Skip to main content

Brain Repair

Experimental Treatment Strategies, Neuroprotective and Repair Strategies in the Lesioned Adult CNS

  • Chapter
Brain Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 557))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lund RD, Land PW, Boles J. Normal and abnormal uncrossed retinotectal pathways in rats: An HRP study in adults. J Comp Neurol 1980; 189(4):711–20.

    Article  PubMed  CAS  Google Scholar 

  2. Beckstead RM, Frankfurter A. A direct projection from the retina to the intermediate gray layer of the superior colliculus demonstrated by anterograde transport of horseradish peroxidase in monkey, cat and rat. Exp Brain Res 1983; 52(2):261–8.

    Article  PubMed  CAS  Google Scholar 

  3. Dreher B, Sefton AJ, Ni SY et al. The morphology, number, distribution and central projections of Class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol 1985; 26(1):10–48.

    PubMed  CAS  Google Scholar 

  4. Cellerino A, Bahr M, Isenmann S. Apoptosis in the developing visual system. Cell Tissue Res Jul 2000; 301(1):53–69.

    Article  CAS  Google Scholar 

  5. Kermer P, Klocker N, Weishaupt JH et al. Transection of the optic nerve in rats: Studying neuronal death and survival in vivo. Brain Res Brain Res Protoc 2001; 7(3):255–60.

    Article  PubMed  CAS  Google Scholar 

  6. Kerr FR, Wyllie AM, Currie AR. Apoptosis: A basic biological phenomenon with wider ranging implications in tissue kinetics. Br J Cancer 1972; 24:239–275.

    Google Scholar 

  7. Potts RA, Dreher B, Bennett MR. The loss of ganglion cells in the developing retina of the rat. Brain Res 1982; 255(3):481–6.

    PubMed  CAS  Google Scholar 

  8. Galli-Resta L, Ensini M. An intrinsic time limit between genesis and death of individual neurons in the developing retinal ganglion cell layer. J Neurosci 1996; 16(7):2318–24.

    PubMed  CAS  Google Scholar 

  9. Burek MJ, Oppenheim RW. Programmed cell death in the developing nervous system. Brain Pathol 1996; 6(4):427–46.

    PubMed  CAS  Google Scholar 

  10. Gupta S, Barrett T, Whitmarsh AJ et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 1996; 15(11):2760–70.

    PubMed  CAS  Google Scholar 

  11. Hüll M, Bähr M. Differential regulation of c-JUN expression in rat retinal ganglion cells after proximal and distal optic nerve transection. Neurosci Lett 1994; 178(1):39–42.

    Article  PubMed  Google Scholar 

  12. Estus S, Zaks WJ, Freeman RS et al. Altered gene expression in neurons during programmed cell death: Identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 1994; 127:1717–27.

    Article  PubMed  CAS  Google Scholar 

  13. Crocker SJ, Lamba WR, Smith PD et al. c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc Natl Acad Sci USA 2001; 98(23):13385–90.

    Article  PubMed  CAS  Google Scholar 

  14. Martin-Villalba A, Winter C, Brecht S et al. Rapid and long-lasting suppression of the ATF-2 transcription factor is a common response to neuronal injury. Brain Res Mol Brain Res 1998; 62(2):158–66.

    Article  PubMed  CAS  Google Scholar 

  15. Roffler-Tarlov S, Brown JJ, Tarlov E et al. Programmed cell death in the absence of c-Fos and c-Jun. Development 1996; 122(1):1–9.

    PubMed  CAS  Google Scholar 

  16. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977; 56(1):110–56.

    Article  PubMed  CAS  Google Scholar 

  17. Kuida K, Zheng TS, Na S et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature Nov 28 1996; 384(6607):368–72.

    Article  PubMed  CAS  Google Scholar 

  18. Kermer P, Klocker N, Labes M et al. Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 1999; 453(3):361–4.

    Article  PubMed  CAS  Google Scholar 

  19. Kermer P, Ankerhold R, Klocker N et al. Caspase-9: Involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 2000; 85(1–2):144–50.

    Article  PubMed  CAS  Google Scholar 

  20. Schulze-Osthoff K, Ferrari D, Los M et al. Apoptosis signaling by death receptors. Eur J Biochem 1998; 254(3):439–59.

    Article  PubMed  CAS  Google Scholar 

  21. Varfolomeev EE, Schuchmann M, Luria V et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998; 9(2):267–76.

    Article  PubMed  CAS  Google Scholar 

  22. Plesnila N, Zinkel S, Le DA et al. BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia. Proc Natl Acad Sci USA 2001; 98(26):15318–23.

    Article  PubMed  CAS  Google Scholar 

  23. Alnemri ES, Livingston DJ, Nicholson DW et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87(2):171.

    Article  PubMed  CAS  Google Scholar 

  24. Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001; 29:684–8.

    Article  PubMed  CAS  Google Scholar 

  25. Reed JC. Bcl-2 family proteins. Oncogene 1998; 17(25):3225–36.

    Article  PubMed  Google Scholar 

  26. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281(5381):1309–12.

    Article  PubMed  CAS  Google Scholar 

  27. Lindenboim L, Borner C, Stein R. Bcl-x(S) can form homodimers and heterodimers and its apoptotic activity requires localization of Bcl-x(S) to the mitochondria and its BH3 and loop domains. Cell Death Differ 2001; 8(9):933–42.

    Article  PubMed  CAS  Google Scholar 

  28. Schendel SL, Montal M, Reed JC. Bcl-2 family proteins as ion-channels. Cell Death Differ 1998; 5(5):372–80.

    Article  PubMed  CAS  Google Scholar 

  29. Vander Heiden MG, Thompson CB. Bcl-2 proteins: Regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999; 1(8):E209–16.

    Article  PubMed  CAS  Google Scholar 

  30. Martinou JC. Apoptosis. Key to the mitochondrial gate. Nature 1999; 399(6735):411–2.

    Article  PubMed  CAS  Google Scholar 

  31. Newmeyer DD, Bossy-Wetzel E, Kluck RM et al. Bcl-xL does not inhibit the function of Apaf-1. Cell Death Differ 2000; 7(4):402–7.

    Article  PubMed  CAS  Google Scholar 

  32. Veis DJ, Sorenson CM, Shutter JR et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993; 75(2):229–40.

    Article  PubMed  CAS  Google Scholar 

  33. Motoyama N, Wang F, Roth KA et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995; 267(5203):1506–10.

    Article  PubMed  CAS  Google Scholar 

  34. Brady HJ, Gil-Gomez G. Bax. The pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol 1998; 30(6):647–50.

    Article  PubMed  CAS  Google Scholar 

  35. Korsmeyer SJ, Wei MC, Saito M et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7(12):1166–73.

    Article  PubMed  CAS  Google Scholar 

  36. Isenmann S, Wahl C, Krajewski S et al. Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci 1997; 9(8):1763–72.

    Article  PubMed  CAS  Google Scholar 

  37. Yin XM. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 2000; 10(3):161–7.

    Article  PubMed  CAS  Google Scholar 

  38. Antonsson B. Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim the mitochondrion. Cell Tissue Res 2001 Dec; 306(3):347–61.

    Article  PubMed  CAS  Google Scholar 

  39. Diem R, Meyer R, Weishaupt JH et al. Reduction of potassium currents and phosphatidylinositol 3-kinase-dependent AKT phosphorylation by tumor necrosis factor-(alpha) rescues axotomized retinal ganglion cells from retrograde cell death in vivo. J Neurosci 2001; 21(6):2058–66.

    PubMed  CAS  Google Scholar 

  40. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1(8):623–634.

    Article  PubMed  CAS  Google Scholar 

  41. Ermak G, Davies KJ. Calcium and oxidative stress: From cell signaling to cell death. Mol Immunol 2002; 38(10):713–21.

    Article  PubMed  CAS  Google Scholar 

  42. Cellerino A, Galli-Resta L, Colombaioni L. The dynamics of neuronal death: A time-lapse study in the retina. J Neurosci 2000; 20(16):RC92.

    Google Scholar 

  43. Chaudhary P, Ahmed F, Quebada P et al. Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 1999; 67(1):36–45.

    Article  PubMed  CAS  Google Scholar 

  44. Kermer P, Klocker N, Bahr M. Long-term effect of inhibition of ced 3-like caspases on the survival ofaxotomized retinal ganglion cells in vivo. Exp Neurol 1999 Jul; 158(1):202–5.

    Article  PubMed  CAS  Google Scholar 

  45. Oppenheim RW. The concept of uptake and retrograde transport of neurotrophic molecules during development: History and present status. Neurochem Res 1996; 21(7):769–77.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson D, Lanahan A, Buck CR et al. Expression and structure of the human NGF receptor. Cell 1986; 47(4):545–54.

    Article  PubMed  CAS  Google Scholar 

  47. Niederhauser O, Mangold M, Schubenel R et al. NGF ligand alters NGF signaling via p75(NTR) and trkA. J Neurosci Res 2000; 61(3):263–72.

    Article  PubMed  CAS  Google Scholar 

  48. Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 1996; 383(6596):166–8.

    Article  PubMed  CAS  Google Scholar 

  49. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1982; 1(5):549–53.

    PubMed  CAS  Google Scholar 

  50. Cohen-Cory S, Fraser SE. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 1995; 378(6553):192–6.

    Article  PubMed  CAS  Google Scholar 

  51. Mey J, Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 1993; 602(2):304–17.

    Article  PubMed  CAS  Google Scholar 

  52. Peinado-Ramon P, Salvador M, Villegas-Perez MP et al. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996; 37(4):489–500.

    PubMed  CAS  Google Scholar 

  53. Kermer P, Klöcker N, Labes M et al. Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 2000; 20:2–8.

    PubMed  CAS  Google Scholar 

  54. Cellerino A, Bahr M, Isenmann S. Apoptosis in the developing visual system. Cell Tissue Res 2000; 301(1):53–69.

    Article  PubMed  CAS  Google Scholar 

  55. Gandolfo C, Sandercock P, Conti M. Lubeluzole for acute ischaemic stroke. Cochrane Database Syst Rev 2002; (1):CD001924.

    Google Scholar 

  56. Schmitt U, Sabel BA. MK-801 reduces retinal ganglion cell survival but improves visual performance after controlled optic nerve crush. J Neurotrauma 1996; 13(12):791–800.

    PubMed  CAS  Google Scholar 

  57. Horn J, de Haan RJ, Vermeulen M et al. Very early nimodipine use in stroke (VENUS): A randomized, double-blind, placebo-controlled trial. Stroke 2001; 32(2):461–5.

    PubMed  CAS  Google Scholar 

  58. Mayhan WG. Regulation of blood-brain barrier permeability. Microcirculation 2001; 8(2):89–104.

    Article  PubMed  CAS  Google Scholar 

  59. Emerich DF, Dean RL, Osborn C et al. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: From concept to clinical evaluation. Clin Pharmacokinet 2001; 40(2):105–23.

    Article  PubMed  CAS  Google Scholar 

  60. Kordower JH, Goetz CG, Freeman TB et al. Dopaminergic transplants in patients with Parkinson’s disease: Neuroanatomical correlates of clinical recovery. Exp Neurol 1997; 144(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  61. Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci USA 2002; 99(4):1755–7.

    Article  PubMed  CAS  Google Scholar 

  62. Kugler S, Meyn L, Holzmuller H et al. Neuron-specific expression of therapeutic proteins: Evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci 2001; 17(1):78–96.

    Article  PubMed  CAS  Google Scholar 

  63. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89(12):5547–51.

    Article  PubMed  CAS  Google Scholar 

  64. Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001; 15(13):1593–612.

    Article  PubMed  CAS  Google Scholar 

  65. Hitt MM, Addison CL, Graham FL. Human adenovirus vectors for gene transfer into mammalian cells. Adv Pharmacol 1997; 40:137–206.

    Article  PubMed  CAS  Google Scholar 

  66. Schmeer C, Straten G, Kugler S et al. Dose-dependent rescue of axotomized rat retinal ganglion cells by adenovirus-mediated expression of glial cell-line derived neurotrophic factor in vivo. Eur J Neurosci 2002; 15(4):637–43.

    Article  PubMed  Google Scholar 

  67. Kugler S, Klocker N, Kermer P et al. Transduction of axotomized retinal ganglion cells by adenoviral vector administration at the optic nerve stump: An in vivo model system for the inhibition of neuronal apoptotic cell death. Gene Ther 1999; 6(10):1759–67.

    Article  PubMed  CAS  Google Scholar 

  68. Kugler S, Straten G, Kreppel F et al. The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ 2000; 7(9):815–24.

    Article  PubMed  CAS  Google Scholar 

  69. Lundstrom K, Schweitzer C, Rotmann D et al. Semliki Forest virus vectors: Efficient vehicles for in vitro and in vivo gene delivery. FEBS Lett 2001; 504(3):99–103.

    Article  PubMed  CAS  Google Scholar 

  70. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55(6):1179–88.

    Article  PubMed  CAS  Google Scholar 

  71. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55(6):1189–93.

    Article  PubMed  CAS  Google Scholar 

  72. Joliot A, Pernelle C, Deagostini-Bazin H et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 1991; 88(5):1864–8.

    Article  PubMed  CAS  Google Scholar 

  73. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88(2):223–33.

    Article  PubMed  CAS  Google Scholar 

  74. Schwarze SR, Ho A, Vocero-Akbani A et al. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 1999; 285(5433):1569–72.

    Article  PubMed  CAS  Google Scholar 

  75. Vocero-Akbani AM, Heyden NV, Lissy NA et al. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat Med 1999; 5(1):29–33.

    Article  PubMed  CAS  Google Scholar 

  76. Caplen NJ, Parrish S, Imani F et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA. 2001; 98(17):9742–7.

    Article  PubMed  CAS  Google Scholar 

  77. Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR: Structure and function. J Interferon Cytokine Res 1997; 17(9):503–24.

    Article  PubMed  CAS  Google Scholar 

  78. Nicholson RH, Nicholson AW. Molecular characterization of a mouse cDNA encoding Dicer, a ribonuclease III ortholog involved in RNA interference. Mamm Genome 2002; 13(2):67–73.

    Article  PubMed  CAS  Google Scholar 

  79. Caplen NJ. A new approach to the inhibition of gene expression. Trends Biotechnol 2002; 20(2):49–51.

    Article  PubMed  CAS  Google Scholar 

  80. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296(5567):550–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Bähr, M., Lingor, P. (2006). Brain Repair. In: Bähr, M. (eds) Brain Repair. Advances in Experimental Medicine and Biology, vol 557. Springer, Boston, MA. https://doi.org/10.1007/0-387-30128-3_9

Download citation

Publish with us

Policies and ethics