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Particularly in the vulnerable CNS with a low capacity for regeneration 
specialized mechanisms must be active for the fast and gentle elimination of 
dysregulated autoaggressive immune cells. In EAE, local apoptosis of 
autoimmune T-cells has been identified as a safe means for the removal of 
these unwanted cells. T-cell apoptosis in situ followed by phagocytic clearance 
of apoptotic remnants by glia assures a minimum of detrimental bystander 
damage to the local parenchyma and down-regulates the local inflammatory 
reaction. The pharmacological augmentation of local apoptosis of 
inflammatory effector cells might gain therapeutic importance also in human 
neuroimmunological diseases such as multiple sclerosis. 

T-cell, phagocytosis, Experimental autoimmune neuritis, astrocyte, microglia, 
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. INTRODUCTION 

Multicellular organisms face the task of  safely disposing unwanted cells 
under physiological and pathological conditions. The active and tightly 
regulated cell death program during apoptosis is considered to play a major 
role in the physiological control of cell turnover while at the other end 
dysregulation of apoptosis has been shown to contribute to the pathogenesis 
of  different autoimmune diseases. 
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During the last decade the role of apoptosis also in neuroimmunological 
diseases has been more clearly defined. In EAE and experimental 
autoimmune neuritis (EAN), especially apoptosis of the pathogenic effector 
cells has been thoroughly investigated. This review will briefly introduce 
definitions and detection methods for apoptosis. We will focus on apoptotic 
cell death of effector T-cells in EAE, proposed mechanisms of T-cell 
apoptosis, functional consequences and finally its potential therapeutic 
implications. 

1.1 Apoptosis: definition and detection 

Apoptosis is a specialized, morphologically and biochemically distinct 
form of eukaryotic cell death. Introduced in 1972 by Kerr and colleagues, the 
term apoptosis served to describe a set of morphological features commonly 
observed during cell death in various tissues and cell types which were 
different to those observed during necrotic cell death (1). The stereotypic 
series of cellular changes comprise blebbing of the plasma membrane and 
condensation of chromatin at the periphery of the nucleus, followed by 
disintegration of the cell into multiple membrane-enclosed vesicles. In 
contrast to the lytic processes observed during necrosis, cell death by 
apoptosis is not associated with secondary inflammatory tissue responses, 
e.g. towards potentially harmful intracellular contents of the dying cells (2). 
Thus, apoptosis is considered to provide a safe and gentle cell death 
mechanism. In vivo, apoptosis also appears to be a fast and efficacious 
mechanism for the elimination of unwanted cells, with completion of the cell 
death program within 4-5 hrs at least in certain tissues and under defined 
conditions (3). 

As the traditional definitions of apoptosis were mainly based on 
morphological criteria, electron microscopy served as the gold standard in 
the detection of apoptosis. Meanwhile, the better understanding of 
underlying biochemical processes during apoptosis has led to the 
introduction of an array of detection methods at the molecular level (4,5). 
For example, intravital internucleosomal DNA-fragmentation which 
generates fragments of 180 bp and multiples thereof can reliably be detected 
using TUNEL or in situ nick translation techniques. The identification of a 
set of aspartate-directed cysteine proteases (Caspases) whose activation 
underly many of the observed morphological changes during apoptosis has 
further broadened the spectrum of detection methods. Thus, either the 
activated caspases or their proteolytic cleavage products (e.g. cytokeratin 18, 
Poly(ADP-Ribose)-Polymerase PARP, APP, actin cleavage products) can be 
identified. Also specific alterations of the cell membrane (e.g. loss of 
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phospholipid asymmetry detected with annexin-V) or mitochondrial changes 
(e.g. cytochrome c release, "permeability transition") serve as the basis for 
commercially available detection methods for apoptosis. However, many of 
these detection methods have to be interpreted cautiously (4). For example 
DNA-fragmentation does not only occur during apoptosis, but also during 
necrosis. Since different intracellular pathways lead to typical apoptotic 
features, a combination of different molecular detection methods is feasible. 
Thus, typical morphological features of apoptosis can also occur in the 
absence of oligonucleosomal DNA-fragmentation as well as in enucleated 
cells (6,7). 

1.2 T-cell apoptosis in EAE and CNS inflammation 

T-cells autoreactive to CNS-antigens such as MBP can also occur in 
healthy individuals (8,9). Albeit more often in MS-patients, surges of 
increased frequencies of circulating myelin-reactive T-cells can also be 
observed in healthy subjects, possibly driven by cross-reactive 
environmental antigens (10). These activated autoreactive T-cells are capable 
of entering the CNS-parenchyma and thus have the potential to induce a 
local immune response when they encounter their specific antigen in the 
context of appropriate restriction molecules (11,12). Therefore, specialized 
anatomic barriers such as the blood brain barrier or the absence of lymphatic 
drainage are not sufficient to prevent immune-mediated damage in the CNS, 
arguing for other mechanisms in the physiological control of autoreactive 
inflammatory cells in situ. Local apoptosis of pathogenic T-cells has been 
identified as a major immunological defense mechanism in the "immune- 
privileged" CNS, leading to an inhibition of inflammation or, once it has 
encroached, to rapid and non-destructive elimination of the inflammatory 
infiltrate (review in (13,14). 

First reports on cell death by apoptosis in inflammatory brain lesions of 
Lewis rat EAE were from Pender and colleagues (15). Using morphological 
criteria the majority of the dying cells appeared to be lymphocytes and 
oligodendrocytes. Apoptosis of ~13-T-cells was subsequently confirmed by 
the same group using pre-embedding immunolabelling techniques (16). By 
combined T-cell immunohistochemistry, molecular labeling techniques and 
ultrastructural criteria, Schmied and coworkers analyzed T-cell apoptosis in 
the spinal cord quantitatively during the time course of different rat EAE 
models (17). Of all apoptotic cells, 64% were identified as T-lymphocytes, 
mostly expressing the ~[3-T cell receptor. While another 9% of the apoptotic 
cells were classified as oligodendrocytes, apoptosis of macrophages was only 
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rarely observed. However, a considerable proportion of apoptotic cells could 
not be identified immunocytochemically, due to the advanced degeneration 
of the cells. 
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Figure 1. Time course of T-cell apoptosis in situ. Apoptosis during the natural course of 
experimental autoimmune encephalomyelitis (EAE) or neuritis (EAN), passively induced by 
cell transfer or by active immunization with MBP (EAE) or peripheral nerve myelin (EAN). 
Ordinate: percentage of apoptotic T-cells (mean +/- SD). Modified after (18). 

During Lewis rat cell transfer (AT)-EAE using MBP-specific T-cells the 
degree of T-cell apoptosis was minimal at early stages on day 4, but peaked 
at the time of recovery from disease at day 7 with apoptosis rates of up to 
49% (figure 1). Also in the active disease model prevalence of T-cell 
apoptosis in situ was highest when animals had recovered from the disease. 

Apoptosis of inflammatory cells in situ also occurs in chronic relapsing 
EAE models, especially during clinical relapses (15,19,20,21). In the CNS of 
adoptively transferred chronic relapsing EAE in SJL/J mice, apoptosis of 
CD4+ T-cells and microglia/brain macrophages could readily be observed, 
while oligodendrocytes and astrocytes did not exhibit TUNEL positivity 
(19). 

T-cell apoptosis in situ has not only been identified in EAE but also in 
coronavirus-mediated encephalomyelitis (22). Apoptosis of T-lymphocytes 
also occurs in inflammatory human brain lesions, most prominently in acute 
disseminated leukoencephalomyelitis (ADEM) (23), an acute monophasic 
disease which closely mimics pathological changes of acute EAE. T-cell 
apoptosis can also be observed in active MS lesions albeit to a lesser extent, 
possibly due to the chronicity of the disease (24). The similar degree of T- 
cell apoptosis in the acutely autoimmune inflamed rodent (EAE) and human 
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CNS (ADEM) (25) with approximately 30% of all invading T-cells 
undergoing apoptosis highlights the importance of the local apoptotic 
destruction of inflammatory T-cells in the termination of CNS-inflammation. 

In contrast to the high T-cell apoptosis rate observed in the CNS, the PNS 
and other peripheral tissues appear to have a lower capacity to induce T-cell 
apoptosis locally. T-cell apoptosis could also be observed in sciatic nerves of 
Lewis rats with active or AT-EAN (26). Whereas the time course was similar 
to EAE, the extent of T-cell apoptosis was markedly different: highest levels 
were also found during recovery, with typical T-cell rates of approximately 
10% (figure 1). However, in spite of this lower apoptosis rate, also in the 
PNS local T-cell apoptosis can be regarded as an efficient mechanism of cell 
elimination. Thus, given a time frame of 4-5 hrs for the completion of 
apoptosis, one could assume that up to 50% of an inflammatory infiltrate 
would be eliminated within 24 hrs. 

Negligible degrees of T-cell apoptosis were found in T-cell mediated 
autoimmune diseases of muscular tissue. T-cell apoptosis was less than 0.5% 
in CD8-T-cell dominated experimental autoimmune myositis and biopsies of 
different human myopathies of presumed autoimmune etiology (27,28). 
Thus, T-cell inflammation in muscle is not cleared by apoptosis in situ, 
which could contribute to the non-self-limiting nature of these diseases. Even 
in HIV-associated polymyositis and -neuropathy there is virtually no relevant 
T-cell apoptosis in situ, in spite of the pathophysiological relevance of T-cell 
apoptosis in HIV-infection (29). 

Also T-cell infiltrates in the skin do not appear to be eliminated by local 
apoptosis. In Lewis rat EAE, there was negligible T-cell apoptosis in the 
dermal tissue adjacent to the sensitization site, despite a heavy T-cell 
infiltration (17). Furthermore, in skin biopsies of patients with 
dermatomyositis and lupus erythematosus, T-cell apoptosis was virtually 
absent (30)(Chan, Gold, unpublished observations). 

Given the obvious disparity in T-cell apoptosis between the 
"immunoprivileged" CNS and other non-immunologically protected sites, 
tissue-specific local mechanisms must be active in the CNS, that lead to a 
very efficient apoptotic clearance of pathogenic T-cells. 

1.3 Possible mechanisms of T-cell apoptosis in the CNS 

An important question in the elucidation of possible mechanisms of T-cell 
apoptosis concerns the specificity of the dying cells. Thus, apoptosis- 
inducing mechanisms such as activation induced cell death via triggering of 
the T-cell receptor would lead to selective cell death only of autoantigen- 
specific T-cells. In contrast, apoptosis also of non-antigen specific 
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"bystander" T-cells, secondarily recruited into the lesion, would suggest non- 
selective mechanisms of apoptosis induction. 

To elucidate this further, Pender and colleagues investigated T-cell 
apoptosis in Lewis rat EAE passively induced with a MBP-specific T-cell 
clone using the V[38.2+ T-cell receptor, which is the predominant T-cell 
receptor element in MBP-induced Lewis rat EAE (31,32). Apoptosis and T- 
cell receptor usage was then analyzed in lymphocytes isolated and enriched 
from spinal cord. The frequency of V[38.2+ T-cells was about sevenfold 
higher in the apoptotic cell population than in the non-apoptotic T-cells. 
Moreover, using MBP- and ovalbumin-specific T-cells, it appeared that 
MBP-specific T-cells were readily eliminated from the CNS by apoptosis, 
while T-cells specific for ovalbumin, an antigen not present in the Lewis rat, 
survived in the CNS and recirculated to peripheral lymphoid organs. 
However, these studies could not exclude that also ovalbumin specific T- 
cells underwent apoptosis in the CNS. Also, altered physicochemical 
properties of collapsed apoptotic cells could have precluded their 
quantitative recovery from spinal cord during gradient centrifugation. 
Moreover, other MBP-reactive T-cell receptor elements besides V]38.2, 
proven to be encephalitogenic were not analyzed in these studies (33,34). 

Using T-cells stably expressing specific genomic markers, Lassmann and 
colleagues could demonstrate that both MBP-specific and ovalbumin- 
specific T-cells undergo apoptosis in the CNS of EAE-animals (35). In 
addition, the occurence of T-cell apoptosis during EAE in bone marrow 
chimeras with different MHC-haplotypes of the resident glial cells and the 
passively transferred T-cells indicates that T-cell apoptosis is not dependent 
on antigen-specific mechanisms (35). Thus, both encephalitogenic, antigen- 
specific T-cells as well as secondarily recruited bystander T-lymphocytes 
appear to undergo apoptosis in situ. 

The molecular mechanisms leading to T-cell apoptosis in the CNS in situ are 
as yet incompletely understood (14). In vivo, the TNF-receptor-1 (TNFR1)- 
mediated death pathway appears to play a major role in the induction of T- 
cell apoptosis in the CNS (36). Thus, in EAE of TNFRI-or 
TNF/lymphotoxin-deficient mice, local T-cell apoptosis was decreased. 
TNF-c~ has been demonstrated to be a potent inducer of T-cell apoptosis 
(37). Following this line, administration of anti-TNF-c~ antibody decreases 
local T-cell apoptosis in EAE of Lewis rats undergoing high-dose antigen- 
therapy with MBP, where the release of high amounts of TNF-c~ can be 
observed in situ (38). 
T-cell apoptosis in the CNS may also be mediated via the Fas/Fas Ligand 
(CD95/CD95L)-pathway (review in (14,39)). Thus, one proposed 
mechanism is the ligation of T-cell CD95 by CD95L expressed by host cells 
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resident in or secondarily recruited into the CNS (40). In addition, intrathecal 
infusion of FasL suppresses Lewis rat EAE and augments apoptosis of 
inflammatory cells in situ (41). 

Since T-cell apoptosis appears to be tissue specific, resident glial cells 
might sensitize T-cells towards cell death directly or through soluble factors. 
Antigen presentation to MBP-specific T-cells by rat microglia results in T- 
cell apoptosis in vitro, which can be prevented by exogenous IL-2 (42). 

Also astrocytes, which act as non-professional antigen presenting cells 
(APC), render T-cells susceptible to apoptosis induced by 
glucocorticosteroids in vitro (43). Glucocorticosteroids markedly increased 
T-cell apoptosis when added to T-cell astrocyte co-cultures during late T-cell 
activation stages whereas there was no effect when thymus cells were used 
as antigen presenters. These results could argue for a scenario, where an 
infiltrating T-cell is primed for an apoptotic stimulus by a resident non- 
professional APC, and subsequently undergoes apoptosis under hormonal 
influences of the microenvironment or systemic changes. However, T-cell 
apoptosis during recovery from EAE also occurs in the CNS of 
adrenalectomized animals, arguing for additional mechanisms (44). 
Among others, further proposed mechanisms of local CNS T-cell apoptosis 
comprise the action of reactive oxygen intermediates and nitric oxide, or cell 
death due to deprivation of growth factors such as IL-2 (45,46). Yet, the 
precise role of the different putative mechanisms as well as other to date 
unknown CNS-specific factors in the induction of T-cell apoptosis remain to 
be elucidated. 

1.4 Phagocytosis of apoptotic cells in the central nervous 
system 

The high degree of apoptosis of inflammatory cells in the autoimmune 
inflamed human and rodent CNS raises the need for an efficient and tightly 
controlled removal mechanism for these unwanted cells. A key event in the 
resolution of an inflammatory infiltrate is the nonphlogistic and thus safe 
phagocytic clearance of dying, yet intact leukocytes undergoing apoptosis 
(review in (47,48). Apoptosis labels unwanted cells with signals that direct 
the recognition, uptake and subsequent degradation by tissue-specific 
phagocytes, thus preventing the spilling of potentially harmful contents and 
inhibiting secondary immune responses directed towards the dying cells. In 
addition to the mere clearing of cell remnants, the ingestion of apoptotic cells 
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also actively elicits phagocyte responses that modulate immune reactions and 
inflammation. 

In Lewis rat EAE, phagocytosis of apoptotic lymphocytes by 
macrophages/microglia, oligodendrocytes and astrocytes in situ has first 
been described by electron microscopy (49). Using an in vitro phagocytosis 
model, we have further investigated the phagocytosis of apoptotic T-cells by 
different glial cell elements and its functional consequences (50). Lewis rat 
microglia efficiently phagocytose specifically apoptotic, encephalitogenic 
MBP-specific T-cells. This process is differentially regulated by Thl-/Th2- 
type cytokines (51). The phagocytosis of apoptotic T-cells by Lewis rat 
microglia is more efficient than by other glial cell elements such as 
astrocytes. Moreover, phagocytosis of apoptotic T-cells leads to a profound 
downregulation of microglial immune functions with a suppression of pro- 
inflammatory cytokines and microglial T-cell activation, thus silencing the 
microglial phagocyte in the inflammatory context (52). Figure 2 gives a 
hypothetical model of the phagocytosis of apoptotic T-cells in the CNS. 

DownregulaUon of 
T-cells Pha~locytoais f , ~  effector functi0ns 
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IFN-y, IL4 
Sere i+professional 
phagocytes: back Up 
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Figure 2. T-cells undergoing apoptosis exhibit specific "eat me" recognition signals for 
phagocytes. Phagocytosis by microglia is differentially regulated by cytokines ("waste 
disposal"). The uptake of apoptotic cells leads to a down-regulation of different microglial 
immune-functions ("modulation of immune responses"). Astrocytes have a lower capacity to 
phagocytose apoptotic cells and may provide a "backup" mechanism. Modified from (50). 

In vitro, rat microglia/brain macrophages have also been demonstrated to 
phagocytose apoptotic neurons via lectin-, integrin-, and phosphatidylserine- 
dependent mechanisms (53). 
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Current therapeutic approaches in presumably immune-mediated, 
demyelinating diseases of the CNS such as MS aim at the rapid termination 
of the inflammatory process, thereby hastening clinical recovery and 
potentially also preventing subsequent demyelinative and axonal tissue 
damage (54). Glucocorticosteroids (GS) are potent anti-inflammatory drugs, 
whose therapeutic efficacy in neuroimmunological diseases has especially 
been established in immune neuropathies, MS, lupus erythematosus and 
cerebral vasculitis. Intravenously administered high-dose GS serve as the 
current mainstay in the therapy of acute MS-relapses(55). GS can mediate 
their pleiotropic anti-inflammatory effects via different mechanisms, e.g. 
modulation of cell activation, cytokine expression, secretion of inflammatory 
mediators, leucocyte migration and the reduction of local edema (56). These 
effects are mediated via the cytosolic GS-receptor (GSR) and can be blocked 
by the GSR antagonist RU 468 at low GS concentrations. At higher 
concentrations, GS appear to induce cell death directly, possibly via non- 
genomic, physicochemically mediated effects on the plasma membrane (56). 

In Lewis rat EAE, iv. methylprednisolone (MP) therapy administered at 
the clinical disease maximum increased T-cell apoptosis in the spinal cord in 
situ and decreased T-cell infiltration (57). This effect was clearly dose- 
dependent with a dosage of at least 10 mg/kg body weight MP required to 
achieve an increase of T-cell apoptosis and a marginal decrease in T-cell 
infiltration. Higher dosages of 50 mg/kg body weight MP were superior in 
both respects, and were also effective in mild EAE, in contrast to the lower 
dosage of MP. The strong apoptosis-promoting effect of GS has also been 
demonstrated on peripheral blood leukocytes (PBL) of MS-patients (58). 
After intravenous high-dose corticosteroid treatment, apoptosis of PBLs was 
markedly augmented in different MS-subgroups, predominantly affecting 
CD4-positive T cells. 

Also in the peripheral nervous system, high-dose GS augment T-cell 
apoptosis (59). In Lewis rat EAN, a 4-5-fold increase of T-cell apoptosis 
could be observed in the sciatic nerve after therapeutic administration of GS 
(10 mg/kg body weight prednisolone). Similar results could be observed in 
Lewis rat experimental autoimmune myositis (EAM), a model for human 
idiopathic myosites of presumed autoimmune-inflammatory etiology (27). 
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Here, a clear increase of apoptotic endomysial T-cells could be 
demonstrated, with up to 50% of these apoptotic T-cells being CD8-positive. 
This indicated that glucocorticosteroids also induce CD8-T-cell apoptosis, 
even in organs where normally T-cell apoptosis does not occur. 

The type 1 interferon (IFN) IFN-~, is one of the current mainstays in the 
immunomodulatory therapy of MS (60). IFN-~ appears to affect particularly 
inflammatory aspects of MS, with a reduction of the relapse rate and positive 
effects on inflammatory changes observed in MRI scans. In the experimental 
models, IFN-[3 has been shown to inhibit progression of relapsing-remitting 
EAE (61), while early discontinuation of IFN-~ led to exacerbation of active 
EAE (62). While the exact mechanism of action of IFN-~ is still unknown, 
numerous putative mechanisms have been proposed (review in (63)). 
Whether the therapeutic benefit of IFN-[3 is also based on the induction of 
apoptosis in inflammatory cells is still controversially discussed (64,65). In 
Lewis rat AT-EAE, no major increase of T-cell apoptosis in situ could be 
observed after treatment with IFN-[3 (66). However, IFN-[3 clearly increases 
the phagocytosis of apoptotic, encephalitogenic, MBP-specific T-cells by 
microglia in vitro (Chan, A., Seguin, R., submitted). Thus, theoretically IFN- 
13 could help to engulf and eliminate T-cells driven into apoptosis by other 
therapeutically used agents, e.g. corticosteroids. 

Antigen-specific therapy with CNS or PNS-autoantigens has been shown to 
be effective in EAE and EAN (67,68). The underlying mechanism appears to 
involve T-cell receptor reengagement at an appropriate stage of the cell cycle 
which leads to T-cell apoptosis (69). In Lewis rat cell transfer (AT)-EAE, 
high dose antigen (guinea pig MBP) therapy not only led to apoptotic cell 
death of invading T-cells in situ but also of resident oligodendrocytes (38). 
This was accompanied by a profound modulation of the cytokine network 
with a rapid induction of the Thl-type cytokines TNF-~ and IFN-~, as well 
as inducible nitic oxide synthase. Neutralization of TNF-c~ in vivo led to a 
decrease in T-cell and oligodendrocyte apoptosis but did not change the 
beneficial clinical effect of high-dose antigen therapy. This argues for a 
central role of TNF-c~ as a mediator of local apoptosis which may have 
different functional effects. Similar results could also be observed in antigen- 
specific therapy of Lewis rat AT-EAN using P2-protein (70,71). 

Conclusions 
Apoptosis of inflammatory effector cells constitutes an effective 

protective mechanism in the autoimmune-inflamed CNS. Thus, the selective 
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induction of apoptosis in pathogenic cells is an attractive therapeutic target 
in neuroimmunological diseases. However, apoptosis of resident CNS cells 
represents also a major mechanism in the pathogenesis of different 
neurodegenerative disorders, where selective blockade of apoptotic pathways 
may be benificial. Therefore, the identification of the molecular, tissue- and 
cell-specific factors that lead to local apoptosis remain to be elucidated in 
order to take advantage of this phylogenetically old and important defense 
mechanism. 
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