subgradient [2, 201. In particular, given a scalar E 2 0 and a 
vector p with q(p)  > -m, we say that c  is an E-subgradient at p if 

The set of all E-subgradients at p is called the E-subdifferential a t  P and 
is denoted by &q(p).  Note that every subgradient at a given point is also an 
&-subgradient for all E > 0. Generally, however, an &-subgradient need not be 
a subgradient, unless E = 0. 

An approximate subgradient method is defined by 

where ck is an ck-subgradient at pk, [.I+ denotes the projection on the closed 
convex set M, and sk is a positive stepsize. 

In our context, we minimize approximately 1 ( x ,  pk)  over x E 3, thereby 
obtaining a vector xk E 3 with 

1(xk,  pk)  < inf I(,, , L L ~ )  + ~ k .  
~ € 3  

As is shown in [2, 131, the corresponding constraint vector, c ( x k ) ,  is an 
E~-subgradient at pk. If we denote q,, ( p k )  = l ( x k ,  by definition of 
q ( p k )  and using (8) we have 



2.1 Stepsize rules 

Throughout this section, we use the notation 

and I /  . 1 1  denotes the standard Euclidean norm. 
In this work, three kinds of stepsize rules have been considered. 

2.1.1 Diminishing stepsize rule (DSR). The convergence of the subgra- 
dient method using a diminishing stepsize was shown by Correa and LemarCchal, 
see [4]. Next, we consider the special case where ck is an E~-subgradient. 

In a recent work [13], the following proposition is proved. 

PROPOSITION 1  Let the optimal set M* be nonempty. Also, assume that the 
sequences i s k )  and { E ~ )  are such that 

Then, the sequence { , L L ~ ) ,  generated by the E-subgradient method, where ck E 
aEk q ( p k )  (with {lick 11) bounded), converges to some optimal solution. 

An example of such a stepsize is 

for = Lklrn] + 1. In this work we use by default m = 5. 
An interesting alternative for the ordinary subgradient method is the dynamic 

stepsize rule 

with ck E ~ q ( ~ ~ )  and 0  < y  5 yk 7 < 2, which was introduced by Poljak 
in [19] (see also Shor [20])- 

Unfortunately, in most practical problems q* and q ( ~ ~ )  are unknown. 
Then, the latter can be approximated by q,, ( p k )  = 1 ( x k ,  p k )  and q* replaced 
with an estimate qfeV. This leads to the stepsize rule 

where ck E is bounded for k = 0 ' 1 ,  . . .. 
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2.1.2 Dynamic stepsize with adjustment procedure (DSAP). An op- 
tion to estimate q* is to use the adjustment procedure suggested by NediC 
and Bertsekas [18], but fitted for the &-subgradient method, its convergence is 
analyzed by Mijangos in [13], see also [ l o ] .  

In this procedure qkv is the best function value achieved up to the kth 
iteration, in our case maxo<j lk  qEj ( p j ) ,  plus a positive amount 6k, which is 
adjusted according to algorithm's progress. 

The adjustment procedure obtains q k ,  as follows: 

and Sk is updated according to 

where So, 6, 0, and p are fixed positive constants with 0 < 1 and p > 1 

2.1.3 Dynamic stepsize with relaxation-level control (DSRLC). An- 
other choice to compute an estimate q k ,  for (13) is to use a dynamic stepsize 
rule with relaxation-level control, which is based on the algorithm given by 
Brannlund [3],  whose convergence was proved by Goffin and Kiwiel in [9] for 
~k = 0 for all k .  

Mijangos in [13] has fitted this method to the dual problem of NCNFP (4-5) 
for { E ~ }  + 0 and analized its convergence, see also [ l o ] .  

In this case, in contrast to the adjustmentprocedure, q* is estimated by qfe,, 
which is a target level that is updated only if a sufficient ascent is detected or 
when the path long done from the last update exceeds a given upper bound B. 

Step 0 (Initialization): Select pO, So > 0 ,  and B > 0. 

Set go = 0 and q&b = m. 

Set k = 0, 1 = 0 and k(1) = 0, where k(1) will denote the iteration 
k when the lth update of qfev occurs. Then k(1) = k will be set. 

Step 1 (Function evaluation): Compute q,, ( p k )  and ck E dE,q(pk) .  

If qik ( p k )  > q,"zl> set q,k,, = 4Ek ( p k ) .  
Otherwise set qFe, = $ z l .  

Step 2 (Stopping rule): If IlckI1 = 0, terminate with p* = pk.  

Step 3 (Sufficient ascent detection): If q,, ( , L L ~ )  2 $::)+$&, set k ( l t 1 )  = 
k ,  crk = 0,  = S1, 1 := 1 t 1, and go to Step 5. 



Step 4 (Oscillation detection): If crk > B, set k ( l  + 1 )  = k ,  crk = 0 ,  
tjl+l = $h l ,  1 := 1 + 1. 

Step 5 (Iterate update): Set q:,, = q:,(? + hr. Choose y E [y, $1 and 
compute pk+l by means of (7) with the stepsize sk  obtainedby (13). 

Step 6 (Path long update): Set ak+l = ar, + skljckll, k := k + 1,  and go 
to Step 1. 

Note that qFe, keeps the record of the highest value attained by the iterates that 
are generated so far; i.e., qFe, = maxo<j<k - qEj(,uj) .  Moreover, the algorithm 

uses the same target level qfe, = q$ + 61 for k = k ( l ) ,  k(1) + 1 ,  k ( l  + 
2 ) ,  . . . , k ( l  + 1 )  - 1. In [13] we analize the convergence of the c-subgradient 
method with the stepsize (13) for ql,, given by this algorithm. 

3. Solution to NCNFP 
An algorithm is given below for solving NCNFP. This algorithm uses the 

approximate subgradient method described in Section 2. 
The value of the dual function q(,uk) is estimated by minimizing approx- 

imately 1 ( x ,  ,uk) over x E F (the set defined by the network constraints) 
so that the optimality tolerance, r:, becomes more rigorous as k increases; 
i.e., the minimization will be asymptotically exact [I]. In other words, we 
set qEk (,uk) = 1(xk,  p k ) ,  where x k  minimizes approximately the nonlinear 
network subproblem NNSk 

minimize 1 (z, p k )  
X E 3  

in the sense that this minimization stops when we obtain a x k  such that 

where limk,, 74 = 0 and Z represents the reduction matrix whose columns 
form a base of the null subspace of the subspace generated by the rows of the 
matrix of active network constraints of this subproblem, see [16]. Let zk be the 
minimizer of this subproblem approximated by x k .  Then, it can be proved (see 

k k [13]) that there exists a positive w, such that 1 ( x k ,  ,uk) 5 1 (Z , ,u ) + UJT: for 
k = 1 , 2 ,  . . .. If we set ~ i ,  = WT:, this inequality becomes (8). Moreover, as 

,:+I = k , for a fixed a E ( 0 ,  I ) ,  

then C p = l  E I ,  < ca, and so limk,, ~ i ,  = 0. Consequently, we can denote 
qEk = l ( x k ,  ,uk), which holds the inequality (9), and we may use the methods 
described in Section 2. In this work, a = 10-I by default. Note that in this 
case, E I ,  = r k w  = 10-IC-l u. 
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ALGORITHM 2 (APPROXIMATE SUBGRADIENT METHOD FOR NCNFP) 

1 Step 0 Initialize. Set k = 1, N,,,, T,, E ~ ,  and 7,. Set p1 = 0. 

Step 1 Compute the dual function estimate, q,,(pk), by solving NNSk, so 
that if II .Zt~,l(xk, pk)lj 5 rk, then xk E 3 is an approximate solution, 
qEk(pk)  = 1(xk, p k ) ,  and ck = c(xk)  is an E~-subgradient of q in p,k. 

Step 2 Check the stopping rules for 

T I :  Stopif max { ) +  } < :, where (c"+ = rnax(0 ci(xk)).  
i=1 ...., T 1 + (c:)+ 

T4: Stop if k reaches a prefixed value N,,, 

T2: Stop if 

If pk fulfils one of these tests, then it is optimal, and the algorithm stops. 
Without a duality gap, (xk ;  p,k) is a primal-dual solution. 

Step 3 Update the estimate pk by means of the iteration 

qk - (qk-' $ qkp2 + qk-3)/3 
1 + qk 

where sk is computed using some stepsize rule. Go to Step 1 

< E ,  , where qn = 

In Step 0, for the checking of the stopping rules, T, = E ,  = loe5 and 
N,,, = 200 have been taken. In addition, 7: = 10-I by default. 

Step 1 of this algorithm is carried out by the code PFNL, described in 
1141 (downloadable from website http://www.ehu.es/-mepmifeel). 

In Step 2, alternative heuristic tests have been used for practical purposes. TI 
checks the feasibility of xk,  as if it is feasible the duality gap is zero, and then 
(xk )  pk )  is a primal-dual solution for NCNFP. T2 and T3 mean that p does 
not improve for the last N iterations. Note that AT = 4. 

To obtain s k  in Step 3, we have used the iteration (7) with the three rules 
considered in Section 2 for computing the stepsize: 

D Diminishing stepsize rule DSR given by (1 I), which holds (lo), for the ~ i ,  

given above. 



P Dynamic stepsize with adjustment procedure DSAP, using p = 2, P = l /p ,  
yk = 1  for all k ,  60 = 0.05/( (c1)+l l ,  and 6  = l o w 5  11 ( z o ,  ,uo) 1 ,  where z0 
is the initial feasible point for Step 1 and k = 0. 

D Dynamic stepsize with relaxation level-control DSRLC, replacing B in Al- 
gorithm 1 with Bl = max{B: B I 1 )  when an oscillation is detected, for 
B = 1 0 - ~ / 1 x ~  - xOjj and B = 0.01. As can be seen, C r l  Bl = oo. In 
addition,wesetyk = lforall  k , 6  = 1 0 - 5 ~ l ( z o ~ , u o ) ~ , 6 0  = 0 . 5 1 / ( c 1 ) + I I ~  

The values given above have been heuristically chosen. The implementa- 
tion in Fortran-77 of the previous algorithm, termed PFNRNOS, was designed 
to solve large-scale nonlinear network flow problems with nonlinear side con- 
straints. 

4. Numerical tests 
In order to obtain an evaluation of PFNRNO5, some computational tests 

are performed, which consist in solving nonlinear network flow problems with 
nonlinear side constraints using this code and comparing the results with those 
obtained using PFNRN (with ALM), filterSQP and MINOS (see Section 1). 
These last two solvers are available on the NEOS server [5] with AMPL input 
[a]. (See the site h t t p  : //www-neos . mcs . an1 . gov/.) PFNRN is executed 
on a Sun Sparc 10141 work station under UNIX (which has a similar speed to 
that of the NEOS machines). 

Table I .  Test problems. 

problem # arcs # nodes # side const. # actives # sb. arcs 
D12e2 1524 360 180 5 75 
D13e2 1524 360 360 10 89 
D14e2 1524 360 36 3 1 15 1 
D12nl 1524 360 180 22 685 
D13nl 1524 360 360 3 8 68 1 
D14nl 1524 360 36 3 1 596 
D21e2 5420 1200 120 3 30 
D22e2 5420 1200 120 18 45 
D23e2 5420 1200 120 17 238 
D31el 4008 501 5 1 63 
D31e2 4008 501 5 1 60 

The problems used in these tests were created by means of the following 
DIMACS-random-network generators: Rmfgen and Gridgen, see [6]. These 
generators provide linear flow problems in networks without side constraints. 
The inequality nonlinear side constraints for the DIMACS networks were gen- 
erated through the Dirnl random generator described in [14]. The last two 
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Table 2. Comparison of the computed solution. 

DSR DSAP DSRLC 
Problem e l f *  //c//, elf' l C l i w  
D12e2 lo-4 lo-" 0. lo-" 0. 10-I' 

Table 3. Comparison of the efficiency. 

Problem filterSQP MINOS ALM DSR DSAP DSRLC 
D 12e2 3.3 0.5 1.0 0.3 0.6 0.4 
D13e2 5.0 0.7 2.3 0.6 0.5 0.6 
D 14e2 22.7 - 13.7 4.1 3.3 4.2 
D12nl 409.6 31.1 46.2 48.3 58.3 39.6 
D13nl 560.8 47.9 60.5 73.3 54.0 46.6 
D14nl - - 162.3 330.3 178.3 103.3 
D21e2 38.7 3.7 2.2 1.4 1.4 1.6 
D22e2 63.5 6.8 5.4 2.5 1.9 1.9 
D23e2 112.4 239.3 20.0 5.8 6.2 5.9 
D31el 28.7 45.6 2.0 1.6 1.6 1.6 
D31e2 22.7 14.1 1.3 0.9 1.0 1 .O 

letters indicate the type of objective function that we have used: Namur func- 
tions, n*, and EIOl functions, e*. The EIOl family creates problems with a 
moderate number of superbasic variables (i.e., dimension of the null space) at 
the solution (# sb. arcs). By contrast, the Namur functions [21] generates 
a high number of superbasic arcs at the optimizer, see Table 1. More details 
about these problems can be found in [14, 151. 

In Table 2, e l f  * represents the relative error in the computation of the opti- 
mum value of the objective function, whereas / E / / ,  represents the maximum 
violation of the side constraints in the optimal solution; that is, it offers infor- 
mation about the feasibility of this solution and, hence, about its duality gap. 
The results point out that the quality of the solution computed by PFNRNOS 
when it uses DSR is lower than that obtained when using dynamic stepsizes, 
such as DSAP or DSRLC. 



In Table 3, for each method used to compute the stepsize the efficiency is 
evaluated by means of the run-times in CPU-seconds. The efficiency for the 
three stepsizes is very similar and, for these tests, the subgradient methods 
were more efficient than the quadratic multiplier method, ALM (see Section 
I), filterSQP, and MINOS. Moreover, with default values, filterSQP was more 
accurate than MINOS. 

These results encourage to carry out further experimentation, which also 
includes real problems, and to analyze more carefully the influence of some 
parameters over the performance of this code. 
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