
ON-THE-FLY FORMAL TESTING
OF A SMART CARD APPLET

Arjen van Weelden, Martijn Oostdijk, Lars Frantzen, Pieter Koopman,
Jan Tretmans

Institutefor Computing and Information Sciences
Radboud University Nijmegen - The Netherlands

{arjenw, martijno, If, pieter, tretmans)@cs.ru.nl

Abstract:

Key words:

This paper presents a case study on the use of formal methods in specification-
based, black-box testing of a smart card applet. The system under test is a
simple electronic purse application running on a Java Card platform. The
specification of the applet is given as a Statechart model, and transformed into
a functional form to serve as the input for the on-the-fly test generation,
-execution, and -analysis tool GAST. We show that automated, formal,
specification-based testing of smart card applets is of high value, and that
errors can be detected using this model-based testing.

model-based testing; smart cards; Java Card; automatic test generation;
executable specification.

1. INTRODUCTION

Smart devices are often used in critical application domains, such as
electronic banking and identity determination. This implies that their quality,
such as their safety, security, and interoperability, is very important. Such
devices commonly implement a Java Card virtual machine, which is able to
execute Java Card applets. Each application is then implemented as a
separate applet.

One way to increase the quality of applets is the use of formal methods.
Such applets are sufficiently small to make a complete formal treatment with
current day formal technology feasible. Systematic testing is another method,

566 Avjen van Weelden, Mavtijn Oostdijk, Lavs F m t z e n . . .

predominantly used to check the quality of smart devices in an experimental
way.

In this paper we combine testing and formal methods: we test a Java Card
applet, in a black-box setting, based on a formal specification of its required
behavior. Compared with formal verification, testing has the advantage that
it examines the real, complete system consisting of applet, platform and
hardware together, whereas formal verification is usually restricted to a
model of the applet only. Compared with traditional, manual testing, formal
testing has as first advantage that the formality reduces the ambiguities and
misinterpretations in the specification so that it is clearer what should be
tested. Secondly, formal specifications allow to completely automate the
testing process: test cases are algorithmically generated from the formal
specification, and test results can automatically be analyzed. This makes it
possible to generate and execute large quantities of large tests in a short time.
It is mainly this second advantage that we will pursue in this paper.

Our investigation of formal testing is conducted using a case study. The
applet that we test is a simple electronic purse application, implemented as a
Java Card applet, with a limited set of methods like asking the value on the
card, debiting, crediting, etc. The formal specification of the electronic purse
applet is given as a statechart'. The case and its formal specification are
described in Section 2.

Automatic test generation, test execution, and test result analysis are
performed in an on-the-Jly fashion, using the test tool GAST~. The test tool
GAST is described in Section 3. Section 4 describes how the Statechart
specification is transformed into clean3, a functional programming language
used as the input language for GAST. How GAST, the applet under test, and
the platform are connected is described in the test architecture, which is
given in Section 5.

We constructed one (assumed to be) correct applet implementation. From
this implementation we derived 22 mutants by inserting subtle bugs to see
whether such bugs would be detected by our automated, formal testing
method. A summary of the performed tests is given in Section 6. Finally,
Section 7 and 8 discuss related work, conclusions, and possible future
extensions.

2. CASE STUDY

We demonstrate our testing methodology by applying it to a simple
electronic purse application as a case study. The basic events that the
electronic purse can receive are:

set an initial value n via setvalue (n)

On-the-Fly Formal Testing of a Smart Card Applet

query the actual value via getvalue ()
0 uav an amount of n via debit (n)

<

authenticate with a pin (personal identification number) via
authenticate (pin) before charging the card
charge the card with an amount of n via credit In) -

0 reset the card using a puk (personal unlocking key) via reset (puk)
All these events are input events for the card, because they are sent from

the Card Accepting Device (CAD, also called terminal) to the card. To every - -

input event, the card answers with a corresponding output event:
acknowledge an operation via ackOK Or ack (n)

~ & e 1 shows the specification of the purse, modeled as a Statechart.

I ackOK; value := n; tries .= 0

debit(n) [value-n >= 01

I value += n; tries := 0; ackOK I value -= n; ackOK

debit(n) [value-n < 0]
I error(lNV-PARAM)

1 error(lNV-PARAM) authenticate(pin) [wrong(pin) 88 tries < 51
I tries++: error(lNV-ID)
authenticate(pin) [tries >= 51
I error(lNV-ID).

Figure I. Statechart model of the purse applet.

The transition labels between two states s, and s2 are of the form:

with i being an input event, g being a guard, and act representing a
sequence of actions. We exemplify the semantics with this transition:

The input event (i) is credit (n) . The argument n represents the amount
of money to be added to the card. The applet uses signed 16-bit integer
shorts and it gives an error (INV-PARAM) on negative values. We abstract
fiom that in the Statechart to keep it concise. The actual value of the card is
saved in the variable value. A transition can only fire when the
corresponding guard g holds. In this example, one can only increase the
value of the card by n, when n does not exceed the MAXVALUE-value. If the

568 Arjen van Weelden, Martijn Oostdijk, Lars Frantzen ..

transition is taken, the actions act are performed. In this case, the variable
value is incremented by n, the tries variable is reset to zero, and the
acknowledgment ackOK is sent to the terminal.

Intuitively, the purse works as follows. At first, the card is in the
Uninitialized state. It is initialized by the credit institution, which issues
the card to the customer by putting a certain amount n of money on it via the
setvalue (n) event.

In the Initialized state the customer can query the actual value via the
getvalue () event, or pay with the card via the debit (n) event. To increase
the value, one must first authenticate at a terminal with a card-specific pin,
leading to the Authenticated state. Being in that state, one can add money
via the credit (n) event, leading back to the Initialized state. The card
checks that its value does not exceed the MAXVALUE.

Furthermore, there is a maximum of five tries to enter the pin. After the
fifth wrong attempt, one can no longer credit the card. If the credit institution
enters the reset code (called puk) correctly, the card goes back to the
Unini tialized state and can be re-initialized via the setvalue (n) event. If
the puk is entered wrongly, the card goes to the Invalid state and cannot be
used anymore.

Two kinds of erroneous events can be sent to the card. Firstly, a
syntactically correct input event that is not specified for the actual state may
occur, e.g., a credit (n) when the card is in the Initialized state. Such an
unspecified input event is called an inopportune event, and the response of
the applet should be an error message error (INV-CMD) , whereas the applet
remains in its actual state. Secondly, a syntactically incorrect event may
occur, e.g., a command-APDU with a non-existing event-code. This is also
implicitly assumed to lead to an error message, while the card stays in its
current state.

3. THE TEST TOOL GAST IN A NUTSHELL

The test tool GAST is designed to be open and extendable. For this
reason it is implemented as a library rather than a standalone tool. The
functional programming language Clean is chosen as host language due to its
expressiveness.

GAST can handle two kinds of properties. It can test properties stated in
logic about (combinations of) functions. GAST can also test the behavior of
reactive systems based on Extended (Finite) State Machines, E(F)SM. Here
we will only discuss the ability to test reactive systems.

An ESM as used by GAST comes quite close to the Statechart of Figure
1. It consists of states with labelled transitions between them. A transition is

On-the-Fly Formal Testing of a Smart Card Applet 569

of the form s ' l o > t , where s, t are states, i is an input which triggers the
transition, and o is a, possibly empty, list of outputs. The domains of the
inputs, outputs, and states can be given by arbitrarily complex recursive
Algebraic Data Types (ADT). This constitutes the main difference with
traditional testing with FSM's where the testing algorithms can only handle
finite domains and deterministic systems4.

A transition s "?> is represented by the tuple (s, i, t, 0). A relation
based specification 6, is a set of these tuples: 6, c SXIXSXO*. The
transition function 6f is defined by 6f(s,i) = { (t, 0) I (s, i, t, 0) E 6,). Hence,

i / o s > t is equivalent to (t, o) E &(s, i). A specification is partial if for
some state s and input i we have &(s, i) = 0, otherwise it is total. A
specification is deterministic if for all states and inputs the size of the set of
targets contains at most one element: # &(s, i) < 1. A trace o is a sequence of
inputs and associated outputs from a given state. Traces are defined
inductively: the empty trace connects a state to itself: s A s . We can
combine a trace s 4 t and a transition f "V >z/ form the target state t,
to trace s c r ; i / o >t . We define s "" > i / o = 3t.s >t and
s 4 = 3 t . s 4 t . All traces from state s are: traces(s) -
{ 01 s& }. The inputs allowed in state s are given by init(s) =
{i I3o.s ' l o > }. The states after trace o in state s are given by s after o E
{ t I s 4 f) . We overload traces, init, and after for sets of states instead
of a single state by taking the union of the individual results. When the
transition function, tif, to be used is not clear from the context, we will add it
as subscript.

The basic assumption for our formal testing is that the Implementation
Under Test, iut, is also a state machine. Since we do black box testing, the
state of the iut is invisible. The iut is assumed to be total: any input can be
applied in any state. Conformance of the iut to the specification spec is
defined as (so is the initial state of spec, and to of iut):

iut conf spec r VOE tmcesSpec(s,,),Vi E init(s,afterspec O),VOE 0**

(to aftequ, O) ' l o > i l o
3 (so afterspec 0)

Intuitively: if the specification allows input i after trace o, the observed
output of the iut should be allowed by the specification. If spec does not
specify a transition for the current state and input, anything is allowed. This
notion of conformance is very similar to the ioco relation5 for Labeled
Transition Systems (LTS). In an LTS each input and output is modeled by a
separate transition. In our approach an input and all induced outputs up to
quiescence are modeled by a single transition. Quiescence characterizes a

570 Arjen van Weelden, Martijn Oostdijk, Lars Frantzen . .

state of the iut that will not produce any output before a new input is
provided, i.e. a quiescent system waits for input and cannot do anything else.

In order to test conformance, a collection of input sequences is needed.
At the beginning of each input sequence GAST resets the iut and the spec to
their initial state. By applying the inputs of a sequence one by one, GAST
investigates if it can be transformed to a trace of spec. The previous inputs
and observed responses are remembered in trace o. If ti spec(^, i) f 0 for the
current input i and some state s reachable from the L l I: 6 1 state, So, by
trace o (i.e. so A s) , the input is applied to the iut, and the observed
output is checked to be allowed by spec.

GAST has several algorithms for input generation, e.g.:
Systematic generation of sequences based on the input type.
Sequences that cover all transitions in ajinite state machine.
Pseudo random walk through the transitions of a specification.
User defined sequences.
In this paper we will only use the third algorithm to generate input

sequences. Testing is on-the-fly, which means that input generation,
execution, and result analysis are performed in lockstep, so that only the
inputs actually needed will be generated. The lazy evaluation of Clean used
for the implementation of GAST makes this easy.

Within the test tool GAST, the mathematical state transition fimction, &,
specifying the desired behavior is represented by a function in the functional
programming language Clean. Functional languages allow very concise
representations of specifying functions and have well understood semantics.
Using an existing language as notation for the specification prevents the
need to design, implement and learn a new language. The rich data types and
available libraries enable compact and elegant specifications. The advanced
type system of functional languages enforces consistency constraints on the
specification, and hence prevents inconsistencies in the specification.

Since the specification is a function in a functional programming
language, it can be executed. This is convenient when one wants to validate
the specification by observation of its behavior.

Any Clean type can be used to model the state, the input and the output
of the function specifying &, including user-defined data types. GAST uses
generic programming techniques for generating, comparing, and printing of
these types. This implies that default implementation of these operations can
be derived without any effort for the test engineer. Whenever desired, these
operations can be tailored using the full power of the functional
programming language.

On-the-Fly Fonnal Testing of a Smart CardApplet

4. THE PURSE SPECIFICATION FOR GAST

The specification given in the Statechart is transformed to the functional
language Clean in order to let GAST execute and manipulate it. This section
gives some details about the representation in Clean of the electronic purse
from Figure 1. Due to space limitations we will only show snapshots of the
(executable) specification. A parameterized enumeration type represents the
state of the purse

: : PurseState = Uninitialized 1 Initialized Short Short
I Authenticated Short / Invalid

We use one constructor for each state from the Statechart in Figure 1.
The arguments of the constructor In i t i a l i zed represent the tries counter
and the value. The type S h o r t represents signed 16-bit integers. This implies
that there are actually 216x216 = 232 different i n i t i a l i z e d states, of which
some are not reachable. There are similar types for input and output.

A transition function purse, similar to &, in Section 3 models the
transitions. The only difference with the mathematical specification is that
the result is a list of tuples instead of a set of tuples. Some function
alternatives specifying characteristic transitions are:

purse : : PurseState PurseInput -> [(PurseState, [PurseOutputl)I
purse Uninitialized (Setvalue n)

= if (n >= 0 && n <= MAXVALUE)
then [(Initialized 0 n, [AckOKI)]
else [(Uninitialized, [Error INV-PARAMI)I

purse (Initialized tries value) Reset
= [(Uninitialized, [AckOKl) 1

purse (Initialized tries value) GetValue
= [(Initialized tries value, [Ack value])]

. . .
purse state any = [(state, [Error INV-CMD])]

The first alternative models both transitions for the input setvalue n

from the state Uninitialized. The second and third alternative show two
transitions form the state In i t i a l i zed . The last alternative captures the
informal requirement that inopportune events should cause no state transition
and an error message as output. Since s t a t e and input any are variables, this
alternative covers any combination not listed above. Since exactly one
transition is defined for each combination of state and input, the
specification is total and deterministic.

This specification is an ordinary definition in the functional programming
language Clean. It is checked by the compiler before it is used by GAST.
This guarantees well-defined identifiers and type correctness.

572 Arjen van Weelden, Martijn Oostdijk, Lars Frantzen ...

5. TESTING JAVA CARDS WITH GAST

The tests, which will be described in Section 6, have been executed using
the test architecture of Figure 2.

Specification

GAST

CREF

Figure 2. The general testing framework.

The IUT is the Java Card applet implementing our simple electronic
purse. To make testing easier and more flexible, we used a simulation
platform to execute the applet. The simulation environment is the C-
language Java Card Runtime Environment (CREF), which comes with the
Java Card Development Kit. CREF simulates a Java Card technology-
compliant smart card in a card reader. It further consists of a Java Card
Virtual Machine, and communication protocol entities to allow
communication between the applet and the outside world.

To communicate with the applet under test, GAST was enhanced to be
able to deal with these typical smart card communication protocols ISO-
7816-4 and TLP-224 over TCPIIP. On top of these protocol entities an
adapter (glue code), was implemented. The adapter transforms the high level
inputs, generated by GAST, and represented as Clean data values, into the
low-level APDUs, coded as appropriate byte codes, and then sent according
to the ISO-7816-4 protocol. Vice versa, the adapter decodes the APDUs
received from the applet under test to Clean data values, which are then
analyzed and checked by GAST.

For data generation and analysis GAST uses the Clean EFSM
specification, which was developed in Section 4. Except for the access to
TCPIIP, the right-hand side of Figure 2 was entirely implemented in Clean.

The use of a simulation platform for testing is not a restriction with
respect to testing of real smart cards. Since only standardized protocols are
used, GAST cannot see the difference between testing on a simulator, and

On-the-Fly Fonnal Testing of a Smart Card Applet 573

testing a real smart card. The test architecture could easily be adapted to test
real cards by swapping CREF with a real card and its reader. The use of a
simulation platform does facilitate easy switching between different applets,
and saving and restoring applet state.

6. RESULTS

The Statechart in Figure 1 and its implementation as an applet were
developed in an incremental way. GAST appears to spot differences between
the specified and actual behavior very rapidly. Once the specification and
implementation were finished, the testing power of the GAST system was
determined in a systematic way using mutants. Starting from the ideal
(assumed to be correct) applet we injected typical programming errors into
the applet, and analyzed how long it took GAST to find errors by generating,
executing, and analyzing tests. The mutants are obtained by subtle changes
like omitting checks or updates to the state of the applet. The test results for
the 22 mutants used are listed in Table 1.

Tab -
nr.

-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2 1
22 -

1. Ove -
paths

-
1
2
1
5
8
1
1
1
1
11
7
1

2 1
1
1
1

94
4
1
3
1
5 -

7.8 --
100

iew of
trans-
itions

25
66
9

247
406

1
1
4
2

542
327
13

1020
16
24
33

4757
207

6
145
4

206
366.4 -.
508 1

it resL -
time

0
0.49
0.09
0.47
0.71
0.38
0.05
0.52
0.06
0.50
0.48
0.80
0.06
1.28
0.09
0.07
0.52
3.82
0.26
0.30
0.18
0.50
0.67 -
0.56 -
4.20

>.
inputs

until error
25
3 1
9

4 1
5 1
1
1
4
2

23
26
13
2 1
16
24
33
29
23
6

44
4
2

19.5 --
n/a

comments

6 tries allowed in this mutant
incorrect overflow during credit
negative balance allowed in mutant
tries not reset after authenticate
tries not reset after reset
credit allowed without authenticate
setvalue (0) not allowed
credit with negative amount allowed
debit with negative amount allowed
no check for locked flag
not locked after 5 attempts
stays authenticated
not locked after reset
MAXVALUE too low
authenticate does not authenticate
reset does not make it uninitialized
tries 5 5 instead of tries < 5
fresh card has nonzero balance
setvalue allowed in initial state
setvalue does not initializediunlock
MAXVALUE too high
MAXVALUE balance not allowed
averages
original applet, no counterexample

574 Arjen van Weelden, Martijn Oostdijk, Lars Frantzen ..

For instance, mutant 17 differs from the ideal applet by testing whether
the number of remaining authentication tries is less than or equal to five
rather than less than five before setting a flag indicating that the applet
should no longer accept authentication attempts. This mutant was found after
executing 94 paths, within 3.82 seconds, containing 4757 transitions in total.
This mutant showed an invalid output after an input sequence of length 29 in
path 94. To identify the error, the trace of inputs and associated responses
are written to a file.

GAST was able to identify the 22 incorrect implementations without any
help, using a minimum path length of 50 transitions and a maximum of 100
paths. It took an average of 0.56 seconds to generate and execute, on average,
366 transitions on a 1.4GHz Windows computer. Identifying incorrect
behavior for all 22 mutants cost only 12 seconds in total. This shows that
GAST is an efficient and effective test tool.

RELATED WORK

Two approaches are closely related to ours due to the fact that both rely
on tools that implement variants of the ioco testing relation5. Du Bousquet
and art in^ use UML specifications, which are translated into Labeled
Transition Systems to serve as input for the TGV tool7. Instead of an on-the-
fly execution, TGV uses additional test purposes to generate test cases. The
authors created a tool to automate the generation of test purposes based on
common testing strategies. The generated test cases are finally translated into
Java code, which communicates with the applet and executes the test. TGV
does not treat data symbolically, which can easily lead to a state space
explosion when dealing with large data domains. Because we generate test
cases on-the-fly based on the (symbolic) EFSM, this problem does not occur.

To support symbolic treatment of data, Clarke et use InputIOutput
Symbolic Transition Systems. The basic approach is similar to TGV, hence
also here test purposes are needed. The test automation is done via a
translation to C++ code, which is linked with the implementation. This
restricts the IUT to be a C++ class with a compatible interface.

Rather than testing properties of the IUT, its implementation (i.e., the
Java Card applet) can also be formally verified. Testing and verification are
complementary techniques to check the correctness of systems, as explained
in Section 1. A common technique used for verifying Java Card applets is to
prove their correctness with respect to a specification in the Java Modeling
Language (JML). State-based specifications similar to the one in Figure 1
can uniformly be translated to JML specifications, as shown by Hubbers,

On-the-Fly Formal Testing of a Smart Card Applet 575

Oostdijk, and poll9. The resulting annotated Java Card applet can then be
verified using one of the many JML toolsi0, for instance, the ESCJava2 static
analyzer". Most Java Card applets are small enough to even attempt a
formal correctness-proof using the Loop tool, as demonstrated by Jacobs,
Oostdijk, and warnier12.

8. CONCLUSION AND FUTURE WORK

We have presented an approach to automate the testing of Java Card
applets using the test tool GAST. The test case derivation is based on a
Statechart specification of the applet under test. The specification can
directly be translated into a corresponding GAST specification. Tests were
completely automatically derived, executed, and analyzed. Discrepancies
between the formal specification and its Java Card implementation were
successfully detected, which shows the feasibility of this approach.

The direct translation from the Statechart model to the GAST
specification, and the on-the-fly execution of the test cases enable the
developer to start with automatic testing of the applet in the early stages of
development. The co-development of the formal model and the
implementation, and the facility to do automatic tests, has shown to be very
useful. Both the code and the specification have evolved simultaneously,
vastly improving the quality of the applet, and leading to a complete and
reliable specification. Such a specification delivers insight on how to specify
similar cases, and can serve as a pattern for these.

The tested mutants, representing typical programming errors, have
increased our confidence in the error detecting power of the GAST algorithm.
We are planning to compare this with other test tools, e.g., the ioco-based
tool T O ~ X ' ~ , to test more complex applets, testing applets on real cards, and
testing advanced aspects like the integration, interference, and feature
interaction between different applets on one card.

Finally, we will compare the testing approach with the formal
verification approach, e.g., using JML, to see how far we can get in unifying
verification and testing techniques into one common framework, and to
investigate the precise shape of their complementarities.

REFERENCES

1 UML resource page. h t t p : / /www . urn1 . org.

2 P. Koopman and R. Plasmeijer. Testing reactive systems with GAST. In S. Gilmore, editor,
Trends in Functional Programming 4, 1 1 1-129 (2004)

576 Arjen van Weelden, Martijn Oostdijk, Lars Frantzen . . .

3 R. Plasmeijer and M. van Eekelen. The Concurrent Clean Language Report, version 2.0.
http://www.cs.kun.nl/-clean.

4 D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - a
survey. Proc. IEEE, 84(8): 1090--1126 (1996)

5 J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Sofhvare-
Concepts and Tools, 17(3): 103-120 (1 996)

6 L. du Bousquet and H. Martin. Automatic test generation for Java-Card applets. In 4th
Workshop on Tools for System Design and Verification, (2000)

7 C. Jard and T. Jeron. TGV: theory, principles and algorithms. In IDPT '02, Pasadena,
California, USA, Society for Design and Process Science (2002)

8 D. Clarke, T. Jeron, V. Rusu, and E. Zinovieva. Automated test and oracle generation for
smart-card applications. In Proceedings of the International Conference on Research in
Smart Cards, volume 2 140 of LNCS, 58-70, Cannes, France (2001)

9 E. Hubbers, M. Oostdijk, and E. Poll. From finite state machines to provably correct java
card applets. In D. Gritzalis, S. De Capitani di Vimercati, P. Samarati, and S.K. Katsikas,
editors, Proceedings of the 18th IFIP Information Security Conference, Kluwer Academic
Publishers, 465-470 (2003)

10 L. Burdy, Y. Cheon, D. Cok, M. Emst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino, and E.
Poll. An overview of JML tools and applications. In Th. Arts and W. Fokkink, editors,
FMICS '03, volume 80 of ENTCS, pages 73-89 (2003)

11 D. Cok and J. Kiniry. ESClJava2: Uniting ESClJava and JML: progress and issues in
building and using ESCIJava2. Submitted for publication (2004)

12 B. Jacobs, M. Oostdijk, and M. Warnier. Source code verification of a secure payment
applet. JLAP, 58: 107--120 (2004)

13 5 . Tretmans and E. Brinksma. TorX: Automated model based testing. In A. Hartman and K.
Dussa-Zieger, editors, First European Conference on Model-Driven Software Engineering.
Imbuss, Mohrendorf, Germany (2003)

