
Chapter 20 

D E T E C T I N G H I D D E N DATA IN 
E X T 2 / E X T 3 FILE SYSTEMS 

S. Piper, M. Davis, G. Manes and S. Shenoi 

Abstract The use of digital forensic tools by law enforcement agencies has made 
it difficult for malicious individuals to hide potentially incriminating 
evidence. To combat this situation, the hacker community has devel
oped anti-forensic tools that remove or hide electronic evidence for the 
specific purpose of undermining forensic investigations. This paper ex
amines the latest techniques for hiding data in the popular Ext2 and 
Ext3 file systems. It also describes techniques for detecting hidden data 
in the reserved portions of these file systems. 

Keywords: Anti-forensics, data hiding, file systems, Ext2/Ext3 

1. Introduction 
Digital forensics focuses on the identification, preservation, discov

ery and retrieval of electronic evidence [9]. The use of state-of-the-art 
forensic tools by law enforcement agencies has made it increasingly diffi
cult for malicious individuals to hide potentially incriminating evidence. 
To combat this situation, the hacker community has experimented with 
anti-forensic techniques and tools [11]. Anti-forensics is defined as "the 
removal, or hiding, of evidence in an attempt to mitigate the effective
ness of a forensic investigation" [6]. Based on the number of anti-forensic 
tools available on the Internet [5], it is clear that anti-forensic techniques 
are being used by malicious individuals who wish to evade detection. 

Recently, an individual known as the grugq unveiled the Data Mule 
FS software that conceals data within metadata structures of the Ext2 
and Ext3 file systems [7]. Data Mule FS is specifically designed to hide 
data from forensic tools and file system checking software. 



246 ADVANCES IN DIGITAL FORENSICS 

Partition Group 

fl 

Superbfock 
Group Descriptors 
Block Bilmap 
Inode Bilmap 

Inode Table 

-DalaBfodcs 

Figure 1. Ext2/Ext3 file system structure. 

This paper examines the latest techniques for hiding data in the pop
ular Ext2 and Ext3 file systems. It also describes techniques, including 
a utility named rf inder, which ensure that data hidden by anti-forensic 
programs such as Data Mule FS can be identified and retrieved by foren
sic investigators. 

2. Ext2/Ext3 File Systems 
A file system specifies how files, file metadata and other information 

are stored [4]. It allows the operating system to efficiently determine the 
locations of free space where new files can be stored. Also, it enables 
the operating system to quickly access and delete files. 

Ext2 is the default file system [3, 15] for several Linux distributions 
[1]. It was created in 1993 to address Umitations in earlier Linux file 
systems, such as Minix, which restricted file names to 14 characters and 
overall file system size to 64MB [3]. 

Ext2 has been upgraded to Ext3, which adds journaUng, i.e., a means 
for recording hard drive accesses to minimize error-checking in the event 
of unexpected shutdowns [8, 13, 14]. Since Ext2 and Ext3 have the same 
structure, forensic techniques, anti-forensic techniques, and techniques 
for countering anti-forensic techniques are the same for both file systems. 

Figure 1 shows the general layout of an Ext2/Ext3 file system, which 
comprises structures that are themselves segmented into smaller struc
tures. The partitions are split into 8MB groups. Each group is divided 
into 1KB, 2KB or 4KB blocks, with the first few blocks containing meta
data about the partition, group, and files within the group. The remain
ing blocks contain file data. 



Piper, et al. 247 

Block Bitmap (binary dump) 
11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000001 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

11100000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 

Inode Table (hex dump) 
Inode 0 (Bad Blocks 
00001400 00 00 00 
00001410 
00001420 
00001430 
00001440 
00001450 
00001460 
00001470 

6c 2c 17 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 

Inode 1 (Root Inode) 
00001480 ed 41 00 
00001490 
000014a0 
000014b0 
000014c0 
000014e0 
000014d0 
000014f0 

08 2e 17 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 

Inode) 
00 00 00 00 00 
40 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

00 00 04 00 00 
40 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

6c 2c 17 40 6c 2c 17 40 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

09 2e 17 40 
00 00 03 00 
Ic 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

08 2e 17 40 
02 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

1 , . @ . 

. 1 , . @ 1 , . @ 

Figure 2. Block bitmap and inode blocks for a floppy disk. 

The first block of the first group in a partition is called the "su-
perblock." The superblock, which contains metadata about the par
tition, is essential to the operation of the file system, and its data is 
duplicated in superblocks in other groups for redundancy. Following the 
superblock are group descriptors that contain metadata about the cur
rent group and other groups in the partition (Figure 1). Specifically, 
group descriptors contain data about the number of free blocks in a 
group, and the locations of the block bitmap, inode bitmap and inode 
table. 

Figure 2 presents a block bitmap for a floppy disk. The block bitmap 
indicates which blocks in the group are allocated, i.e., where file data are 
actually stored. Each block has a single bit in the bitmap, which is set 



248 ADVANCES IN DIGITAL FORENSICS 

00007000 02 
00007010 Oc 
00007020 6c 
00007030 14 
00007040 Od 
00007050 78 
00007060 64 
00007070 00 

00 00 
00 02 
6f 73 
00 09 
00 00 
74 00 
2e 74 
00 00 

00 Oc 00 01 02 
02 2e 2e 00 00 
74 2b 66 6f 75 
01 66 69 72 73 
00 14 00 Oa 01 
00 Oe 00 00 00 
78 74 00 00 00 
00 00 00 00 00 

2e 00 
Ob 00 
6e 64 
74 2e 
73 65 
ac 03 
00 00 
00 00 

00 00 
00 00 
00 00 
74 78 
63 6f 
09 01 
00 00 
00 00 

02 00 
14 00 
Oc 00 
74 00 
6e 64 
74 68 
00 00 
00 00 

00 00 
Oa 02 
00 00 
00 00 
2e 74 
69 72 
00 00 
00 00 

Figure 3. Contents of a directory listing data block. 

to one if the block is allocated and zero if it is not. Note that the bits at 
the end of the bitmap in Figure 2 are set to one. This is because these 
locations do not exist on a floppy disk; setting the corresponding bits 
to one (i.e., marking them as allocated) prevents the operating system 
from writing data to these blocks. 

The inode is a smaller unit than a block that contains metadata about 
a particular file. Figure 2 shows a hex dump of the first two inodes of a 
file system. Each inode has a size of 128 bytes, and contains data about 
the file creation time, file size, and location of file data. 

Data blocks make up the majority of the blocks in each group (typ
ically 97%) and contain the data portions of files and directory listings 
[10]. Figure 3 shows the contents of a root directory. The directory list
ing stores the names of files/directories (., . ., lost+f ound, f i r s t . txt , 
second.txt, th ird . txt ) in the directory. Also, the directory listing 
stores data about the inodes corresponding to the files, and the types of 
the files (i.e., file or directory). 

3. Data Hiding Techniques 
Designed for fiexibility, file system components incorporate reserved 

locations to store additional metadata for future upgrades to the file sys
tem. Currently, applications do not read or write to reserved locations, 
and data written to these locations neither overwrites any useful data 
nor affects system operation. Therefore, the reserved locations are ideal 
sites for hiding data. 

Figure 4 shows the source code for a group descriptor [2]. A total of 
14 bytes in the group descriptor can be used to hide data: 2 bytes for the 
pad (bg_pad) and 12 bytes for the reserved variable (bg_reserved[3] is 
an array of three 4-byte words). This may not appear to be very much 
space; however, such reserved locations exist throughout the file system. 
A large file can be hidden (e.g., by Data Mule FS) by dividing it into 
smaller portions that are inserted in each of the reserved locations. 



Piper, et al. 249 

struct 

{ 

h 

ext2_group_desc 

_-u32 

-._u32 

__u32 

__ul6 

__ul6 

__ul6 

__ul6 

-_u32 

bg_block_bitmap; 

bg_inode_bitmap; 

bg_inode_table; 

bg_free_blocks_count; 

bg_free_inodes_count; 

bg_used_dirs_count; 

bg.pad; 

bg_reserved[3]; 

/* 
/* 
/* 
/* 
/* 
/* 

Blocks bitmap block */ 

Inodes bitmap block */ 

Inodes table block */ 

Free blocks count */ 

Free inodes count */ 

Directories count */ 

Figure 4- Source code for the group descriptor. 

Reserved locations may be discerned by reviewing the kernel source 
code located in . / include/ l inux/ext2_fs .h [2] or the source code for 
e2f sprogs, the project that maintains and updates the Ext2 file system 
[12]._ . . . 

Hiding data within a file system does not require the modification or 
addition of files. On the other hand, the use of encryption or steganog-
raphy to hide data is detectable by MD5 hashes and other schemes for 
identifying file alterations. Therefore, data concealed within file system 
structures is likely to go undetected. 

We experimented with the ability of digital forensic tools to find data 
concealed within file system structures. Data was written to various 
reserved locations, and the images of the file systems were analyzed using 
three popular forensic tools: EnCase v4.15, FTK vl.42 build 03.12.05, 
and iLook v7.0.35. The file system checking tool, e2f sck, which is 
standard on Linux, was used to test if the file systems behaved strangely 
or reported errors when data was hidden in their reserved locations. The 
tool was run with the -f argument to force checking. This bypassed 
any shortcuts that e2f sck might take when file systems are fiagged as 
healthy. 

In general, neither e2f sck nor any of the digital forensic tools pro
duced specific alerts when data was hidden in reserved locations. These 
tools assume that the reserved locations are only used for file system 
data and that no other data are stored within their structures. How
ever, as we show in Section 4, these tools can be used to locate hidden 
data, but one must know where to look. 

Data may be hidden in several reserved locations within a file sys
tem. Procedures for hiding data in four of these reserved locations are 
described below. 



250 ADVANCES IN DIGITAL FORENSICS 

Hiding Data in the First 1KB of a Partition 
Ext2 does not use the first kilobyte of each partition because it assumes 
that this space might be used for a boot loader. This space is not used 
by the file systems on fioppy disks and many hard-drive partitions. 

Procedure: 

1 Create a file named secret_data.txt with size less than 1KB. 

2 Insert a floppy disk into the computer. 

3 Execute the command: # mke2fs -0 none /dev/fdO to format the disk as 
Ext2 with no extra features. 

4 Execute the command: # dd if=secret_data.txt of=/dev/fdO to hide the 
data. 

Alerts: None by e2f sck, EnCase, FTK and iLook. 

Hiding Data in Reserved Inodes 
Ext2 does not use inodes 7-10, opening up 512 bytes for hiding data. 
On an Ext2-formatted floppy disk, hidden data may start at byte 5888. 
The inode blocks start at 0x1400 and the first 6 inodes take up 6*128 
^ 0x300 bytes, so 0x1400 + 0x300 = 0x1700 = 5888. Note that Ext3 
uses inodes 7 and 8, providing 256 bytes for hidden data starting at byte 
6144. 

Procedure: 

1 Create a file named secret_data.txt with size less than 512 bytes. 

2 Insert a floppy disk into the computer. 

3 Execute the command: # inke2f s -0 none /dev/fdO to format the disk as 
Ext2 with no extra features. 

4 Execute the command: # dd if=secret_data.txt of=/dev/fdO seek=5888 
to hide the data. 

Alerts: "Bad mode" error reported by e2f sck. None by EnCase, FTK and iLook. 

Hiding Data in Redundant Superblocks 
Superblocks are repeated in groups on a disk. Depending on the spe
cific Ext2/Ext3 implementation and distribution, there is a superblock 
in every group or a superblock in some groups (when the "sporadic su
perblock" flag is set). It is possible to hide IK to 4K of data in each 
redundant superblock. Note that a floppy disk has only one superblock 
(i.e., it has no redundant superblocks); therefore, data cannot be hidden 
in a floppy disk using this procedure. 

Procedure: 

1 Create a file named secret_data.txt with size between IK to 4K (depending 
on the file system block size). 

2 Execute the command: # mke2f s -0 none /dev/Zid to format a partition of 
hard drive hd (e.g., hdal or hdbl). The option -0 none ensures that the 
sporadic superblock flag is not set. 



Piper, et al. 251 

3 Locate a redundant superblock by comparing blocks to a known superblock, 
such as the first superblock located at offset 0x400. The redundant superblocks 
will also have signature values of 0x53ef offset by 0x38 bytes from the beginning 
of the block. 

4 Execute the command: # dd i f=secre t_da ta . tx t of-/de^/hd seek=/oc to 
hide the data. Note that loc is the starting byte of the redundant superblock. 

Aler t s : None by e2f sck, EnCase, FTK and iLook. 

Hiding Data in Reserved Portions of Superblocks 
Every superblock has at least 384 bytes reserved for updates to the file 
system specification. Since this group of bytes does not currently have 
a purpose, it can be used to hide data. Also, a superblock is supposed 
to fit in only IK of space, but it uses an entire block on the file system 
fup to 4K). Therefore, it is often possible to hide data in the extra 3K 
(max) of space. 

Procedure: 

1 Create a file named secre t_da ta . tx t with size less than 384 bytes. 

2 Insert a floppy disk into the computer. 

3 Execute the command: # mke2fs -0 none /dev/fdO to format the disk as 
Ext2 with no extra features. 

4 Execute the command: # dd i f=secre t_da ta . tx t of=/dev/fdO seek=1664 
to hide the data. 

Aler t s : None by e2f sck, EnCase, FTK and iLook. 

The versions of EnCase, FTK and iLook used in the experiments had 
the means to access and view the hidden data. However, none of the 
tools produced alerts that data was hidden in the reserved portions of 
the file systems. Forensic tools are designed to prevent investigators 
from having to examine data manually with a hex editor. As Figure 5 
demonstrates for the EnCase tool, an investigator must use the built-in 
hex editor of the tool to discover the hidden data. 

4. Data Detection Techniques 
This section describes how data hidden in the reserved portions of 

the Ext2/Ext3 file systems may be detected. First, the appHcation of 
digital forensic tools is discussed. Next, the use of our data detection 
utility (rf inder) is explained. Finally, the use of a file system checker 
is discussed. 

4.1 Digital Forensic Tools 
The digital forensic tools considered in this work (EnCase v4.15, FTK 

vl.42 build 03.12.05, and iLook v7.0.35) are not designed to discover hid
den data in the reserved portions of the Ext2/Ext3 file systems. How-



252 ADVANCES IN DIGITAL FORENSICS 

Figure 5. EnCase view of data in a redundant superblock showing hidden data. 

ever, they can be used to identify hidden data if one knows where to 
look. 

Detecting Hidden Data in the First 1KB of a Partition 
Hidden data in the first 1KB of a partition can be found by looking 
under "Block Descriptors" for EnCase, "Boot Record" for FTK, and 
"Disk View" for iLook. The presence of non-zero values potentially 
indicates the existence of hidden data. 

Detecting Hidden Data in Reserved Inodes 
Hidden data in reserved inodes can be found by looking under "Inode 
Table" for EnCase, "Inode Table" for FTK, and "Disk View" for iLook. 

Detecting Hidden Data in Redundant Superblocks 
Hidden data in redundant superblocks can be found by looking under 
"Block Descriptors" for EnCase (see Figure 5), "Superblocks" for FTK, 
and "Disk View" for iLook. 



Piper, et al. 253 

Detecting Hidden Data in Reserved Portions of Superblocks 
Hidden data in the reserved portions of superblocks can be found by 
looking under "Block Descriptors" for EnCase, "Superblocks" for FTK, 
and "Disk View" for iLook. 

4.2 Data Detection Utility 
It is possible to capitalize on the normal operation of a file system to 

discover hidden data. When a partition is formatted as Ext2 or Ext3, 
many of the reserved locations are zero wiped. This means that non
zero values that appear in the reserved locations are likely to be hidden 
data. We have created the rf inder utility that automatically searches 
through the reserved locations of Ext2/Ext3 file systems for non-zero 
values. If any non-zero values are found, rf inder displays a hex dump 
of the corresponding data. 

Figure 6 shows the output obtained by running the rf inder utility 
on a 1GB partition. The partition has no hidden data in it, but if it 
did, a hex dump of the data would have been displayed. The hex dump 
of the first redundant superblock is displayed by rf inder because this 
superblock is different from the original superblock. This is common 
because only the first superblock is updated, for example, when the 
partition was last mounted. The last fine of rf inder's output advises 
the user to run the file system checker, f sck, on the partition to continue 
the search for hidden data. 

4.3 File System Checkers 
When the f sck file system checker is run on an Ext2/Ext3 partition, 

a utility called e2f sck is invoked to specifically check the Ext2/Ext3 
file system. This utility can help discover whether or not other methods 
have been used to hide data. 

The command: e2f sck -f <image_f i l e > forces e2f sck to perform 
all of its checking. The image is modified slightly when e2f sck attempts 
to repair the file system. Therefore, a copy of the image must be made 
before executing the command. The modifications made by e2f sck can 
then be resolved using the dif f command to compare the original and 
modified images. Note that e2f sck will fiag everything that may be 
wrong with the file system, and not just hidden data. 

Although e2f sck was originally created to locate faults in file systems, 
it is very effective for finding hidden data. For example, if certain blocks 
are marked as being in use even when no file uses them, e2f sck will 
identify and remedy this situation by de-allocating the blocks. This does 
not necessarily imply that data is hidden there. However, allocating and 



254 ADVANCES IN DIGITAL FORENSICS 

—rfinder v0.92.2~ Author: Scott Piper 

Checking /dev/hdbl... 
Found aoi Ext2FS disk with a 4KB block size aind 12 groups on the disk. 

Checking the first IK... 
Nothing found (all zeroes) 

Checking the superblock s_paddingl var... 
Nothing found (all zeroes) 

Checking the reserved portions of the first superblock (sometimes contains 
data, and will raise a false positive)... 

Nothing found (all zeroes) 

Checking the reserved inodes... 
Nothing found (all zeroes) 

Checking reserved portions of the inodes... 
Nothing found (all zeroes) 

Checking redundant superblock in group: 1 
••This block is different the previous++ (this 

block though, so this is normal) 
0x8000000: 20 07 03 00 60 OD 06 00 78 4D 00 00 

15 07 03 00 00 00 00 00 02 00 00 00 
00 80 00 00 00 80 00 00 AO 3B 00 00 
9D IC FO 41 00 00 27 00 53 EF 00 00 
9D IC FO 41 00 4E ED 00 00 00 00 00 
00 00 00 00 OB 00 00 00 80 00 01 00 
02 00 00 00 01 00 00 00 96 9E 7C 2F 
BF BA OF 8D 9A 35 D6 Dl 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 

is the first redundant super 

0x8000010: 
0x8000020: 
0x8000030: 
0x8000040: 
0x8000050: 
0x8000060: 
0x8000070: 
0x8000080: 
0x8000090: 
0x80000E0: 
0x80000F0: 
0x8000100: 
0x8000110: 
0x8000120: 
0x8000FF0: 

FC F4 
02 00 
00 00 
01 00 
01 00 
00 00 
D9 EA 
00 00 
00 00 

05 00 
00 00 
00 00 
00 00 
00 00 
00 00 
4D A9 
00 00 
00 00 

00 00 00 00 00 00 00 00 00 00 00 00 
C5 AO 44 42 85 2E 9B 9F DC 61 C6 13 
00 00 00 00 00 00 00 00 9D IC FO 41 
00 00 00 00 00 00 00 00 00 00 00 00 

AB 8B C3 27 
02 00 00 00 
00 00 00 00 
00 00 00 00 

..'...xM 

.A..'.S. 

.A.N 

I/..M. 
...5 

.DB.. 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00] I . 

Checking reserved group descriptor space in group: 1 
Checking redundaoit superblock in group: 3 
Checking reserved group descriptor space in group: 3 
Checking redundamt superblock in group: 5 
Checking reserved group descriptor space in group: 5 
Checking redundant superblock in group: 7 
Checking reserved group descriptor space in group: 7 
Checking redundant superblock in group: 9 

(seune as previous) 

(same as previous) 

(same as previous) 

Checking reserved group descriptor space in group: 9 
(saune as previous) 

Program completed successfully. 
To continue looking for errors, run •fsck -f /dev/hdbl" 

Figure 6. Output of the rfinder utility for a 1GB partition. 



Piper, et aL 255 

writing data to unused blocks is a technique that may be used to hide 
data, and e2f sck can help identify this situation. 

5, Conclusions 

Data hiding techniques have advanced from hiding secret files in fold
ers that begin with a period (e.g., . / .hidden) to secreting file fragments 
in obscure locations within file systems. Unlike other techniques, e.g., 
cryptography and steganography, hiding data within a file system does 
not involve the modification or creation of files, and is, therefore, not 
detectible by comparing hash values. Meanwhile, hacker tools like Data 
Mule FS are being used by maUcious individuals to hide data from foren
sic tools and file system checking software. 

The data hiding methods described in this paper are intended to ex
pose the digital forensics community to anti-forensic techniques. Several 
methods for detecting hidden data are proposed, along with the rf inder 
utility, for countering anti-forensic tools such as Data Mule FS. While 
the strategies for combating anti-forensic techniques are discussed in 
the context of the Ext2 and Ext3 file systems, the underlying ideas are 
appHcable to other file systems, including FAT and NTFS. 

References 

[1] D. Bovet and M. Cesati, Understanding the Linux Kernel^ O'Reilly, 
Sebastopol, California, 2002. 

[2] R. Card, Cross-referencing Linux (lxr.linux.no/source/include 

/linux/ext2_fs.h?v-2.6.10). 
[3] R. Card, T. Ts'o and S. Tweedie, Design and implementation of 

the Second Extended File System, Proceedings of the First Dutch 
International Symposium on Linux, 1994. 

[4] B. Carrier, File System Forensic Analysis, Addison-Wesley, Craw-
fordsville, Indiana, 2005. 

[5] A. Cuff, Anti-forensic tools. Computer Network Defence Ltd., 
Corsham, Wiltshire, United Kingdom (www.networkintrusion. 
co.uk/foranti.htm), 2004. 

[6] The grugq. Defeating forensic analysis on Unix, Phrack 59 (www. 
phrack.org/show.php?p=59&a=6), July 28, 2002. 

[7] The grugq, The art of defiling, presented at the 2004 Hack in the 
Box Conference (packetstormsecurity.nl/hitb04/hitb04-grugq.pdf), 
October 8, 2004. 

[8] M. Johnson, Red Hat's new journahng file system: Ext3 (www. 
redhat.com/support/wpapers/redhat/ext3/index.html), 2001. 

http://lxr.linux.no/source/include
http://www.networkintrusion
http://co.uk/foranti.htm
http://packetstormsecurity.nl/hitb04/hitb04-grugq.pdf
http://redhat.com/support/wpapers/redhat/ext3/index.html


256 ADVANCES IN DIGITAL FORENSICS 

[9] W. Kruse and J. Heiser, Computer Forensics: Incident Response 
Essentials^ Addison-Wesley, Boston, Massachusetts, 2002. 

[10] D. Phillips, A directory index for Ext2, Proceedings of the Fifth 
Annual Linux Showcase and Conference, 2001. 

[11] A. Saita, Antiforensics: The looming arms race, Information Secu
rity Magazine, May 2003. 

[12] T. Ts'o, E2fsprogs: Ext2 file system utilities (e2fsprogs.source 
forge.net). 

[13] S. Tweedie, Journahng the Linux Ext2fs filesystem, presented at 
the Fourth Annual Linux Expo (jamesthornton.com/hotlist/linux-
filesystems/ext3-journal-design.pdf), 1998. 

[14] S. Tweedie, Ext3: Journaling filesystem (olstrans.sourceforge.net 
/release/OLS2000-ext3/OLS2000-ext3.html), July 20, 2000. 

[15] M. Wilcox, The Second Extended File System (mail.nl.hnux. 
org/kernel-doc/1999-03/msg00001.html), March 1, 1999. 

http://forge.net
http://jamesthornton.com/hotlist/linux-
http://olstrans.sourceforge.net



