
DYNAMIC ROLE BINDING IN A SERVICE
ORIENTED ARCHITECTURE

Humberto Nicolas Castejon and Rolv Braek
NTNU, Department of Telematics, N-7491 Trondheim, Norway

"[humberto.castejon, rolv.braek/Oitem.ntnu.no

A b s t r a c t Many services are provided by a structure of service components that
are dynamically bound and performed by system components. Service
modularity requires that service components can be developed sepa­
rately, deployed dynamically and then used to provide situated services
without undesirable service interactions. In this paper we introduce a
two-dimensional approach where service components are roles defined
using UML 2.0 collaborations and system components are agents rep­
resenting domain entities such as users and terminals. The process of
dynamic role binding takes place during service execution and provides
general mechanisms to handle context dependency, personalisation, re­
source limitations and compatibility validation. A policy framework for
these mechanisms is outlined.

1. Introduction
A service may generally be defined as an identified partial function­

ality provided by a system to an end user, such as a person or other
system. The most general form of service involves several system com­
ponents collaborating on an equal basis to provide the service to one or
more users. This understanding of service is quite general and covers
both client-server and peer-to-peer services as described in [6]. A com­
mon trait of many services is that the structure of collaborating com­
ponents is dynamic. Links between components are created and deleted
dynamically and many services and service features depend on whether
the hnk can be established or not, and define what to do if it cannot be
established (e.g. busy treatment in a telephone call). Indeed, setting up
links is the goal of some services. For example, the goal of a telephone
call is to establish a link between two system components, so that the
users they represent can talk to each other. In the past this problem
has often been addressed in service specific ways. It may however, be

http://ntnu.no

770 H.N. Caste Jon and R. Brack

generalised to a problem of dynamic role binding^ i.e. requesting system
components to play roles, such as for example requesting a UserAgent
to play the b-subscriber in a call. The response to such a request may be
to alert the end-user (if free and available), to reject the call, to forward
it or to provide some waiting functionality (if busy). Which feature to
select depends on what is subscribed, what other features are active,
what resources are available, what the current context is and what the
preferences of the user are. By recognising dynamic role binding as a
general problem, we believe it is possible to find generic and service
independent solutions. In fact, many crucial mechanisms can be asso­
ciated with dynamic role binding: service discovery; feature negotiation
and selection; context dependency resolution; compatibility validation
of collaborating service components, and dependency resolution.

Modularity is a well-known approach for easing service development.
Service modularity requires a separation of service components from sys­
tem components, allowing the former ones to be specified and designed
separately from the latter ones, then be incrementally deployed and fi­
nally be hnked dynamically during service execution to provide actual
services without undesirable service interactions. We will show that
dynamic role binding mechanisms are crucial to achieve the desired sep­
aration and modularity and still be able to manage the complex mutual
dependencies between service components and system components. It
is desirable that such dependencies are not hard coded, but represented
by information that can be easily configured and interpreted by general
mechanisms, i.e. by some kind of policies.

In this paper we present a service architecture where service modu­
larity and dynamic linking is supported by means of roles and general
mechanisms for dynamic role binding. In Sect. 2 the main elements
of the architecture are presented: agents mirroring the environment as
system components; UML 2.0 collaborations and collaboration roles as
service-modelling elements; and UML active classes as service compo­
nents. In Sect. 3 we show how the proposed architecture provides struc­
ture to service-execution policies and how dynamic role binding enables
policy-driven feature selection with compatibility guarantees. Finally we
conclude with a summary of the presented work.

2. Agent and Role Based Service Architecture
Fig. 1 suggests an architecture for service-oriented systems which is

characterized by horizontal and vertical composition. On the horizontal
axis, system components are identified that may reside in diff'erent com­
puting environments. This axis reflects domain entities (such as users.

Dynamic Role Binding in a Service Oriented Architecture 111

Vertical composition
(within an agent)

Service 2 t

Service 3

service
component

- • Horizontal
Terminal User Group User Terminal composition
Agent X Agent y Agent z Agent w Agent k (within a service)

Figure 1. Service Oriented Architecture

user communities and terminals) and resources that must be represented
in a service providing system regardless of what services it provides. On
the vertical axis, several services and service components are identified
that depend on the system components of the architecture. This two-
dimensional picture illustrates the crosscutting nature of services which
is a well-known challenge in service engineering [4, 8] [9, 2].

In the following sections we will present our particular realization of
this architecture.

2.1 Agents as System Components
In [6], Braek and Floch identify two principal system architectures: the

agent oriented and the server oriented. The agent oriented architecture
follows the principle that a system should be structured to mirror objects
in the domain and environment it serves [3]. This is a general princi­
ple known to give stable and adaptable designs. Agents may represent
and have clear responsibilities for serving domain/environment entities
and resources and thereby provide a single place to resolve dependen­
cies. In the case of personalised communication services accessible over
a number of different terminal types, this mirroring leads to a structure
of Terminal Agents and User Agents as illustrated in Fig. 1. In addi­
tion there may be agents corresponding to user communities (e.g. the
GroupAgent in Fig. 1), service enablers and shared service functionality.
Several authors have proposed similar architectures, for example [21]
and [1].

Note that such an agent structure reflects properties of the domain
being served and not particular implementation details, nor particular
services. It is therefore quite stable and service independent. At the

112 H. N. Castejon andR. Braek

{goal: VoiceCnt(a,b) = a.VoiceCntTo(b) AND b.VoiceCntTo(a)} ^

y ̂ InviteTRole * N

/ ^ ^ N
b:Called
Agent

requester/' . - ^ - ^ c:Calll..y , , \

a:Caller

««.
• ^

< i—"- - ' j^"^->—p*
^''^ uiUnavailable / "

b:Callee

^ #•

N \ \ >
\
\
1

/ /
•

»»

Fi^i/re ^. The UserCall Service as a UML 2.0 Collaboration

same time agents provide natural containers for properties and policies
of domain entities like users, terminals and service enablers.

2.2 UML Collaborations as Services and Roles
as Service Components

As illustrated in Fig. 1, a service is a partial functionality provided
by a collaboration between service components executed by agents to
achieve a desired goal for the end users. UML 2.0 collaborations [13]
are well suited for service modelling as they are intended to describe
partial functionahties provided by collaborating roles played by objects.
An interesting characteristic of UML collaborations is that they can be
applied as collaboration uses and employed as components in the defin­
ition of larger collaborations. This feature enables a compositional and
incremental design of services, as we explain in [17, 7]. For instance, Fig.
2 shows a collaboration specifying a UserCall service in terms of collab­
oration roles hnked by collaboration uses, which correspond to difi"erent
phases and features of the service. It also shows a simple goal expres­
sion representing a desired goal state for the collaboration. Behaviour
descriptions can be associated with the collaboration to precisely define
the service behaviour, including precise definitions of the visible interface
behaviour that objects must show in order to participate in the collabo­
ration. Collaborations thereby provide a mechanism to define semantic
interfaces that can be used for service discovery and to ensure compat­
ibility with respect to safety and hveness (i.e. reaching the desired goal
states) when linking service components, as we discuss in [18].

Ideally, service models should be independent of particular system
structures. It can be argued, however, that it is necessary and benefi­
cial to take a minimum of architectural aspects into account [20]. The

Dynamic Role Binding in a Service Oriented Architecture 113

challenge is to do this at an abstraction level that fits the nature of the
services without unduly binding design solutions and implementations.
In our architecture (see Fig. 1) the horizontal axis represents the agent
structure and the vertical axis represents the services modelled as collab­
orations with roles that are bound to agents. The service-independent
agent structure is therefore instrumental, since it helps to identify and
shape roles, without introducing undue bindings to implementation de­
tails. At the same time it provides an architectural framework for role
composition, role binding and role execution.

In this service oriented architecture, service specific behaviour is the
responsibihty of (service-) roles while domain specific behaviour and
policies are the responsibility of agents. Interactions between roles and
agents are needed primarily in the process of creating and releasing dy­
namic links, that is, the process of dynamic role binding.

Roles need to be mapped to well defined service components, which
can then be deployed and composed in agents to provide (new) services
without causing safety or hveness problems. We do this by defining ser­
vice components as UML active classes with behaviour defined by state
machines. Note that service components may implement one or more
UML collaboration roles composed by means of collaboration uses, as it
is roughly illustrated in Figs. 2 and 4. Each of these collaboration roles
will correspond to a difi'erent service or service feature. We assume that
service components are typed with semantic interfaces with well defined
feature sets. This information is exploited when service components are
dynamically linked within a service collaboration in order to ensure their
compatibility in terms of safety and Hveness criteria, as explained in [18].
In addition, it is necessary to ensure that the service components can
actually be bound to the intended agents. Their feature sets may also be
restricted and dynamically selected during the binding process. These
aspects will be discussed in the following sections.

Note that, for the sake of simplicity, in the rest of the paper we will
use the word role to name service components.

2.3 Dynamic Role Binding
Dynamic Role binding has three distinct phases:

1 Agent identification^ which aims at identifying an agent by consult­
ing a nameserver or performing a service discovery. Some service
features are related to the agent identification, e.g. ahasing, busi­
ness domain restrictions or originating and terminating screening
features in telephony.

114

^^^^ RoleRequest

/ ^ (goal: playing} ^

f
1

\
\

\

***• ̂
^ Role Request

requester

requestec

•

J • 1 ^
•j invoKea

s >

n

J J

H, N. Castejon and R. Braek

sd RoleRequest ")

I

rgquested

I RoleReq

I
l O RoleDenied ^

inyofced

I RolePlay i

1 RoleConfirm
1 1

Figure 3. Role Request Pattern

2 Role request, which aims at creating a dynamic hnk according to
a semantic interface with an agreed feature set. This means to
request the agent identified in phase 1 to play a role with a certain
feature set, which can be negotiated. The role with the agreed
feature set is finally invoked. The role request pattern [5] described
in Fig. 3 provides one partial solution to this. Using this protocol
any role can request an agent to play a complimentary role. If the
agent is able to play the requested role, it invokes it and a link is
dynamically established between the requesting and the requested
roles, so that they can collaborate. This is illustrated in Fig. 2,
where a Us er Agent is requested (invited) to play the b role in a
UserCall collaboration. The response of the UserAgent in this
case is to enable one of three features, represented as collaboration
uses: Calling, Busy or Unavailable.

3 Role release, which signals that a role is finished and has relea^sed
whatever resources it had occupied.

Once a role is invoked it can proceed autonomously, until it reaches
a state where interaction with agents is again required for one of the
following reasons:

• it needs to bring a new role into the collaboration (i.e. create
another dynamic hnk). In this case it first needs to identify the
agent that should play the role and then initiate a role request to
this agent, as explained above;

• it needs to check what feature or feature set to select at a certain
point in its behaviour, if this depend on agent poHcy (e.g. if mid-
call telephony services are allowed);

Dynamic Role Binding in a Service Oriented Architecture H^

• it needs to signal to its own agent that it is available for additional
linking, in response to an incoming role request (e.g. to perform a
call waiting feature); or

• it is finished and performs role release.

Note that all cases except the second are related to dynamic role binding.
Also note that a large proportion of features are discovered, selected and
initiated in connection with dynamic role binding.

3- Governing Service Execution with Policies
Dynamic role binding is clearly a very central mechanism in service

execution. As we have already pointed out, associated with dynamic
role binding are such key issues as: service discovery, feature negotiation
and selection, context dependency resolution, compatibility validation
and feature interaction detection/avoidance. The challenge is to find
general, scalable and adaptable ways of dealing with those issues.

In general a role can only be bound to an agent without undesired side-
eff"ects if certain (pre-/post-) conditions hold. By explicitly expressing
these conditions as constraints, we may check them upon role-binding
and only allow the role to be invoked if they are satisfied. It is also
important to give users the possibihty to express their preferences to
control the selection of features when, for example, the requested service
can not be delivered. In the following we will use the term policy to
cover both general role binding constraints and user preferences. In
doing that we adhere to the usual definition of pohcy that can be found
in the computer-science literature: a rule or information that modifies
or defines a choice in the behavior of a system [11].

The agent architecture discussed in the previous section provides a
natural way to structure policies into three groups:

• Role-binding policies, which constrain the binding of roles to agents
at run-time.

• Collaboration policies, which express constraints that must hold for
a collaboration (i.e. a service) as a whole when it is executed. They
aim at preventing actions that may compromise the intentions and
goals of the collaboration.

• Feature-selection policies, which control the triggering of context-
dependent service features.

We will take a closer look at each of these policies in the following.

116 H.N. Castejon and R. Brack

3.1 Role-binding and Collaboration Policies
Role-binding policies represent conditions that must be satisfied for

a role to be bound to an agent. These policies may be associated with
agent types, so they shall hold for all instances of that type, or they
may be defined for specific agent instances (usually describing user pref­
erences and/or user permissions). Finally, role-binding policies may also
be associated with role types and they shall hold for all instances of that
role type.

The role-binding pohcies associated with a role type define constraints
that the role imposes on any agent it may be bound to and, thereby,
indirectly on system resources. For example, the role-binding policy of a
role may require that role to be bound to a TerminalAgent representing
a specific terminal type with specific capabihties (e.g. a PDA).

The role-binding policies associated with an agent represent, on the
contrary, constraints that the agent imposes on the roles it can play.
When these policies are associated with an agent type, they represent
constraints on the type and multiplicity of the roles that can be bound to
the agent, as well as other constraints imposed by the service provider
(e.g. that the user must hold a valid subscription to play a certain
role). When they are associated with a particular agent instance, they
represent user preferences and/or user permissions specifying when that
particular agent should or should not play a certain role. These prefer­
ences/permissions can be seen to express context dependency (e.g. on
location, calendar, presence or availability). For example, a user may
define a role-binding policy for her UserAgent to express that it should
only participate in a UserCall service, playing the ca l l ee role, if the
invitation was received between 8 am and 11 pm.

Collaboration policies express constraints that must hold for a collab­
oration (i.e. a service) as a whole when it occurs. We may associate
collaboration policies with a UML collaboration, so that they shall hold
for all occurrences of that collaboration. For instance, a collaboration
policy may be associated with a conference-call collaboration to prohibit
the agent playing the conference-controller role to temporally interrupt
its participation in the service. This policy would specifically prohibit
the conference-controller role to invoke the hold feature. Agent instances
may also hold specialised collaboration policies that, in this case, shall
only be satisfied for those occurrences of the collaboration where the
agent participates. These policies may then represent user preferences.
An important use of such user-defined collaboration pohcies is to con­
strain who participates in a service session. For personal communication
services the identity of the agents participating in a service is important

Dynamic Role Binding in a Service Oriented Architecture 117

(e.g. a calling user wants a specific user's UserAgent to play the b role
- see Fig. 2). It is not only important who must be invited to a service,
but also who cannot be invited. Some users may not want to talk to cer­
tain people, or they may not Hke, for example, to talk to a machine. We
can easily solve this problem using collaboration policies by constraining
the type and/or id of agents that can participate in a service session, as
well as the roles they can play. For instance, if a user does not want to
be redirected to an automatic-response machine, she may define a col­
laboration policy for the UserCall service constraining the participation
of IVRAgents^ This pohcy would be held by her UserAgent, thus only
afi*ecting UserCall services in which she may participate.

Role-binding and collaboration policies are checked upon a role re­
quest by both the reques ter and the requested agents. The requester
agent checks the collaboration policies associated to the service being (or
to be) executed before the role request is sent. This is done to confirm
that inviting the requested agent would not violate those policies (e.g.
that a UserAgent representing an undesired user would not be invited
when performing a forwarding). At the reception of the role request, the
requested agent checks first the collaboration policies for conformance
on joining the collaboration (e.g. to ensure that all other participat­
ing agents are welcome). Thereafter, it checks the role-binding policies
concerning the requested role, which is only bound if those policies are
satisfied.

Policies defined for a collaboration (and its roles) are "inherited" when
that collaboration is employed, as a collaboration use, in the specifica­
tion of other collaborations. Therefore, when a collaboration is bound
to a set of agents for its execution, all policies defined for the collabo­
ration itself and for its sub-collaborations must hold. This is illustrated
in Fig. 4. The upper part shows a collaboration specifying a Ful lCal l
service. This service is a collaboration between four roles and it is com­
posed from the UserCall service described in Fig. 2 and two uses of a
TermCall service, which specifies the collaboration between UserAgents
and TerminalAgents. Policies have been defined for each of the roles
and collaboration uses in Ful lCal l (P2-P8). In addition a pohcy (PI)
has been defined for the Ful lCal l collaboration as a whole. The lower
part of the figure illustrates a set of UserAgents and TerminalAgents,
representing users and terminals, performing the Ful lCal l service. It
is important to note that for this collaboration use (i.e. fox:FullCall)
all and each of the pohcies defined for the Ful lCal l collaboration must
hold. This is indicated by the annotation P1H-P2+. . . +P8. Moreover, each
agent holds a set of role-binding, collaboration and feature selection poli­
cies, called P10-P13 in the figure, that also must hold in the execution

118 H. N. Castejon and R. Braek

.[ID-
at:Term
Callei

h-'o:TermCall/
au:User
Caller

collaborations

-(uciUserCaliy-
bu:User
Callee

h(t :TermCal l }
bt:Term
Callee

J] P3 I L f l J "I P5 I '~\ P6] "̂"1 P7 I] P8 J ^ ^ ^

agents

at:Term
Agent

RIO 1

at: Term
Caller

' " • " --

au:User
Agent ^ ^

P11 1

J au:User
"1 Caller

"̂̂ ^̂

bu:User
Agent

P12

bu:User 1
Callee |

.-' - - ' 1

bt.Term
Agent

P13

J bt:Term
1 Callee

1

- i f c x : F u l l C a l l / - "

P1+P2+...+P8 J

Figure 4- Role Binding

of f cxiFul lCal l . Therefore, if for example at :TermCaller had some
collaboration policy that would not hold when inviting bt :TermCallee,
fcx:Ful lCal l could not be completed.

3.2 Feature Selection Policies
A feature can be defined as a unit of functionality in a base service.

In general, we can differentiate two types of features, depending on how
they are selected and triggered:

• features that are triggered within a role as part of its behaviour
(e.g. call-transfer)

• features that are triggered upon role-binding depending on the
agent's context and policy (e.g. call-forward on busy subscriber)

We refer to the first type of features as mid-role-triggered (or just mid-
role)^ and to the second as role-binding-triggered. Mid-role-triggered fea­
tures are selected as part of the role behaviour. If they may be disabled
by policy decisions this should be agreed during a negotiation phase be­
fore the role is bound. Alternatively, the role may consult its containing
agent concerning actual policies before invoking mid-role features. One
example of such a feature is call-forward on no-answer. It describes an
alternative behavior to the Us er Call service and it is triggered when
the latter does not achieve its goal (i.e. contacting the end-user).

Dynamic Role Binding in a Service Oriented Architecture 119

Role-binding-triggered feature selection occurs when an agent receives
a role request. In that case the agent (1) checks its feature selection
policies to determine if, in the current context, there is an alternative
feature to be selected, without even trying to invoke the requested role.
This may be the case if the following feature selection pohcy existed:
^Vhen the b role is requested in a Us er Call and the (called) user is
not at home, always select call-forward instead". This checking returns
either the requested role (if no feature selection policy was satisfied)
or an alternative one. The selected role is then target (2) for checking
the collaboration and role binding pohcies to decide whether it may
be actually invoked. If yes, a confirmation message is sent back to the
requesting role. Note that if the role that is finally selected to be invoked
is not the originally requested one, the confirmation message may be
replaced by a negotiation phase (not shown in Fig. 3). If otherwise
collaboration and/or role binding pohcies are not satisfied, (3) a search
is again performed for a substitute role that may be invoked, and, if
found, the process is repeated from (2), until a role with specific features
is agreed and invoked. In addition, if an invoked role does not achieve
its goal during the service execution, a search for an alternative role,
implementing a mid-role-triggered feature, can be made once more (e.g.
to invoke call-forward on no-answer).

From the above explanation three generic events can be distinguished
that trigger the selection of features describing alternative behavior.
These events are:

• OnRoleRequest,

• OnUnsuccessfulRoleBinding^ and

• OnNonAchievedGoal event.

Feature selection pohcies can then be defined, by for example end-users,
as event-condition-action (EGA) rules, where the event is one of the
three just mentioned, the condition is expressed in terms of the context
and the action is the selection of a feature.

Note that up to now we have just talked about the use of feature selec­
tion policies to select features of a base service. However their potential
is actually greater than that. There is nothing that prevents us from
using feature selection policies to specify any service as an alternative to
another one. That is, we may specify which event and condition leads
to the substitution of a role X for a role Y, where roles X and Y are
not necessarily related. In this case, the role at the requesting side must
most likely be also substituted. A negotiation between the parties would
then be necessary.

720 H. N. Castejon and R. Braek

The use of policies for service-execution management and personal­
ization is not novel. For example, the Call Processing Language (CPL)
[10] is used to describe and control Internet telephony services. With
CPL users can themselves specify their preferences for service execu­
tion. Reiff-Marganiec and Turner [16] also propose the use of policies to
enhance and control call-related features. The novelty of our work lies
in the structuring of policies we make, based on the proposed service
architecture.

4. Conclusion

We have presented a two-dimensional service oriented architecture
where service components are roles defined using UML 2.0 collaborations
and system components are agents representing domain entities such as
users and terminals. Service modularity is achieved by the separation
of service components from system components, and by general policy-
driven mechanisms for dynamic role binding that handle context depen­
dency, personalisation, resource limitations and compatibility validation.
Central parts of this architecture, such as the role request pattern and a
simple form of XML-based role-binding policy, have been implemented
in ServiceFrame [5] and have been used to develop numerous demon­
strator services within the Program for Advanced Telecommunication
Services (PATS) research program [14], which is a cooperation between
the Norwegian University of Science and Technology (NTNU), Ericsson,
Telenor and Compaq (now Hewlett-Packard). These experiments have
confirmed that dynamic role binding is central not only to traditional
telecom services, but also to a wide range of convergent services, and
that explicit support for role-binding helps to manage the complexity of
such services. The use of more advanced role-binding policies specified
as BeanShell [12] scripts has also been studied in [19]. At the time of
writing this paper, ServiceFrame has been extended with support for
java-based role-binding, collaboration and feature selection pohcies that
can be specified by both end-users and service providers to handle con­
text dependency [15].

An interesting problem that has not been treated is undesirable in­
teractions between two or more roles simultaneously played by an agent
in diff'erent services. This is known as the feature interaction problem.
We believe that our policy-driven mechanisms for dynamic role binding
can help to avoid such interactions, if the agent maintains the consis­
tency between the policies imposed in different services. We are also
investigating in this direction.

Dynamic Role Binding in a Service Oriented Architecture 121

Acknowledgments
We wish to thank NTNU and the ARTS project for partial funding

this work. G. Melby and K.E. Husa at Ericsson have been extremely
valuable through numerous discussions and by implementing the core
of the architecture. We are also grateful to the many MSc students
that have contributed by making services using these principles and by
proposing and prototyping role binding mechanisms. Finally we appre­
ciate all the input from our close colleagues J. Floch, R. T. Sanders, F.
Krämer and H. Samset.

Notes
1. IVR stands for Interactive Voice Response machine

References
[1] Amer, M., Karmouch, A., Gray, T. and Mankovski, S. (2000). Feature-interaction

resolution using fuzzy policies. In Feature Interactions in Telecommunications and
Soßware Systems VI, pages 94-112, Glasgow, Scotland, UK.

[2] Bordeleau, F., Corriveau, J. P. and Selic, B. (2000). A scenario-based approach to
hierarchical state machine design. In IS ORG '00: Proceedings of the Third IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
page 78. IEEE Computer Society.

[3] Braek, R. and Hangen, 0 . (1993). Engineering Real Time Systems. An object-
oriented methodology using SDL. Prentice Hall.

[4] Braek, R. (1999). Using roles with types and objects for service development.
In IFIP TC6 WG6.7 Fifth International Conference on Intelligence in Networks
(SMARTNET), pages 265-278, Pathumthani, Thailand. Kluwer.

[5] Braek, R., Husa, K. E. and Melby, G. (2002). ServiceFrame: WhitePaper. White
paper, Ericsson Norarc. Available at: http://www.pats.no/devzone/platforms/
ServiceFrame/doc/ServiceFrame Whitepaperv8.pdf.

[6] Braek, R. and Floch, J. (2004). IGT convergence: Modeling issues. In System
Analysis and Modeling (SAM), 4th International SDL and MSC Workshop, pages
237-256, Ottawa, Canada.

[7] Gastejon, H. N. (2005). Synthesizing state-machine behaviour from UML collab­
orations and Use Case Maps. In Prinz, Andreas, Reed, Rick, and Reed, Jeanne,
editors, 12th SDL Forum, volume 3530 of Lecture Notes in Computer Science,
pages 339-359, Grimstad, Norway. Springer.

[8] Floch, J. (2003). Towards Plug-and-Play Services: Design and Validation us­
ing Roles. PhD thesis. Department of Telematics, Norwegain Univ. Science and
Technology, Trondheim, Norway.

[9] Krüger, I. H., Gupta, D., Mathew, R., Moorthy, P., Philhps, W., Rittmann, S.
and Ahluwalia, J. (2004). Towards a process and tool-chain for service-oriented
automotive software engineering. In Proceedings of the ICSE 2004 Workshop on
Software Engineering for Automotive Systems (SEAS).

http://www.pats.no/devzone/platforms/

122 H. N. Castejon and R. Braek

[10] Lennox, J., Wu, X. and Schulzrinne, H. (2004). Call Processing Language (CPL):
A language for user control of internet telephony services. RFC 3880, IETF.

[11] Lupu, E. C, and Sloman, M. (1999). Conflicts in policy-based distributed systems
management. IEEE Trans. Softw. Eng., 25(6):852-869.

[12] Niemeyer, P. (1997). BeanShell - lightweight scripting for Java. Available at:
http://www.beanshell.org/.

[13] Object Management Group (2004). UML 2.0 Superstructure Specification.

[14] Program for Advanced Telecom Services (PATS). Accessible at:
http://www.pats.no.

[15] Pham, Q. T. (2005). Policy-based service personalization. Master's thesis, Dept.
of Telematics, Norwegian University of Science and Technology (NTNU).

[16] Reiff'-Marganiec, S. and Turner, K. J. (2003). A policy architecture for enhanc­
ing and controlling features. In Feature Interactions in Telecommunications and
Software Systems VII, pages 239-246, Ottawa, Canada.

[17] Sanders, R. T., Castejon, H. N., Kraemer, F. A. and Braek, R. (2005). Using
UML 2.0 collaborations for compositional service specification. In ACM/IEEE 8th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS), Montego Bay, Jamaica.

[18] Sanders, R. T., Braek, R., Bochmann, G. v. and Amyot, D. (2005). Service
discovery and component reuse with semantic interfaces. In 12th SDL Forum,
Grimstad, Norway.

[19] St0yle, A. K. (2003). Flexible user agent. Technical report, Dept. of Telematics,
Norwegian University of Science and Technology (NTNU).

[20] Zave, P. (2003). Feature disambiguation. In Feature Interactions in Telecommu­
nications and Software Systems VII, pages 3-9, Ottawa, Canada.

[21] Zibman, I., Woolf, C , O'Reilly, P., Strickland, L., Willis, D. and Visser, J. (1995).
Minimizing feature interactions: An architecture and processing model approach.
In Feature Interactions in Telecommunications III, pages 65-83, Kyoto, Japan.

http://www.beanshell.org/
http://www.pats.no

