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Abstract Fermentation is a critical process for the production simpler substances from or-
ganic molecules or could be used to obtain the ethanol by the anaerobic breaking
down of sugar. In this work we present different image analysis steps in order
to characterize the cell morphology during the biotechnology process. The cell
morphology is an important element of the stress which could disturb the pro-
duction of the biomass or a metabolite. For this purpose we develop a Java
software dedicated to an automatic analysis. The software allows us to have in-
formation about the growth cells, morphometric analysis (volume/surface) and
morphology (budding cells). We want to have the information in biological real
time to be able to modify the control parameters, therefore the image is cut into
small slices which are analyzed separately by a parallel algorithm.
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1. Introduction

Recently, the american researchers showed the human yeast carry out syn-
thetically the otherwise different tasks of producing the human biosynthesis
protein. The recent results allow us that a 'humanised yeast' could simplify
drug manufacture by the introduction of human gene inside yeast chromosome.
Since yeast grow faster and need less tending than mammalian cells, could be
a possible solution to produce proteins cheaper and easier. One of the most
famous example is the production of the human insulin for diabetics, which
does not need added sugars, is brewed from yeast in this way. Moreover, it is
difficult to produce these proteins to a commercial scale due to the incapacity
of the biologist to keep the cell on a specific pathway therefore the necessity
to develop control adaptive tools. Today, the pace of progress in fermentation
is fast and furious, particularly since the advent of genetic engineering and the
recent advances in computer sciences and process control. The high cost as-
sociated with many fermentation processes makes optimization of bioreactor
performance trough command control very desirable. Clearly, control of fer-
mentation is recognized as a vital component in the operation and successful
production of many industries.

The last results indicated that the improvability and the control of the bio-
ethanol production by alcoholic fermentation needs information about cell
morphology.

The bioethanol is obtained by a chemical reaction :

C6H12O6 —> 2CH3CH2OH + 2CO2

The operator of this reaction is a yeast, Saccharomyces Cerevisiae . The speed
of this reaction and the production of ethanol depend of the physiological state
of the cells (quality) and may be studied by morphometry (number of cells,
surface and volume) and by morphology (classes). The yeasts develop by bud-
ding. Four classes of cells appear in the process : the single alive, the single
dead, the budding cell (a mother and a child) and the aggregate of cells. This
analysis is non based on a study of viability but we are interested in sizing and
classifying the cells.
For this characterization, we develop different tools for microscopy image
analysis in order to create an optical sensor which can be

• offline in the case of separated treatment

• in situ for direct information on the process

The aim of this study is to try to give the evolution of a cell during a process.
Different kinetic models describe the steps of a alcoholic fermentation; this
work have to approximate the steps of:
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• adaptation : there's a change of the size of the cells

• exponential growth where the number of cells increase : increasing of
the number of budding cells

• limit growth

• decline of the cells

2. Parallel Image Processing
In this paper we describe a new method of edge extraction of the yeast cells

by active contours. To differentiate the budding cells of the single cells we have
used the curvature analysis. The last algorithm used allowing to approximate
each cell (budding or not) by an ellipse using a method based on least square
method. All these steps are englobed in an unique algorithm which is applied
in parallel for each cell or conglomerate of cells.

Image acquisition

One of the difficulty of the Cells Image Analysis is the modification of the
size by take out of a sample. Two methods has been developed to solve this
problem:

1 to examine under the microscope the cells

2 in-situ microscope

In this paper we present the first one. Therefore the growth of the cells dur-
ing the fermentation is analysed by a microscope coupled to a camera which
snaps several images. The microscope used is Olympus and the camera is a
Nikon. A specific method of optical microscopy based on 'black background'
allows to have only the contour of the cells. This method has been selected
to reduce the influence of the background into the algorithm. The images ob-
tained contain only the cell's edges with certain fuzziness.

Segmentation for parallel treatments

One of the control parameter for the 'health cells' is the modification of the
ellipsoidal form which seems to be a stress indicator. If the computing time
of this task is important the cell's culture risks to stop the proposed evolution.
Due to the image size and time computation, the image is divided in small area
: each area corresponds to one cell. This decomposition allows to use different
system of processing. The final scheme chosen is a parallel implementation
based on master/slave scheme. The master will segment the image and send a
small image containing one cell to a slave. The computation of the slave is to
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Figure 1. Separation of the cells

approximate the cell by a model and the master will recover the correspondent
data for each cell in order to produce the stats. A simple threshold and separates
the cells as it's visible on Figure 1.

JAVA MPI Interface
The treatment is divided by mean of the segmentation that identify region of

interest (ROI). For these regions some subroutines have to estimate the contour
of the cells by ellipses defined in section IV. As these subroutines used JAVA,
we would like to use an approach to parallel programming in Java, defined as
the most common object-oriented language.
For parallel processing, mpiJava (Carpenter, 1997) is an object-oriented Java
interface to the standard Message Passing Interface (MPI, 1995); this interface
was developed as part of the HPJava project. Indeed we need a good message
passing API and Java presents various package for communication used in this
interface that's why it's a well-designed, functional and efficient Java interface
to MPI (Kanevsky, 1998).
Our parallel implementation is based on a master/slave scheme guided by mpi-
Java.

Image segmentation by Snakes

One of the difficulty of the segmentation of this type of images is the diffrac-
tion on the cell membrane producing a fuzzy edge and of course the low level
of luminance. In order to have a better approximation of the contour, we have
ameliorated the convergence of the parametric snake, based on active contours
proposed by Kass et ah (Kass, 1988). The snakes are used in computer vision
and image analysis to detect and locate objects, and to describe their shape (
Cohen, 1991).
A snake is a curved x(s) = [x(s),y(s)], s G [0,1], that moves through the
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spatial domain of an image to minimize the functional

= [\a\\x'(s)\\2 +(3\\x"(s)\\2) + Eext{x{s))ds (1)
Jo

E

• a and /? are parameters that control the snake's tension and rigidity

• xf(s) is the first derivative of x(s)

• x"(s) is the second derivative of x(s)

• Eext is the external energy function derived from the image, it rule is to
move the snake toward the important values of the edges; for example,
the gray value of the image, the negative first derivative may be used.

In our implementation, the external force is the gradient vector flow (Xu, 1997)
(Xu, 1998). This field is computed as a spatial diffusion of the gradient of an
edge map derived from the image. It's powerful than traditional snakes because
they cannot move toward objects that are too far away and that snakes cannot
move into boundary concavities or indentations.
How the cells are separated, each slave have to force the snake to lock on one
contour. Different external forces have been used and to conclude, the gradient
vector flow is the appropriate external force because of his fast convergence to
concavities in the case of budding cell. This is the main condition to make the
difference between the single cell and the budding cell.
At the end on the process a contour corresponds to a cell that is described in
the map by (xn,yn) with n £ [0, N] .

3. Analysis
If the extraction of the cell has been done we need to find a robust algorithm

allowing to measure the size of the single cell or the morphometric parameters
of the budding cell. This involves that we are able to discriminate the mother
cell and the daughter cell. The originality of this work is based on the curvature
of the contour.
A single cell has a regular curvature; it should be approximate by a circle. In
the other hand, a bud has an invariant curvature. For the curvature, we compute
the radius as follow

R =

But the change of the curvature may be appreciated by the sign of

dXndl - dVndl with
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Figure 2. Curvature radius computation

• dXn and dVn the first derivatives of (#, y)

• di and d2. the second derivatives of (#, y)

To compute the first and the second derivative, the choice of the step allows or
not to find the change of curvature. More it's small more there will be changes
while more it's large less a change in the curvature can be detected. In this case
of images, a step of 10 has been chosen.
We can evaluate the results of this computation on the Figure 2.

The X-axis correspond to the pixels and the Y-axis is the value (-1 or 1) of
the radius. For a simple cell, there is no change of curvature but for this contour
two peaks appear. When the curvature value is equal to -1 it's correspond to a
cell (mother or child). Indeed the pixels corresponding to the first at the second
peak is a cell; moreover the pixels between the second and the first peak belong
to the second cell.

4. Cell Modeling

The biological knowledge allows us to modeling the cell shape by an ellipse.
After the analysis of the contours there is no information a priori to distinguish
a single cell of a budding one. This comparison is possible using the size of
these cells; that's why this contours are approximated by models. A cell is
considering an ellipse defined by five parameters : a center (#o,yo)> a minor
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axis a, a major axis b and an orientation 6. It can be described by several
equations :

gy-yo)+E(x-xo))
2

r - 1 = 0

implicit F(a, a;) = a#2 + foct/ + cy2 + dx + ey + f = ax with a = (a, 6, c, d, e, / )
and z = (z2, xy, y2, x, y, 1)T

• parametric < x — v > E < x — v > = r

Different global and local methods have been evaluated, a global estimation of
their efficiency is presented in Table .

Method
Hough Transform (Hough)
Fuzzy c-shells (Dave, 1992)
Differential Evolutionary (Storn, 1995)
Stochastic gradient
Direct Least Square (Fit, 1999)

Time (sec)
360
2

188
0.01
0.01

Precision
Lower
Lower
Fine

Lower
Very fine

Table 1. Precision and time computation for estimation

This table presents five methods that have been experimented in order to
approximate a simple contour and the more efficient is Direct Least Square;
it's described in the next section. The precision of one method is difficult to be
appreciated; it represents the best value of the minimum of the sum of squared
algebraic distance. Only the Differential Evolutionary Algorithm, a class of
stochastic search and optimization methods including Genetic Algorithm, and
the method Direct Least Square are efficient in time for this problem.

Fitting Ellipse
This is an efficient method for fitting ellipses from scattered data. Other

algorithms either fitted general conies or were computationally expensive. By
minimizing the sum of squared algebraic distance

1=1

of the curve F to the points using the implicit equation of the conic :

F(a, x) = ax2 + bxy + cy2 + dx + ey + f = ax

To avoid the solution a = 0 some constraints are applied to the parameters :

• linear : c.a = 1

• quadratic aTCa — 1 where C is a 6x6 constraint matrix.
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As a quadratic constraint is applied, the minimization can be solved by : DTDa
A where D = [X\...XN]T and A is the Lagrange multiplier. Moreover, as the
conic is an ellipse, we impose b2 — Aac > 0.
Then aTCa= 1 as

0 0 2 0 0 0
0 - 1 0 0 0 0
2
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Then the minimization is about E = \\Da\\2 with the constraint aTCa = 1.
Introducing Lagrange multiplier the system becomes

2DTDa - 2XCa = 0 (2)

aTCa = 1 (3)

Then

Sa = XCa

a
TCa = 1

(4)

(5)

where S = DTD. The system is solved by considering the generalized eigen-
vectors of (4).
If (\i,Ui) solves (4) then (\i,/j,Ui) for any \x from (5), we can find m as

J i = 1 giving

5. Results and discussion
The image's segmentation, the analyze of the contours and the approxima-

tion of elliptic model allow to count the number of singles and budding cells.
Note that after the analyze of contours, the cell may correspond to a budding
cell i.e. a mother and a child or it may correspond to two singles. Indeed,
by modeling and having the parameters, the two major axises are compared.
Consider amax > amin the two axes then :

• if o>max/cimin > 1/3 there are two cells

• if amax/amin < 1/3 it's a budding cell i.e. a mother and a child

The cells (single and budding cells) have been counted in the Figure 3. As de-
scribe in the first section, the traditional schemes show an exponential growth
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Figure 3. Percentage of single and budding cells

: an increasing of the number of buds. These methods have been implemented
on a Local Area Network using MPI, interfaced by JavaMPI. Our strategy uses
laboratory clones (Pentium III 450 Mhz, 128 Mo).

Slaves
1
2
3

1 image
40sec
21 sec
16sec

1500 images
60000sec
31500sec
24000sec

Table 2. Time computation for slaves

This table presents time and estimated time execution for different slaves num-
ber. We can estimate the time execution for N images because it's a linear
function. For off line treatments, the time is not important but in the case of
on line estimation, we'll need more powerful clusters. Indeed if we implement
these methods on a Pentium M (1.3GHz, 256Mo) the execution time is 10 sec
for an image; it will be implemented in future works. Our goal for the fermen-
tation process for a real time sensor is to characterize the cells physiological
states by treating 100 images in 3 minutes.
If we consider p the number of processors or clones, Ts the sequential time
execution, T(p) the time execution for p processors, A(p) the speed up or the
acceleration and the efficiency E{p) we have :

A(p) =
Tip)

and E(p) =
A(p)

P
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This measures, applied to this implementation are presented in the following
table

Slaves
2
3

Speed up
1.9
2.5

Efficiency
0.95
0.83

Table 3. Efficiency of parallelism

The efficiency has to be near to 1 and the speed up has to be near to the number
of slaves. In the case of 2 slaves we have good results, i.e 1.9 for the speed up
and 0.95 for the efficiency. There is no efficiency in increasing the number of
processors but the time execution between 2 and 3 processors is more impor-
tant. We have to make a trade off between the desired time execution and the
efficiency of the implementation.

6. Conclusion
The databases concerning the yeast increase each year with new results

about the discovered of new proteins and new behavior due some expressed
genes. The mathematical modeling of the eukaryote cells therefore the yeast
is always an open question which excites the scientific community. One of
the parameters which could be used by the biologist to understand the yeast
evolution is the morphometry of it. These parameters could be introduced in a
structural model allowing to analyze the cell cycle.

We present in this paper a robust algorithm for morphological yeast analysis
allowing to have the information about the budding and stress modification in
biological real time. This is due to our parallel software which has been based
on a master/slave scheme guided by JavaMPI. In future works
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