
A FORMAL APPROACH TO SPECIFY AND
DEPLOY A NETWORK SECURITY POLICY

F. Cuppens1, N. Cuppens-Boulahia1, T. Sans1, A. Miege1'2
1GET/ENST Bretagne, 2 rue de la Chätaigneraie, 35512 Cesson Sevigne Cedex, France
2GET/ENST, 46 rue Barrault, 75634 Paris Cedex 13, France

Abstract
Current firewall configuration languages have no well founded semantics.

Each firewall implements its own algorithm that parses specific proprietary lan-
guages. The main consequence is that network access control policies are diffi-
cult to manage and most firewalls are actually wrongly configured. In this paper,
we present an access control language based on XML syntax whose semantics
is interpreted in the access control model Or-BAC (Organization Based Access
Control). We show how to use this language to specify high-level network ac-
cess control policies and then to automatically derive concrete access control
rules to configure specific firewalls through a translation process. Our approach
provides clear semantics to network security policy specification, makes man-
agement of such policy easier for the administrator and guarantees portability
between lirewalls.

1. Introduction

It is well known in the computer security community that specifying and
managing access control rules is a hard task whatever the level of abstraction
considered. These access control rules are actually part of a more global set of
rules called an organizational policy. We argue that this organizational policy
has to be unfolded to obtain packages of access control rules. Each rule pack-
age is handled by a security component. For instance, environmental security
package, physical security package, operating system security package, staff
package and network security package. Firewalls are those components that
deal with network security packages. They are used to block to some extent
any suspicious communication from Internet to the private local area network
(LAN) and to deny the members of the private LAN access the all harmful
Internet temptations. One of the problems encountered with firewalls is the
difficulty the administrators have to well configure them. There is really a lack
of methodology and corresponding supporting tools to help them in setting the
network security policy part, and generating and deploying the rules derived

204 Formal Aspects ofSecurity and Trust

from this policy. There is actually no intermediary levels between the policy
requirement formulated as an English sentence and its equivalent set of firewall
rules, say the code.

Even if the firewall administrator is proficient in many configuration lan-
guages and tools, this expertise does not avoid from making mistakes. Without
a clear methodology and some corresponding supporting tools, this may lead
to the generation of configuration rules that are not consistent with the in-
tended network security policy. We claim that the use of a high level language
to specify a network security policy will avoid such mistakes and will help
to consistently modify the firewall rules when necessary. Moreover, this high
level language must allow administrators to specify security requirements and
have to be expressive enough to specify any network security policy.

We also notice that there is not a global security policy specification so that
an underlying hypothesis is always done: a single security component is used,
say a single firewall. Now, it is sometimes more convenient to deploy security
rules on several security components. In particular, access security rules can
be separated into relevant packages and enforced by more than one firewall on
the same LAN.

Furthermore, in most of firewalls, administrators use dual security policy.
That is they specify both permission and prohibition rules. In this case, the
selection by the firewall of the appropriate rule is based on a first matching
or a last matching procedure. In both cases, the decision depends on how the
security rules are sorted. Hence, administrators have to find out the correct and
efficient order of the rules, order that is dependent on the filtering procedure.
This is a complex task to manage especially when the security policy has to
be updated. Moreover, in some cases, it is even not always possible to sort the
rules. So, a closed access control policy that only includes permissions may be
an alternative.

In this paper, we present an access control language based on XML syn-
tax. This language is supported by the access control model Or-BAC [Kalam
et al., 2003] to specify access control meta-rules. The concepts introduced
by Or-BAC are used all top-down specification long to properly generate fire-
wall configuration rules. There are other attempts to suggest such a top-down
approach. For instance, [Hassan and Hudec, 2003] applies the RBAC model
[Sandhu et al., 1996] but fails to fit the model semantics to low level imple-
mentation. The reason is largely due to the fact that RBAC is less expressive
than Or-BAC and hence network level security rules are not naturally derived
(see section 5).

To handle a network security policy, some topology of the organization's
local area network must be enforced. Hence, the LAN is parcelled out into
zones. The access control consists in securely managing communications be-
tween these zones. We show in this paper that view and role definitions of Or-

A formal approach to specify and deploy a network security policy 205

BAC allow a fine grained specification of zones. The hierarchy frameworks of
extended Or-BAC [Cuppens et al., 2004a] avoid the use of artifices like open
and closed groups - a specialization of zones - as suggested in [Bartal et al.,
1999] (see section 5). In this connection, we also investigate if it is possible
to specify a network security policy by making use of permissions only. The
great contribution of this closed policy is to avoid having to sort firewall rules
that are derived to enforce this policy. Sorting the rules is actually complex
to manage and is a major source of errors. It is one of the main drawbacks of
many firewall configuration languages.

There are some tools that help administrators to build their security pol-
icy and to translate it to the actual configuration language (for instance Cisco
PIX [Degu and Bastien, 2003], Ipfilter [Russell, 2002], ...) but these tools,
for example firewall builder [Kurland, 2003], are bottom-up approaches. That
is, they deal with the particular problem of producing the code in the config-
uration language of the target firewall. The reasoning process on the access
control policy is not considered. Hence, there is a lack of accurate semantics
that allows the security administrator to avoid firewall mis-configuration (see
section 5). We also investigate the automatic generation of the target firewall
rx\\Qsfrom theformal specification ofa network security policy.

The remainder of this paper is organized as follows. Section 2 presents the
main concepts of Or-BAC using an XML syntax [W3C, 2004] in expectation of
its translation into a given target platform. We explain in section 3 how to spec-
ify a network security policy in Or-BAC and its counterpart in XML. Section
4 presents the compilation process of the abstract policy into concrete firewall
rules through a real application. A comparison with other similar works is done
in section 5 and finally section 6 concludes this paper.

2. Modelling Or-BAC in XML

2.1 Basic model

The Or-BAC model was first presented in [Kalam et al., 2003] using first
order logic formalization. In this paper, we present an interpretation of Or-
BAC in XML. The complete XML schema corresponding to the basic Or-BAC
model is available in [Cuppens et al., 2004b].

The Or-BAC model enables o rgan iza t ions to define their access control
pol icy . An organization corresponds to any entity in charge of managing a set
of s e c u r i t y r u l e s . In the basic Or-BAC model, security rules are restricted
to permissions, but they may be extended to also include p r o h i b i t i o n s
and o b l i g a t i o n s (see section 2.2 below). For instance, a given hospital is
an organization. A concrete security component, such as a firewall, may be
also viewed as an organization since it manages a set of security rules. In
the organization, sub jec t s will request to perform ac t ions on ob jec t s and

206 Formal Aspects ofSecurity and Trust

the final objective of an access control policy is to decide if these requests
are permitted or not. However, permissions in Or-BAC model do not directly
apply to subject, action and object. Instead, subject, action and object are
respectively abstracted into r o l e , a c t i v i t y and view.

Thus, subjects obtain permission based on the role they play in the organiza-
tion. We use a similar approach for actions and objects. An action is permitted
based on the role this action plays in the organization. In Or-BAC, an action
role is called an activity. For instance, a given organization may specify that
consult is an activity and that a possible role of action acroread is to consult
medical record. Similarly, permissions to have an access to an object are based
on the role this object plays in the organization. In Or-BAC, an object role
is called a view. For instance, a given organization may specify that medical
record is a view and that a possible role of objcctfich27.pdf is to be used as a
medical record.

Each organization respectively specifies the roles, activities and views that
are r e l evan t in this organization.

For each relevant role, the organization specifies the subjects that are as-
signed to this role using the XML element empower. Similarly, for each rel-
evant activity, actions are assigned to this activity using the XML element
consider and, for each relevant view, objects are assigned to this view us-
ing the XML element use.

The XML schema is interpreted by the set of predicates suggested in
[Cuppens et al., 2004a] to define a logical model for Or-BAC: (1) Pred-
icate relevantjrole(org, r) where org is an organization and r a role
to define roles that are relevant in a given organization, (2) Predicate
relevant-activity(org, a) where org is an organization and a an activ-
ity to define activities that are relevant in a given organization, (3) Pred-
icate relevantjuiew(orgyv) where org is an organization and v a view
to define views that are relevant in a given organization, (4) Predicate
empower(org,s,r) where org is an organization, 5 a subject and r a role
to define subjects that are empowered in a given role in a given organization,
(5) Predicate consider(org,a,a) where org is an organization, a an action
and a an activity to define actions that implement a given activity in a given
organization, (6) Predicate use(org,o,v) where org is an organization, o an
object and v a view to define objects that are used in a given view in a given
organization, (7) Predicate permission(org, r, a, v) where org is an organiza-
tion, r a role, a an activity and v a view to define that in a given organization,
some roles are permitted to perform some activities over some views.

The Or-BAC model also provides means to automatically derive con-
crete permissions between subjects, actions and objects. For this pur-
pose, the following predicate (not represented in the XML schema) is used:

Aformal approach to specify and deploy a network security policy 207

Networki, ' O

Implementation Level

Frohibition Hierarchy Confexts] adÖr~BAC

Extension Level

Core Level

Figure 1. Or-BAC architecture

Isjpermitted(s, a, 6) where 5 is a subject, a an action and o an object to de-
fine that some subjects are permitted to perform some actions on some objects.

In Or-BAC, triples that are instances of the predicate Is-permitted are
derived from permissions granted to roles, views and activities by the predicate
permission using a logical general rule to specify that: if an organization org
grants role r permission to perform activity a on view v, and if org empowers
subject s in role r, and iforg uses object o in view v, and iforg considers that
action a implements activity a then 5 is permitted to perform a on o.

2.2 Or-BAC extensions

There are several possible extensions to the basic model presented in the
previous section (called Or-BAC core in figure 1). In particular, security rules
may include prohibitions and obligations in addition to permissions. Consider-
ing both permissions, prohibitions and obligations may lead to conflicts. Man-
aging conflicts in Or-BAC is discussed in [Cuppens and Miege, 2003a]. It
is also possible to consider contextual security rules. This problem is further
addressed in [Cuppens and Miege, 2003b] where we show how to manage var-
ious types of context, such as temporal, spatial, prerequesite, user-declared and
provisional contexts (see [Cuppens and Miege, 2003a] for further details). An-
other possible extension consists in activating AdOr-BAC, the administration
model of Or-BAC [Cuppens and Miege, 2004].

However, in the following, we shall suggest defining a network security pol-
icy using only non contextual permissions so that the context, prohibition and
obligation extensions are not activated. The only extension we shall actually
consider is the hierarchy extension.

In Or-BAC, it is possible to consider role, activity, view and organization hi-
erarchies (see [Cuppens et al., 2004a] for a more complete presentation and for-
malization in first order logic). All these hierarchies are partial order relations,

208 Formal Aspects ofSecurity and Trust

i.e. reflexive and transitive relations. In the XML schema, role, activity and
view hierarchies are respectively specified using the subRole, subAct iv i ty
and subView elements. These XML elements are interpreted in a logical for-
malism by the following three predicates: (1) subjrole(org,ri,r2Y in orga-
nization org, role r\ is a sub-role of role T2, (2) sub.activity{org, a i , 02): in
org, activity a\ is a sub-activity of activity a^, (3) sub-view(org,vi,V2): in
org, view v\ is a sub-view of view V2-

The hierarchy on roles has the special meaning that, in organization org,
role r*i inherits from r^ all the permissions associated with r^. The hierarchy
on activities and views are associated with similar inheritance mechanisms.

In the hierarchy extension, we also consider hierarchies on organiza-
tion that may be specified using the subOrganization element in the
XML schema. This is interpreted by the following logical predicate:
sub-organization(orgi,org2) meaning that organization org\ is a sub-
organization of organization org^.

For those roles oforg^ that are relevant in orgi, we consider that the role,
activity and view hierarchies defined in org^ also applies in org\. We also
accept a similar principle for inheritance of permissions through the organi-
zation hierarchy provided that the role, activity and view in the scope of the
permission are relevant in the sub-organization.

3. Using Or-BAC to specify a network security policy

3.1 Principles

In this section, we show how to use Or-BAC in the context of network se-
curity. Our final objective will be to derive security rules to configure specific
firewalls (see section 4).

A firewall may be viewed as a security component that filters IP packets
with respect to a given security policy. How can we interpret the concepts of
subject, action and object in this case? Our proposal is the following. A subject
is any host machine. A host machine is modelled by two elements: IP address
and network mask. An action is any implementation of a network service such
as http, snmp or ping. In our model, a service has three elements: a protocol,
a source port and a destination port. Finally, an object is a message sent to
another host machine. A message is represented by two elements: a content
and a receiver (a host machine).

Thus, triples (subject, action, object) are interpreted as host machines that
use services to send messages to other host machines. Notice that messages
have content so that we can define security rules to make filtering decision
based on the IP packet content. However, this possibility is not used in the
remainder of this section but is further discussed in the conclusion.

A formal approach to specify and deploy a network security policy 209

Figure 2. Application example

We shall now give interpretation to the Or-BAC notions of organization,
role, activity and view. To illustrate our approach, we reuse the example used
in Firmato [Bartal et al., 1999]. The objective is to model the access control
policy of a corporate network used in an organization H. H has a two-firewall
network configuration, as shown in figure 2. As presented in [Bartal et al.,
1999], the external firewall guards the corporation's Internet connection. Be-
hind is the DMZ, which contains the corporation's externally visible servers.
In our case these servers provide HTTP/HTTPS (web), FTP, SMTP (e-mail),
and DNS services. The corporation actually only uses two hosts to provide
these services, one for dns and the other (called MultLserver) for all the other
services. Behind the DMZ is the internal firewall which guards the corpora-
tion's intranet. This firewall actually has two interfaces: one for the DMZ and
another one for the private network zone. Within the private network zone,
there is one distinguished host, Admin, which provides the administration for
the servers in the DMZ and firewalls.

3.2 Organization

In Or-BAC, a security policy will be generally modelled using several or-
ganizations. Of course, the organization H which is defining its access con-
trol policy is an organization for Or-BAC. The network security policy of H
will be managed by a sub-organization of H. Let us call H.LAN this sub-
organization. A first objective in this section is to show how to use Or-BAC to
define the network security policy ofH-LAN.

Since the network security policy is actually managed by two firewalls, we
shall consider that H.LAN has two sub-organizations denoted H_fwi and
H.fwe that respectively correspond to the internal and external firewalls. An-
other objective of our approach is to show how to derive specifications of poli-
cies managed by H.fwi and H.fwe from the one defined for H.LAN using
inheritance rules presented in section 2.2.

210 Formal Aspects ofSecurity and Trust

or.empower

—} h

[rQ{&p&ff

Figure 3. Role Definition

3.3 Role

As mentioned in section 3.1, subjects correspond to host machines. So, we
consider roles that may be assigned to hosts. Examples of such roles may
be dnsserver or firewalL Using the Or-BAC core model, the only way
to assign roles to hosts is by using the empower element. This means that
the security administrator must enumerate every host assigned to each role.
This would never be practical nor efficient since security configuration rules of
firewalls would be derived for each host.

This is why we suggest using ro l eDef in i t i on to define assignment
conditions of hosts to roles (see figure 3). Role definition has two parts:
hos t l nc lu s ion that corresponds to the positive condition a given host must
satisfy to be assigned to the role and hostExclusion that corresponds to the
negative condition the host must not satisfy. Each of these two conditions has
four sub-parts: host to enumerate hosts, subnet to specify network zones
identified by their mask, hostRange to specify intervals of IP addresses and
r o l e to refer to other roles.

Role definition of a role R in a given organization org can be interpreted by
a logical rule as follows:

Vs, (host(s) A hostJnclusion(s)
—> empower(org,s,R)

A -^host-exclusion(s))

where hostJnclusion(s) and host.exclusion(s) respectively represents the
disjunction of conditions specified by elements host, subnet, hostRange or
role. If the hostlnclusion element is actually empty, then we assume that

A formal appmach to specify and deploy a network security policy 211

hostJnclusion(s) is equivalent to true (meaning that any host is included); If
the hostExclusion element is empty, then host-exclusion(s) is equivalent
to false (meaning that no host is excluded).

For instance, the following XML structure [W3C, 2004] represents the
Pr iva t e role definition:

<relevantRole name="Private">

<n:roleDef inition>

<n:hostlnclusion>

<n:subNet>

<n:addr>111.222.2.0</n:addr>

<n:mask>24</n:mask>

</n:subNet>

</n:hostlnclusion>

<n:hostExclusion>

<n:role roleName="FW_intern"/>

<n:role roleName="Admin"/>

</n:hostExclusion>

</n:roleDefinition>

</relevantRole>

This structure says that a given host is empowered in the P r i v a t e role if it
belongs to the subnet 111.222.2.0/24 (host inclusion condition) and if it is not
empowered in role FVLintern or in role Admin (host exclusion condition).

3.4 Activities

Activities are abstractions of network services. Our approach is similar to
the one suggested for role definition. Instead of enumerating actions assigned
to activities, we suggest using act iv i tyDef i n i t i o n (see figure 4).

To specify an activity definition corresponding to network services, one has
first to choose a protocol tcp , udp or icmp. If the protocol is TCP, two el-
ements can be used to specify the activity: sc rPor t and des tPor t to re-
spectively express conditions on source and destination port numbers. Both
elements have similar structure. It is then possible to use the portRange ele-
ment to specify an interval of port numbers or s i ng l ePor t to enumerate a set
of port numbers.

The structure is similar to define activities corresponding to UDP protocols.
For ICMP protocol, the structure is different. It must be defined using two
elements: type and code.

For instance, the following XML structure represents the activity Web_HTTP:

<relevantActivity name="Web_HTTP">

<n:activityDefinition>

<n:tcp>

<n:destPort>

<n:singlePort>80</n:singlePort>

</n:destPort>

212 Formal Aspects ofSecurity and Trust

_r~*~.„

orconsideTl

Figure 4. Activity Definition

</n:tcp>
</n:activityDefinition>

</relevantActivity>

This structure says that a given action corresponds to activity Web_HTTP if
protocol is equal to TCP and destination port number is equal to 80. Notice
that the s rcPor t element is not used. In this case, we assume that any source
port number are acceptable.

3.5 Views

Views are abstraction of messages sent to destination hosts. A view defi-
nition can be defined by using the element toTarget that must be assigned
to a role name. A view definition of a given view V defined by organization
org and having toTarget element equal to role R may be interpreted by the
following logical rule:

• Vm, (message(m) A dest(rn, h) A empower(org, /z, R))
—> use{org,m, V)

This rule says that a message m is used in a given view V if the destina-
tion host h of this message is empowered in the role R specified in the view
definition.

For instance, the following XML structure defines a view corresponding to
the messages whose destination hosts are empowered in the I n t e r n e t role:

<relevantView name="To_Internet">
<n:viewDefinition>
<n:toTarget roleName="Internet"/>

</n:viewDefinition>

A formal approach to specify and deploy a network security policy 213

</relevantView>

In the following, we shall call such a view "target role" for short. Notice
that, since we do not consider filtering rules based on the message content
in the following, the view definition does not include possibility to specify
condition on the message content attribute. However, we plan to provide this
extension in the near fiiture.

3.6 Permission

To specify the access control policy using our approach, we have simply to
express permissions between role, activity and view. For instance, the follow-
ing XML structure specifies that role P r iva t e is permitted to perform activity
Web_HTTP on view To_Internet:
<permission roleName="Private"

activityName="Web_HTTP" viewName="To_Internet"/>

Notice that our approach enables the administrator to precisely specify
which hosts are empowered in a given role. This is why it is not necessary to
include prohibitions in the network security policy specification. Our method-
ology is based on a closed policy that only includes permissions, even though
deny rules may be generated from these permissions to configure a given target
firewall. This point is addressed in the following section.

4. Derivation of concrete firewall rules

We aim at deriving network components configuration from a network secu-
rity policy. This policy is expressed in the XML syntax based on the Or-BAC
semantics. In this section, we illustrate with the help of the running exam-
ple introduced in section 4, how our approach is used to derive firewall rules.
There are two steps in this derivation process. In the first step, we generate,
from the Or-BAC policy, rules expressed in an intermediary multi-target1 fire-
wall language that also uses an XML syntax (see section 4.1 below). In the
second step, we derive, from this intermediary language, concrete configura-
tion rules expressed in the specific target firewall language. In the next two
sub-sections, we give details about these two-steps derivation process.

4.1 From abstract policy to generic firewall rules

The aim of this first XSL transformation is to derive generic firewall rules
from the abstract network security policy expressed with the Or-BAC formal-
ism. This process uses hierarchy mechanisms to derive concrete rules relevant
for each firewall involved in the security architecture. For this purpose, once

!That is to say a language that is independent from the the target firewall.

214 Formal Aspects ofSecurity and Trust

the network security policy of a given organization is specified (organization
H-LAN in our example), we have simply to specify which entities (roles, ac-
tivities and views) are relevant in the sub-organizations (firewalls H-fwi and
H-fwe in our example).

The derivation process is then able to automatically distribute every permis-
sion that each firewall has to manage. More precisely, if there exists a per-
mission that bounds a role R\ and a "target role" view corresponding to role
i?2, and if both roles R\ and R2 are relevant in a sub-organization, it means
that this permission will be managed by this sub-organization. For example,
the permission that bounds the role P r i v a t e and a target role To_DNS_server
is relevant for the internal firewall H-fwi because both roles P r iva t e and
DNS_Server are relevant in this sub-organization. When a role is relevant in
a sub-organization and the target role is relevant in another organization, we
cannot distribute the permission on only one organization. So, in this case we
conclude that this rule must be managed by both firewalls. For instance, with
this mechanism the permission that bounds P r i v a t e and To_Internet pre-
sented in section 3.6 is relevant to the two firewalls and must be duplicated on
bothofthem.

Notice that the derivation process must check that there is no loops in role
definitions. That is we construct a graph between roles where an edge from
role i?i to role R2 means that role R2 appears in the inclusionRole or
exclusionRole elements of i?i role definition. Then, we have to check that
this graph is free of loops else the security policy is rejected by the derivation
process.

To generate the security rules in the multi-target firewall language, the
derivation process parses abstract security rules specified in the Or-BAC model
to unfold role definition, activity definition and view definition.

4.2 From generic rules to specific firewall rules

In order to validate our approach, we have chosen to derive concrete rules
for NetFilter2. So we have designed XSL transformations to derive NetFil-
ter rules from the multi-target firewall language. Using the same example of
permission, the following configuration script for NetFilter shows the rules we
obtain when applying the specific XSL transformations for NetFilter:

iptables -N Intranet-Web_HTTP-To_Internet
iptables -A FORWARD -s 111.222.2.0/24 -p tcp —dport 80

-j Intranet-Web_HTTP-To_Internet
iptables -A Intranet-Web_HTTP-To_Internet -s \$Admin -j RETURN
iptables -A Intranet-Web_HTTP-To_Internet -s 111.222.2.1/32 -j RETURN
iptables -A Intranet-Web_HTTP-To_Internet -s 111.222.1.254/32 -j RETURN

2NetFilter is embedded in all Linux kernels upper than 2.4 version.

A formal approach to specify and deploy a network security policy 215

iptables -A Intranet-Web_HTTP-To_Internet -d 111.222.0.0/16 - j RETURN
iptables -A Intranet-Web_HTTP-To_Internet - j ACCEPT

The first rule creates a chain called Intranet-WebJiTTP-ToJnternet. The
second rule corresponds to the positive inclusion condition. When a given
packet matches this rule, the decision is to jump to the chain Intranet-
Web-HTTP-ToJnternet to check the negative exclusion conditions. If this
packet matches a condition in the sub chain, then the decision is to return to
the main chain and the next rule in this chain will be checked. Else, if all ex-
clusion conditions expressed in the chain do not match, the packet is accepted.
In our example, the first exclusion condition corresponds to the Admin that is
excluded from the P r i v a t e role. The next two conditions exclude the two
internal firewall interfaces. The third condition excludes every destination ad-
dress that does not belong to the H-LAN network. Notice that it is possible to
optimize the rule generation to remove the condition on the firewall interface
with address 111.222.1.254 because this firewall interface (corresponding to
the DMZ interface) is not included in the subnet 111.222.2.0/24.

Notice also that the order of the generated rules does not matter, as for the
abstract security rules, except for the last rule in our example (the rule that
takes the decision to accept the packet) that must be at the end of the chain.
Thanks to the chain mechanism of NetFilter, we can derive rules without or-
dering exclusion conditions. But for firewall languages that do not provide
such mechanism, exclusion conditions will correspond to deny rules. These
deny rules have to be interleaved with accept rules to obtain the same result as
with NetFilter chains. Ordering the rules has to be done by the XSL transfor-
mation process.

5. Comparison with related works

Most of firewall products are supplied with configuration tools with friendly
user interfaces. But these tools discard the main problem of managing security.
They do not give a way to think and specify an access control policy before de-
riving firewall configuration rules that enforce this policy. When the security
administrator chooses a particular firewall, may be a commercial product like
Cisco PIX [Degu and Bastien, 2003] or Checkpoint Firewall-1 [Checkpoint,
2004] or an open source product like FireHOL [Tsaousis, 2004] or Firewall
builder [Kurland, 2003], it is quite easy to set filtering rules using the configu-
ration tool included in the offering. There is however a snag: These rules can
be inconsistent with each other or/and with the global security policy leading
to security holes. Our approach avoids the administrator pondering on access
security using filtering rules. The specification of the access control policy is
done at a more abstract level and problems like inconsistency are solved before
generating the concrete filtering rules [Cuppens and Miege, 2003a].

216 Formal Aspects ofSecurity and Trust

There are some works coming under the same topic as ours, that is: (1) spec-
ifying a network security policy which is not topology-dependent but rather
inspire it, (2) specifying a network security policy which is independent from
a particular firewall product and (3) generating automatically the configuration
rules from the high level network security policy. Hence, firewall management
toolkit Firmato [Bartal et al., 1999] uses an entity-relationship model to spec-
ify both the access security policy and the network topology and makes use of
the concept of roles to define network capabilities. In this approach there is
some mixing between the net topology - a particular concrete level - and the
access security policy to be enforced so that the role concept becomes ambigu-
ous. Indeed, the authors are bounded to introduce the "group" concept with
an unclear semantics ; sometimes group is used to design a set of hosts and
sometimes it stands for a role. This can lead to some difficulties to assign net-
work entities to the model entities. In this connection, Firmato's authors use
privileges inheritance through hierarchy of groups to derive automatically per-
missions. They also make use of artifices to avoid permission leakage. Hence,
they introduce notions of"open group" to authorize inheritance of permissions
and "closed group" to prohibit it. The reason is the fact that concept of group
is not well defined and we claim that this concept is not needed at the access
control policy specification level.

Another work whose motivations are close to ours is the RBNS model [Has-
san and Hudec, 2003]. Although authors claim that their work is based on the
RBAC model [Sandhu et al., 1996], it seems that they keep from this model
only the concept ofrole. Indeed, the specification of network entities and role
and permission assignments are not rigorous and does not fit any reality. In
particular, (1) all RBNS relations are binary even though an access control se-
curity goal and its equivalent filtering rule are always a triple (source, service,
target). This leads to a loss of information: permissions are missing in RBNS
model although authors consider the assignment of a service to an IP address
as a permission which is semantically weak. (2) Hosts are of two kinds, client
or server and roles are assigned to hosts thanks to the pre-declared type of
hosts. This is a wrong assignment as at the abstract level role of a given host
is service-dependent. (3) the approach makes an excessive use of the concept
of role, hence this leads authors to introduce a role-to-role assignments which
is a "limping" use of a role based access control model as it means assigning a
permission package to another permission package.

Using Or-BAC to model network security policy allows security adminis-
trator to make a clear separation between network entities and abstract model
entities like roles, services, groups of hosts having the same role, hosts con-
cerned by the source host query, and so on. Indeed, Or-BAC gives an ac-
curate semantics to permissions assigned to hosts (roles), services (activities)
and hosts targeted by the client host queries (views). Hence, some one is never

A formal approach to specify and deploy a network security policy 217

surprised when he/she checks or analyzes configuration rules of the LAN fire-
walls as they are derived from well specified access control policy. If a security
problem occurs, it is due to a wrong security policy.

6. Conclusion

We have presented a formal approach to specify network security policies
based on the semantics of the Or-BAC model. We suggest an XML syntax to
specify an abstract level network security policy independently from the im-
plementation of this policy in a given firewall. Our proposal uses high level
concepts such as inheritance hierarchies between organizations, roles, activi-
ties and views. We show how to use these inheritance hierarchies to distribute
the abstract level network policy specification over several security compo-
nents. We illustrate this approach by an example of security architecture based
on two firewalls. We then design a translation process in XSLT to generate
filtering configuration rules of specific firewalls. This approach has been im-
plemented for the NetFilter firewall.

The originality of our proposal is that it provides a clear semantics link
between an abstract access control model, namely Or-BAC, and its implemen-
tation into specific security components, namely firewalls. Our approach pro-
vides a high level of abstraction compared to the final security rules used to
configure a firewall. This should simplify management of such security rules
and guarantee portability between firewalls.

There are several perspectives to this work. First, we plan to apply our ap-
proach to derive security configuration rules of other network security compo-
nents, in particular other firewall configuration languages (Cisco PIX, Check-
Point Firewall-1, ...) but also Network Intrusion Detection System (for in-
stance Snort). In this later case, we plan to use the content element associ-
ated with the message structure suggested in section 3.1 to specify high level
IDS signatures. A similar approach may also apply to configure other security
components such as access control modules of operating systems or database
management systems. Our final objective would be to actually use Or-BAC
to specify the global security policy of a given organization, and then using a
decomposition mechanism, derive configuration rules of various security com-
ponents involved in a given security architecture.

Finally, in the case of already configured security components, another ap-
plication of our approach would be to specify an abstract security policy and
then develop mechanisms to check if the concrete security rules are consistent
with this abstract security policy. Some proposals for such an approach are
already suggested in [Mayer et al., 2000].

218 Formal Aspects ofSecurity and Trust

Acknowledgement

The work presented in this paper is supported by the ACI DESIRS of the
French ministry of Research.

References
Bartal, Y, Mayer, A., Nissim, K., and Wool, A. (1999). Firmato: A novel firewall management

toolkit. In 20th IEEE Symposium on Security andPrivacy, pages 17-31, Oakland, California.

Checkpoint (2004). Firewall-1. In http://www.checkpoint.com/.

Cuppens, R, Cuppens-Boulahia, N., and Miege, A. (2004a). Inheritance hierarchies in the Or-
BAC Model and application in a network environment. In Second Foundations ofComputer
Security Workshop (FCS'04), Turku, Finland.

Cuppens, F., Cuppens-Boulahia, N., Sans, T., and Mie,ge, A. (2004b). A Formal Approach to
Specify and Deploy a Network Security Policy. In http://www.rennes.enst-bretagne.fr/ fcup-
pens/articles/fast2004.pdf (full version of the paper presented at FAST 2004).

Cuppens, F. and Miege, A. (2003a). Conflict management in the Or-BAC model.
Cuppens, F. and Miege, A. (2003b). Modelling contexts in the Or-BAC model. In 19th Annual

Computer Security Applications Conference, Las Vegas.
Cuppens, F. and Miege, A. (2004). Administration Model for Or-BAC. Journal of Computer

Systems Science and Engineehng (CSSE). To appear.
Degu, C. and Bastien, G. (2003). CCP Cisco Secure PIX firewall Advanced Exam Certification

Guide.
Hassan, A. and Hudec, L. (2003). Role Based Network Security Model: A Forward Step towards

Firewall Management. In Workshop On Security of Information Technologies, Algiers.
Kalam, A. A. E., Baida, R. E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., Miege,

A., Saurel, C , and Trouessin, G. (2003). Organization Based Access Control. In Proceed-
ings oflEEE 4th International Workshop on Policiesfor Distributed Systems and Networks
(POLICY2003), Lake Come, Italy.

Kurland, V. (2003). Firewall Builder. Whitepaper.
Mayer, A., Wool, A., and Ziskind, E. (2000). Fang: A Firewall Analysis Engine. In 21th IEEE

Symposium on Security andPrivacy, pages 177-187, Oakland, California.
Russell, R. (2002). Linux 2.4 Packet Filtering. In

http://www.netfilter.Org/documentation/HOWTO//packet-filtering-HOWTO.html.
Sandhu, R., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-Based Access Con-

trol Models. IEEE Computer, 29(2):38Ü47.
Tsaousis, C. (2004). FireHOL, R5 VI. 159. In http://firehol.sourceforge.net/.
W3C (2004). Extensible Markup Language (XML) 1.0 (Third Edition). In

http://www.w3.org/TR/REC-xml/.

