
DYNAMIC SECURITY LABELS AND
NONINTERFERENCE
(Extended Abstract)

Lantian Zheng
Computer Science Department
Comell University
zlt@cs.cornell.edu

Andrew C. Myers
Computer Science Department
Comell University
andru@cs.cornell.edu

Abstract This paper presents a language in which information flow is securely controlled
by a type system, yet the security class of data can vary dynamically. Informa-
tion flow policies provide the means to express strong security requirements for
data confidentiality and integrity. Recent work on security-typed programming
languages has shown that information flow can be analyzed statically, ensur-
ing that programs will respect the restrictions placed on data. However, real
computing systems have security policies that vary dynamically and that cannot
be determined at the time of program analysis. For example, a file has associ-
ated access permissions that cannot be known with certainty until it is opened.
Although one security-typed programming language has included support for
dynamic security labels, there has been no demonstration that a general mech-
anism for dynamic labels can securely control information flow. In this paper,
we present an expressive language-based mechanism for reasoning about dy-
namic security labels. The mechanism is formally presented in a core language
based on the typed lambda calculus; any well-typed program in this language is
provably secure because it satisfies noninterference.

1. Introduction

Information flow control protects information security by constraining how
information is transmitted among objects and users of various security classes.
These security classes are expressed as labels associated with the information
or its containers. Denning [5] showed how to use static analysis to ensure that

28 Formal Aspects ofSecurity and Trust

programs use information in accordance with its security class, and this ap-
proach has been instantiated in a number of languages in which the type system
implements a similar static analysis (e.g., [23, 9, 27, 17, 2, 19]). These type
systems are an attractive way to enforce security because they can be shown to
enforce noninterference [8], a strong, end-to-end security property. For exam-
ple, when applied to confidentiality, noninterference ensures that confidential
information cannot be released by the program no matter how it is transformed.

However, security cannot be enforced purely statically. In general, programs
interact with an external environment that cannot be predicted at compile time,
so there must be a run-time mechanism that allows security-critical decisions
to be taken based on dynamic observations of this environment. For example, it
is important to be able to change security settings on files and database records,
and these changes should affect how the information from these sources can
be used. A purely static mechanism cannot enforce this.

To securely control information flow when access rights can be changed
and determined dynamically, dynamic labels [14] are needed that can be ma-
nipulated and checked at run time. However, manipulating labels dynami-
cally makes it more difficult to enforce a strong notion of information security
for several reasons. First, changing the label of an object may convert sen-
sitive data to public data, directly violating noninterference. Second, label
changes (and changes to access rights in general) can be used to convey in-
formation covertly; some restriction has to be imposed to prevent covert chan-
nels [25,20]. Some mandatory access control (MAC) mechanisms support dy-
namic labels but cannot prevent implicit flows arising from control flow paths
not taken at run time [4, 11].

JFlow [13] and its successor, Jif [15] are the only implemented security-
typed languages supporting dynamic labels. However, although the Jif type
system is designed to control the new information channels that dynamic labels
create, it has not been proved to enforce secure information flow. Further, the
dynamic label mechanism in Jif has limitations that impair expressiveness and
efficiency.

In this paper, we propose an expressive language-based mechanism for se-
curely manipulating information with dynamic security labels. The mecha-
nism is formalized in a core language (based on the typed lambda calculus)
with first-class label values, dependent security types and run-time label tests.
Further, we prove that any well-typed program of the core language is secure
because it satisfies noninterference. This is the first noninterference proof for
a security-typed language in which general security labels can be manipulated
and tested dynamically, though a noninterference result has been obtained for
a simpler language supporting the related notion of dynamic principals [22].

Some previous MAC systems have supported dynamic security classes as
part of a downgrading mechanism [21]; in this work the two mechanisms are

Dynamic Security Labels and Noninterference 29

considered orthogonal. While downgrading is important, it is useful to treat
it as a separate mechanism so that dynamic manipulation of labels does not
necessarily destroy noninterference.

The remainder of this paper is organized as follows. Section 2 presents
some background on lattice label models and security type systems. Section 3
introduces the core language XüSec and uses sample XüSec programs to show
some important applications of dynamic labels. Section 4 describes the type
system ofXosec and the noninterference result. Section 5 covers related work,
and Section 6 concludes.

2. Background

Static information flow analysis can be formalized as a security type system,
in which security levels of data are represented by security type annotations,
and information flow control is performed through type checking.

2.1 Security classes

We assume that security requirements for confidentiality or integrity are de-
fined by associating security classes with users and with the resources that
programs access. These security classes form a lattice C. We write k C kf to
indicate that security class k! is at least as restrictive as another security class
k. In this case it is safe to move information from security class k to fc', be-
cause restrictions on the use of the data are preserved. To control data derived
from sources with classes k and k', the least restrictive security class that is at
least as restrictive as both k and k' is assigned. This is the least upper bound,
or join, written kUk'.

2.2 Labels

Type systems for confidentiality or integrity are concerned with tracking
information flows in programs. Types are extended with security labels that
denote security classes. A label £ appearing in a program may be simply a
constant security class k, or a more complex expression that denotes a security
class. The notation £\ C. £2 means that £2 denotes a security class that is at
least as restrictive as that denoted by £\.

Because a given security class may be denoted by different labels, the re-
lation C generates a lattice of equivalence classes of labels with U as the join
(least upper bound) operator. Two labels £\ and £2 are equivalent, written
£1 « £2, ifli E £2 and £2 E h- The join of two labels, £\ U £2i denotes the
security class that is the join of the security classes that £\ and £2 denote. For
example, if x has label £x and y has label £y, then the sum x+y is given the
labe l^U V

30 Formal Aspects ofSecurity and Trust

2.3 Security type systems for information flow
Security type systems can be used to enforce security information flows

statically. Information flows in programs may be explicit flows such as as-
signments, or implicit flows [5] arising from the control flow of the program.
Consider an assignment statement x=y, which contains an information flow
from y to x. Then the typing rule for the assignment statement requires that
f-y E 4> which means the security level of y is lower than the security level of
x, guaranteeing the information flow from y to x is secure.

One advantage of static analysis is more precise control of implicit flows.
Consider a simple conditional:

if b then x = true else x = f alse

Although there is no direct assignment from b to x, this expression has an
implicit flow from b into x. A standard technique for controlling implicit flows
is to introduce a program-counter label [4], written pc, which indicates the
security level of the information that can be learned by knowing the control
flow path taken thus far. In this example, the branch taken depends on b, so
the pc in the then and e l s e clauses will be joined with 4 , the label of b.
The type system ensures that any effect of expression e has a label at least as
restrictive as its pc. In other words, an expression e cannot generate any effects
observable to users who should not know the current program counter. In this
example, the assignments to x will be permitted only if pc E £x, which ensures
4 E 4 .

3. The X^sec language
The core language Xpsec is a security-typed lambda calculus that supports

first-class dynamic labels. In Xpsec, labels are terms that can be manipulated
and checked at run time. Furthermore, label terms can be used as statically
analyzed type annotations. Syntactic restrictions are imposed on label terms to
increase the practicality of type checking, following the approach used by Xi
and Pfenning in ML^(C) [26].

From the computational standpoint, XDSCC is fairly expressive, because it
supports both first-class fünctions and state, which together are sufficient to
encode recursive functions.

3.1 Syntax
The syntax of Xnsec is given in Figure 1. We use the name k to range

over a lattice of label values C (more precisely, a join semi-lattice with bottom
element ±), x, y to range over variable names V, and m to range over a space
of memory addresses M.

Dynamic Security Labels and Noninterference 31

Base Labels
Variables
Locations

Labels
Constraints

Base Types
Security Types

Values
Expressions

k
x,y

m
Z,pc :

C :

ß :
r :
v :
e :

€
6

:=
:=

:=
:=
:=
:=

1

c
V
M
k |

i n t

ßt
X |

v |
if i

x | £i U €2

; ^ , c i €
| label | unit | (X'.T{)

n | raT | A(x:r)[C ;pc].
!iUf2 | ei e2 | !e | ei
l C £2 then ei else e2

[C] * r2 | r ref |

e () | k (ar = -
:= e2 | ref re
let (x, 3/) = ei in

C;pc
>T2

V2:T)

Figure 1. Syntax of AD

To make the lattice explicit, we write C |= fci E &2 to mean that &2 is at
least as restrictive as fci in £, and £ |= k = fei LJ fc^ to mean fc is the join of fci
and &2 in £. The least and greatest elements of £ are ± and T. Any non-trivial
label lattice contains at least two points L and H where H % L. Intuitively,
the label L describes what information is observable by low-security users who
are to be prevented from seeing confidential information. Thus, low-security
data has a label bounded above by L; high-security data has a label (such as
H) not bounded by L.

In XüSec, a label can be either a label value fc, a variable x, or the join of
two other labels f iLJ^ . For example, L, x, and L U x are all valid labels, and
LUx canbe interpreted as a securitypolicy that is asrestrictive asbothL and
x. The security type r = /?£ is the base type /? annotated with label £. The base
types include integers, unit, labels, flinctions, references and products.

The fünction type (X:T{) — ^ r^ is a dependent type since r i , T2, C and
pc may mention x. The component C is a set of /a&e/ constraints each with
the form ^i C ^2; they must be satisfied when the function is invoked. The
pc component is a lower bound on the memory effects of the function, and an
upper bound on the pc label of the caller. Consequently, a function is not able
to leak information about where it is called. Without the annotations C and pc,
this kind of type is sometimes written as Ux: r\ .TI [12].

The product type (x : ri)[C] * r^ is also a dependent type in the sense that
occurrences of x can appear in r i , r^ and C. The component C is a set of
label constraints that any value of the product type must satisfy. If r^ does
not contain x and C is empty, the type may be written as the more familiar
r\ * T2> Without the annotation C, this kind of type is sometimes written
S Z : T I . T 2 [12].

In XüSec, values include integers n, typed memory locations m r , functions
\(x:r)[C;pc].e, theunitvalue (), constantlabels k, andpairs (x = v\[C], v^'-
r) . A function \{x : T) [C]pc\. e has one argument x with type r , and the

32 Formal Aspects ofSecurity and Trust

components C and pc have the same meanings as those in function types. The
empty constraint set C or the top pc can be omitted. A pair (x = v\ [C], V2'.T)

contains two values v\ and v^- The second element v^ has type r and may
mention the first element v\ by the name x. The component C is a set of label
constraints that the first element of the pair must satisfy.

Expressions include values v, variables x, the join of two labels £\ U £2,
applications e\ e^, dereferences !e, assignments e\ := e2, references r e f r e ,
label-test expressions i f £\ Q £2 then e\ e l s e e2, and product destructors
l e t (x,2/)=v ine2.

The label-test expression i f ^i C £2 then ei e l s e e2 is used to examine
labels. At run time, if the value of £2 is a constant label at least as restrictive as
the value of £1, then e\ is evaluated; otherwise, e^ is evaluated. Consequently,
the constraint £\ C £2 can be assumed when type-checking ei.

The product destructor l e t (x, y) = ei in e2 unpacks the result of ei, which
is a pair, assigns the first element to x and the second to y, and evaluates e2-

3.2 Operational Semantics

The small-step operational semantics of Xosec is given in Figure 2. Let M
represent a memory that is a finite map from typed locations to closed values,
and let (e, M) be a machine configuration. Then a small evaluation step is a
transition from (e, M) to another configuration (er, M'), written (e, M) 1—>
(e', M').

It is necessary to restrict the form of (e, M) to avoid using undefined mem-
ory locations. Let loc(e) represent the set of memory locations appearing in
e. A memory M is well-formed if every address m appears at most once in
dom(M), and for any mT in dom(M), loc(M(mT)) C dom(M). By induction
we can prove that evaluation preserves memory weH-formedness.

The notation e[v/x] indicates capture-avoiding substitution of value v for
variable x in expression e. Unlike in the typed lambda calculus, e[v/x] may
generate a syntactically ill-formed expression if x appears in type annotations
inside e, and v is not a label. However, this is not a problem because the type
system of XüSec guarantees that a well-typed expression can only be evaluated
to another well-typed and thus well-formed expression.

The notation M(mr) denotes the value of location mT in M, and the nota-
tion M[mr 1—> v] denotes the memory obtained by assigning v to mT in M.

The evaluation rules are standard. In rule (E3), notation address-space(M)
represents the set of locationnames in M, that is, {m\3r s.t. mT G dom(M)}.
In rule (E8), v^ may mention x, so substituting v^ for y in e is performed before
substituting v\ for x. The variable name in the product value matches x so that
no variable substitution is needed when assigning v\ and v^ to x and y. In rule

Dynamic Security Labels and Noninterference 33

£ \= k = ki U k2 m g. address-space(M)

(ki U/c2, M) i—> {k, M) •" (refrv, M) \—> (mT, M[raTi->- v])

[E2] (!mT, M> .—> (M(m r) , M) [£4] (mT := v, M) i—> ((), M[mTH-> v])

[E5] ((X(x:r)[C;pc].e)v, M) —> (e^/z] , M>

L J (if fei C fc2 then ei else e2, M) i—> (ei, M)

(if fci C k2 then ei else e2, M) \—> (e2, M)

[JB8] (le t (x,y) = (cc = fi[C], f 2 : r) i n e , M) i—> (e^/yjffi /a:] , M)

(e, M> i—• (e;, Mr>
[£ 9] <^[e] 5 M) H — (JS7[C'], M ')

^ H » = [;1 e | t; [•] | [.] :=e\v : = [•] | l [•] | r e f - [•] | [•] U £2 \ k, U [•]
I if [•] E ^2 then ei else e2 | if k\ C [•] then ei else e2

Figure 2. Small-step operational semantics of XüSec

(E9), E represents an evaluation context, a term with a single hole in redex
position, and the syntax of E specifies the evaluation order.

3.3 Example: multilevel I/O channels

As discussed in Section 1, dynamic labels are vital for precisely controlling
information flows between security-typed programs and the external environ-
ment. When information is exported outside a program through an I/O chan-
nel, the receiver might want to know the exact label of the information, which
calls for multilevel communication channels [6] unambiguously pairing the in-
formation sent or received with its corresponding security label. Supporting
multilevel channels is one of the basic requirements for a MAC system [6].

In \osec, a multilevel channel can be encoded by a memory reference of
type ((x : l a b e l x) * ±ntx)± ref, which stores a pair composed of an integer
value and its label. The confidentiality of the integer component is protected
by the label component, since extracting the integer from such a pair requires
testing the label component:

\z:((x:labelx) * int^i.. let (x,y) = z in if x C. L then m
intL := y else ()

In the above code, the constraint x C. L must be satisfied in order to store the
integer component in m i n t L . Since the readability of the integer depends on
the value of x, letting x recursively label itself ensures that all the authorized
readers of the integer component can test x and retrieve the integer.

34 Formal Aspects ofSecurity and Trust

l C J

[C3] C h l C T [C4] C\- ±T£ [C5] C h f C

in 3 c h

Figure 3. Relabeling rules

Sending an integer through a multilevel channel is encoded by pairing the
integer and its label and storing the pair in the reference representing the chan-
nel:

Az:(((a;:labelx)) * intx)j_ ref)±. Xw:laibelw. A(y:intw)[±.\. z := (x = w, y:±ntx)

Like other I/O channels, a multilevel channel may have a label that is an upper
bound of the security levels of the information that can be sent through the
channel. Product label constraints can be used to specify the label of a multi-
level channel. For example, a bounded multilevel channel can be represented
by a memory reference with type ((#: labelx)[a: C £] * intx)j_ ref, where £
is the label of the channel, and the constraint x C £ guarantees any information
stored in the reference has a security label at most as high as £. Sending infor-
mation through a boimded multilevel channel often needs a run-time check as
in the following code:

Xz:(((x:labelx))[x Q £\ * intx)_L ref)j_. A
X(y:±ntw)[±].±± w C. ^then z := (x = w, y:±ntx) else ()

4. Type system and noninterference

This section describes the type system of \DSec and formalizes the nonin-
terference result (any well-typed program has the noninterference property),
whose proof is presented in the full version of this paper [29].

4.1 Subtyping

The subtyping relationship between security types plays an important role
in enforcing information flow security. Given two security types T\ — ßi^ and
r2 = p2£2, suppose T\ is a subtype of T2, written as T\ < r^. Then any data
of type r\ can be treated as data of type r^. Thus, data with label £\ may be
treated as data with label £2, which requires £\ C £2.

In Xosec, label terms have a restricted syntactic form so that they can be
used as type annotations, and constraints on label terms are also type-level in-
formation that the type checker can use. Indeed, label constraints introduced in

Dynamic Security Labels and Noninterference 35

C h r2 < n C h r{ < T̂
C h pc2 C pc, C, C2 h Ci

C ^ r i < r 2 Chr2<Ti 2 ~
C h (x:n) ^ ^ r{ < (x:r2)

C h n < r2 C h r{ < r̂ C, Ci h C2 C h ffi < /32

*r{ < (X : T 2) [C] * T ^ [S4] C h (ß^ < {ß2)t2

Figure 4- Subtyping rules

label-test expressions, fünctions and pairs are critical for precise static analysis
of dynamic labels.

The type system keeps track of the set of label constraints that can be used
to prove relabeling relationships between labels. Let C h t\ E h denote that
£i n. £2 can be inferred from the set of constraints C. The inference rules are
shown in Figure 3; they are standard and consistent with the lattice properties
of labels. Rule (C2) shows that all the constraints in C are assumed to be true.

Since the subtyping relationship depends on the relabeling relationship, the
subtyping context also needs to include the C component. The inference rules
for proving C h r\ < r^ are the rules shown in Figure 4 plus the standard
reflexivity and transitivity rules.

Rules (S 1)-(S3) are about subtyping on base types. These rules demonstrate
the expected covariance or contravariance. In XüSec, function types contain
two additional components pc and C, both of which are contravariant because
they restrict where a function can be invoked. In rules (S2) and (S3), variable
x is bound in the fünction and product types. For simplicity, we assume that x
does not appear in C, since a-conversion can always be used to rename x to
another fresh variable. This assumption also applies to the typing rules.

Rule (S4) is used to determine the subtyping on security types. The premise
C h ßi < p2 is natural. The other premise C h £\ Q £2 guarantees that
coercing data from r\ to r^ does not violate information flow policies.

4.2 Typing

The type system of Xnsec prevents illegal information flows and guarantees
that well-typed programs have a noninterference property. The typing rules are
shown in Figure 5. The notation label(ßt) = £ is used to obtain the label of a
type, and the notations £ C. r and r E £ are abbreviations for £ C iabei(r) and
label(r) C £, respectively.

The typing context includes a type assignment F, a set of constraints C and
the program-counter label pc. F is a finite ordered list of x: r pairs in the order
that they came into scope. For a given x, there is at most one pair x: r in F.

36 Formal Aspects ofSecurity and Trust

[INT\ r ; C ; p c h n : i n t x [UNIT\ T ; C ; pc h () : u n i t ±

FV(T) = 0
[LOC]

[LABEL] r ; C ; pc h fc : label j . L J T ; C ; pc h m r : (r ref) ±

r r ; C ; pc h £1 : label^/ T ; C ; pc h £2 :^
r ; C ; p c h x : r L J r ; C; pc h £1 U ^2 :

r ; C ; p c h e : r C h pc O r T ; C ; pc h e : (r ref)

r ; C , pcH« :

r , x : r / ; C / ; p c / h e : r

[ABS] F ;C ; pch \(X:T')[C' ;pcf].e : ((Z :T ') Ü-iff^ T)_L

F ; C ; pch ei : (rrefV F ; C ; pc h e2 : r C h p c U ^ d r
[ASSJGN] — —

1 5 O | p c i 61 I^^ 6 2 '. 11111t I

r ; C ; pc h ei : ((x: label£,) ^ i ^ r)^ F ; C ; pc h ̂ 2 :

C h p c U £ E pc/^/a;] C h C'[i2/x] x € FV(r) U FV(€') U FV(C;

[L - A P P] = r;C;pche^:rl^]^

r ; C ; p c h e i : ((X:T;) ^ l i ^ C T)t T ; C ; pc h e2 : rr

C h pc U £ C pcr C h C ' x ̂ FV(r) U FV(r') U FVfCM U FVipc')
fAPPl —— —— ——-

theorern J T ; C ; pc h ei e2 : r U ^

r j C j p c h ^ ilabel^/ *€ {1,2}

T ; C,£1 C. £2 \ pcU£[U £'2 \- ei : r * F ; C ;pcU ^ U £'2 h e2 : r

T ; C ; pc h if £1 C ^2 then ei else e2 : r U ̂ U £2

;C; pch ei : ((x:ri)[C] * T2)^ T,O::TIU€,2/:T2U£; C, C ; ; pc h e2 : r

F ; C ; pc h let (x, y) = ei in e2 : r
[ÜNPACK] -

F ; C ; pc h f 1 : n [vi /x] F, x: T\ h- r2 F ; C ; pc h e : r
T;C; pch v2[vi/x] :T2[VI/X} CY-Cf[v\/x] C \~ r < r'

lPR0Dl n . ^ . ^ ^ ^ — . r ^ n x . // ^r^/T ..^-x ^SUB^ T̂ . ̂ . ̂ L-^ . ^/

Figure 5. Typing rules for the Xosec language

A variable appearing in a type must be a label variable. Therefore, a type r
is well-formed with respect to type assignment F, written V h r , if F maps all
the variables in r to label types. The definition of well-formed labels (F h i)
is the same. Consider T — xi : TI, . . . , x n : rn. For any 0 < i < n, the
type Ti may only mention label variables that are already in scope: x\ through
Xi. Therefore, F is well-formed if for any 0 < i < n, r^ is well-formed with
respect to x\ : r i , . . . ,x^ : T{. For example, "x : l a b e l ^ , y : i n t x " is well-
formed, but "y: in t^ , x: l a b e l ^ " is not.

Dynamic Security Labels and Noninterference 37

The typing assertion F ; C; pc h e : r means that with the type assignment
F, current program-counter label as pc, and the set of constraints C satisfied,
expression e has type r .

Rules (INT), (UNIT), (LABEL) and (LOC) are used to check values. Value
v has type ß± if v has base type ß. Rule (LOC) requires typed location mT

contain no label variables so that mT remains a constant during evaluation.
This is enforced by the premise FV(r) = 0, where FV(r) denotes the set of
free variables appearing in r .

Rules (VAR), (JOIN), (REF), (DEREF), (ASSIGN), (ABS) and (SUB) are
standard for a security type system [27, 17]. Due to the space limitation, we
do not include the detailed descriptions of these rules, which can be found in
thefullpaper[29].

Rule (L-APP) is used to check applications of dependent functions. Ex-

pression e± has a dependent function type ((#: l abe l^) —:—> r)e, where x
does appear in £f, C', pd or r . As a result, rule (L-APP) needs to use £'[£2/%],
C'fa/x], pdfa/x] and T[£2/X], which are well-formed since £2 is a label.
That also explains why ei, with its dependent function type, cannot be applied
to an arbitrary expression e^- substituting e^ for x in £', C', pd and r may
generate ill-formed labels or types. The expressiveness of XüSec is not sub-
stantially affected by the restriction, because the function can be applied to a
variable that receives the result of an arbitrary expression. Rule (APP) applies
when x does not appear in C", pd or r . In this case, the type of e\ is just a
normal function type, so e\ can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To check V2, the occurrences
of x in V2 and r^ are both replaced by v\, since x is not in the domain of V.
If v\ is not a label, then x cannot appear in T2. Thus, T2[v\/x] is always well-
formed no matter whether v\ is a label or not. Rule (UNPACK) checks product
destructors straightforwardly. After unpacking the product value, those prod-
uct label constraints in C' are in scope and used for checking e^.

Rule (IF) checks label-test expressions. The constraint £\ C £2 is added into
the typing context when checking the first branch e\.

This type system satisfies the subject reduction property and the progress
property. The proof is standard.

4.3 Noninterference theorem

This section formalizes the noninterference result: any well-typed program
in XüSec satisfies the noninterference property (see the full paper [29] for the
proof). Consider an expression e in XoSec Suppose e has one free variable x,
and x : r h e : i n t ^ where H C. r. Thus, the value of x is a high-security
input to e, and the result of e is a low-security output. Then noninterference
requires that for all values v of type r, evaluating e[v/x] in the same memory

38 Formal Aspects ofSecurity and Trust

must generate the same result, if the evaluation terminates. For simplicity, we
only consider that results are integers because they can be compared outside
the context of Xnsec- Let i—>* denote the transitive closure of the i—> rela-
tionship. The following theorem formalizes the claim that the type system of

enforces noninterference:

THEOREM 1 (NONINTERFERENCE) Suppose x : r h e : int£, and H C
r. Given two arbitrary values v\ andv^ oftype r, and an initial memory M,
if(e[Vi/xl M) .—>* {v'i, M!)fori G {1,2}, then v[= v'2.

The noninterference property discussed here is termination insensitive [19]
because e[v/x] is required to generate the same result only if the evaluation ter-
minates. The type system of Xnsec does not attempt to control termination and
timing channels. Control of these channels is largely an orthogonal problem.
Some recent work [1, 18, 28] partially addresses timing channels.

5. Related Work

Dynamic information flow control mechanisms [24,25] track security labels
dynamically and use run-time security checks to constrain information prop-
agation. These mechanisms are transparent to programs, but cannot prevent
illegal implicit flows arising from control flow paths not taken at run time.

Various general security models [10, 21, 7] have been proposed to incor-
porate dynamic labeling. Unlike noninterference, these models define what it
means for a system to be secure according to a certain relabeling policy, which
may allow downgrading labels.

Using static program analysis to check information flow was first proposed
by Denning and Denning [5]; later work phrased the analysis as type check-
ing (e.g., [16]). Noninterference was later developed as a more semantic char-
acterization of security [8], followed by many extensions. Volpano, Smith and
Irvine [23] first showed that type systems can be used to enforce noninterfer-
ence, and proved a version of noninterference theorem for a simple imperative
language, starting a line of research pursuing the noninterference result for
more expressive security-typed languages [9, 27, 17, 3]. A more complete sur-
vey of language-based information-flow techniques can be found in [19, 29].

The Jif language [13, 15] extends Java with a type system for analyzing
information flow, and aims to be a practical language for developing secure
applications. However, there is not yet a noninterference proof for the type
system of Jif, because of its complexity.

Banerjee and Naumann [3] proved a noninterference result for a Java-like
language with simple access control primitives. Unlike in XßSec, run-time
access control in this language is separate from the static label mechanism. In
their language, the label of a method result may depend in limited ways on the
(implicit) security state of its caller; however, it does not seem to be possible

Dynamic Security Labels and Noninterference 39

in the language to control the flow of information from an I/O channel or file
based on permissions discovered at run time.

Concurrent to our work, Tse and Zdancewic proved a noninterference result
for a security-typed lambda calculus (ARP) with run-time principals [22], which
can be used to construct dynamic labels. However, ARP does not support refer-
ences or existential types, which makes it unable to represent dynamic security
policies that may be changed at run time, such as file permissions. In addition,
support for references makes XDSCC more powerfül than ARP computationally.

6. Conclusions

This paper formalizes computation and static checking of dynamic labels in
the type system of a core language Xusec and proves a noninterference result:
well-typed programs have the noninterference property. The language Xnsec is
the first language supporting general dynamic labels whose type system prov-
ably enforces noninterference.

Acknowledgements

The authors would like to thank Greg Morrisett, Steve Zdancewic and Amal
Ahmed for their insightful suggestions. Steve Chong, Nate Nystrom, and
Michael Clarkson also helped improve the presentation of this work.

References
[1] Johan Agat. Transforming out timing leaks. In Proc. 27th ACM Symp. on Principles of

Programming Languages (POPL), pages 40-53, Boston, MA, January 2000.
[2] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confine-

ment in a Java-like language. In IEEE Computer Security Foundations Workshop (CSFW),
June 2002.

[3] Anindya Banerjee and David A. Naumann. Using access control for secure information
flow in a java-like language. In Proc. 16th IEEE Computer Security Foundations Work-
shop, pages 155-169, June 2003.

[4] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mas-
sachusetts, 1982.

[5] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information
flow. Comm. oftheACM, 20(7):504-513, July 1977.

[6] Department of Defense. Department of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD (The Orange Book) edition, December 1985.

[7] Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling providing
a tiered approach to verification. In IEEE Symposium on Security and Privacy, pages
142-154, Oakland, CA, 1996. IEEE Computer Society Press.

[8] Joseph A. Goguen and Jose Meseguer. Security policies and security models. In Proc.
IEEE Symposium on Security and Privacy, pages 11-20, April 1982.

[9] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Proc. 25th ACM Symp. on Principles of Programming Languages (POPL),
pages 365-377, San Diego, California, January 1998.

40 Formal Aspects ofSecurity and Trust

[10] John McLean. The algebra of security. In IEEE Symposium on Security and Privacy,
pages 2-7, Oakland, California, 1988.

[11] Catherine Meadows. Policies for dynamic upgrading. In Database Security, IV: Status
and Prospects, pages 241-250. North Holland, 1991.

[12] John C. Mitchell. Foundations for Programming Languages. The MIT Press, Cambridge,
Massachusetts, 1996.

[13] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proc. 26th
ACM Symp. on Principles of Programming Languages (POPL), pages 228-241, San An-
tonio, TX, January 1999.

[14] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow con-
trol. In Proc. 17th ACMSymp. on Operating System Principles (SOSP), pages 129-142,
Saint-Malo, France, 1997.

[15] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif: Java information flow. Software release. Located at
h t t p : //www. c s . c o r n e l l . edu / j i f , July 2001-2003.

[16] Jens Palsberg and Peter 0rbask. Trust in the A-calculus. In Proc. 2nd International Sym-
posium on Static Analysis, number 983 in Lecture Notes in Computer Science, pages 314-
329. Springer, September 1995.

[17] Fran^ois Pottier and Vincent Simonet. Information flow inference for ML. In Proc. 29th
ACMSymp. onPrinciples of Programming Languages (POPL), pages 319-330, 2002.

[18] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed
programs. In Proceedings of the 9th International Static Analysis Symposium, volume
2477 of LNCS, Madrid, Spain, September 2002. Springer-Verlag.

[19] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5-19, January 2003.

[20] Ravi S. Sandhu and Sushil Jajodia. Honest databases that can keep secrets. In Proceedings
ofthe 14th National Computer Security Conference, Washington, DC, 1991.

[21] Ian Sutherland, Stanley Perlo, and Rammohan Varadarajan. Deducibility security with
dynamic level assignments. In Proc. 2ndIEEE Computer Security Foundations Workshop,
Franconia, NH, June 1989.

[22] Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type systems.
In IEEE Symposium on Security andPrivacy, Oakland, CA, May 2004.

[23] Dennis Volpano, GeofFrey Smith, and Cynthia Irvine. A sound type system for secure
flow analysis. Journal ofComputer Security, 4(3): 167-187, 1996.

[24] Clark Weissman. Security controls in the ADEPT-50 time-sharing system. In AFIPS
Conference Proceedings, volume 35, pages 119-133, 1969.

[25] John P. L. Woodward. Exploiting the dual nature of sensitivity labels. In IEEE Symposium
on Security andPrivacy, pages 23-30, Oakland, California, 1987.

[26] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proc.
26th ACMSymp. on Principles of Programming Languages (POPL), pages 214-227, San
Antonio, TX, January 1999.

[27] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear continuations.
Higher Order and Symbolic Computation, 15(2-3):209-234, September 2002.

[28] Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent pro-
gram security. In Proc. 16th IEEE Computer Security Foundations Workshop, pages 29—
43, Pacific Grove, California, June 2003.

[29] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference. Tech-
nical Report 2004-1924, Cornell University Computing and Information Science, 2004.

