EXPLOITING MULTIPLE LEVELS OF
PARALLELISM IN SCIENTIFIC COMPUTING

Thomas Rauber
Computer Science Department
University Bayreuth, Germany

rauber @ uni-bayreuth.de

Gudula Riinger
Computer Science Department
Chemnitz University of Technology, Germany

ruenger @informatik.tu-chemnitz.de

Abstract

Keywords:

Parallelism is still one of the most prominent techniques to improve the perfor-
mance of large application programs. Parallelism can be detected and exploited
on several different levels, including instruction level parallelism, data paralle-
lism, functional parallelism and loop parallelism. A suitable mixture of different
levels of parallelism can often improve the performance significantly and the
task of parallel programming is to find and code the corresponding programs,
We discuss the potential of using multiple levels of parallelism in applications
from scientific computing and specifically consider the programming with hier-
archically structured multiprocessor tasks. A multiprocessor task can be mapped
on a group of processors and can be executed concurrently to other independent
tasks. Internally, a multiprocessor task can consist of a hierarchical composition
of smaller tasks or can incorporate any kind of data, thread, or SPMD paralle-
lism. Such a programming model is suitable for applications with an inherent
modular structure. Examples are environmental models combining atmosphe-
ric, surface water, and ground water models, or aircraft simulations combining
models for fluid dynamics, structural mechanics, and surface heating. But also
methods like specific ODE solvers or hierarchical matrix computations benefit
from multiple levels of parallelism. Examples from both areas are discussed.

Task parallelism, multiprocessor tasks, orthogonal processor groups, scientific
computing.

1. Introduction

Applications from scientific computing often require a large amount of exe-
cution time due to large system sizes or a large number of iteration steps. Often

4 High Performance Computational Science and Engineering

the execution time can be significantly reduced by a parallel execution on a sui-
table parallel or distributed execution platform. Most platforms in use have a
distributed address space, so that each processor can only access its local da-
ta directly. Popular execution platforms are cluster systems, cluster of SMPs
(symmetric multiprocessors), or heterogeneous cluster employing processors
with different characteristics or sub-interconnection networks with different
communication characteristics. Using standardized message passing libraries
like MPI [Snir et al., 1998] or PVM [Geist et al., 1996], portable programs can
be written for these systems. A satisfactory speedup is often obtained by a data
parallel execution that distributes the data structures among the processors and
lets each processor perform the computations on its local elements.

Many applications from scientific computing use collective communicati-
on operations to distribute data to different processors or collect partial results
from different processors. Examples are iterative methods which compute an
iteration vector in each iteration step. In a parallel execution, each processor
computes a part of the iteration vector and the parts are collected at the end of
each iteration step to make the iteration vector available to all processors. The
ease of programming with collective communication operations comes for the
price that their execution time shows a logarithmic or linear dependence on the
number of executing processors. Examples are given in Figure 1 for the execu-
tion time of an MPI_Bcast() and an MPI_Allgather() operation on 24 proces-
sors of the cluster system CLIC (Chemnitzer Linux Cluster). The figure shows
that an execution on the global set of processors requires a much larger time
than a concurrent execution on smaller subsets. The resulting execution time
is influenced by the specific collective operation to be performed, the imple-
mentation in the specific library, and the performance of the interconnection
network used. The increase of the execution time of the communication ope-
rations with the number of processors may cause scalability problems if a pure
data parallel SPMD implementation is used for a large number of processors.
There are several techniques to improve the scalability in this situation:

(a) Collective communication operations are replaced by single-transfer ope-
rations that are performed between a single sender and a single receiver.
This can often be applied for domain decomposition methods where a
data exchange is performed only between neighboring processors.

(b) Multiple levels of parallelism can be exploited. In particular, a mixed
task and data parallel execution can be used if the application provides
task parallelism in the form of program parts that are independent of
each other and that can therefore be executed concurrently. Depending
on the application, multiple levels of task parallelism may be available.

(c) Orthogonal structures of communication can be exploited. In particular,
collective communication operations on the global set of processors can

High Performance Computational Science and Engineering 5

be reorganized such that the communication operations are performed in
phases on subsets of the processors.

Each of the techniques requires a detailed analysis of the application and, star-
ting from a data parallel realization, may require a significant amount of code
restructuring and rewriting. Moreover, not all techniques are suitable for a spe-
cific application, so that the analysis of the application also has to determine
which of the techniques is most promising.

In this paper, we give an overview how multiple levels of parallelism can be
exploited. We identify different levels of parallelism and describe techniques
and programming support to exploit them. Specifically, we discuss the pro-
gramming with hierarchically structured multiprocessor tasks (M-tasks) [Rau-
ber and Riinger, 2000; Rauber and Riinger, 2002]. Moreover we give a short
overview how orthogonal structures of communication can be used and show
that a combination of M-task parallelism and orthogonal communication can
lead to efficient implementations with good scalability properties. As exam-
ple we mainly consider solution methods for ordinary differential equations
(ODEs). ODE solvers are considered to be difficult to parallelize, but some of
the solution methods provide task parallelism in each time step. The rest of the
paper is organized as follows. Section 2 describes multiple levels of parallelism
in applications from scientific computing. Section 3 presents a programming
approach for exploiting task parallelism. Section 4 gives example applications
that can benefit from using task parallelism. Section 5 shows how orthogo-
nal structures of communication can be used. Section 6 demonstrates this for
example applications. Section 7 concludes the paper.

MPU_Broadcas] with 24 processors MPI_Aligather vith 24 processors

Tuckime in sec)

%o
&
5

messagesize (n koyte) messagesize in kiiyts)
Processors or groupnumber * groupsize provessors of groupnumber ¢ groupaize

Figure 1. Execution time of MPI_Bcast() and MPI_Allgather() operations on the CLIC cluster.
The diagrams show the execution time for different message sizes and groups organizations. The
execution time for, e.g., group organization 2 % 12 denotes the execution time on two groups of
12 processors, that work concurrently to each other.

6 High Performance Computational Science and Engineering

2. Multiple levels of parallelism in numerical algorithms

Modular structures of cooperating subtasks often occur in large application
programs and can be exploited for a task parallel execution. The tasks are often
complete subprograms performing independent computations or simulations.
The resulting task granularity is therefore quite coarse and the applications
usually have only a small number of such subtasks. Numerical methods on
the other hand sometimes provide potential task parallelism of medium granu-
larity, but this task parallelism is usually limited. These algorithms can often
be reformulated such that an additional task structure results. A reformulati-
on may affect the numerical properties of the algorithms, so that a detailed
analysis of the numerical properties is required. In this section, we describe
different levels of parallelism in scientific applications and give an overview of
programming techniques and support for exploiting the parallelism provided.

2.1 Instruction level parallelism

A sequential or parallel application offers the potential of instruction level
parallelism (ILP), if there are no dependencies between adjacent instructions.
In this case, the instructions can be executed by different functional units of the
microprocessor concurrently. The dependencies that have to be avoided include
true (flow) dependencies, anti dependencies and output dependencies [Hennes-
sy and Patterson, 2003]. ILP results in fine-grained parallelism and is usually
exploited by the instruction scheduler of superscalar processors. These schedu-
lers perform a dependency analysis of the next instructions to be executed and
assign the instructions to the functional units with the goal to keep the func-
tional units busy. Modern microprocessors offer several functional units for
different kinds of instructions like integer instructions, floating point instruc-
tions or memory access instructions. However, simulation experiments have
shown that usually only a small number of functional units can be exploited in
typical programs, since dependencies often do not allow a parallel execution.

ILP cannot be controlled explicitly at the program level, i.e., it is not possi-
ble for the programmer to restructure the program so that the degree of ILP is
increased. Instead, ILP is always implicitly exploited by the hardware schedu-
ler of the microprocessor.

2.2 Data parallelism’

Many programs contain sections where the same operation is applied to dif-
ferent elements of large regular data structure like vectors or matrices. If there
are no dependencies, these operations can be executed concurrently by diffe-
rent processors of a parallel or distributed system (data parallelism). Potential
data parallelism is usually quite easy to identify and can be exploited by distri-

High Performance Computational Science and Engineering 7

buting the data structure among the processors and let each processor perform
only the operation on its local elements (owner-computer rule). If the proces-
sors have to access elements that are stored on neighboring processors, a data
exchange has to be performed before the computations to make these elements
available. This is often organized by introducing ghost cells for each processor
to store the elements sent by the neighboring processors. The data exchange
has to be performed explicitly for platforms with a distributed address space
by using a suitable message passing library like MPI or PVM, which requires
an explicit restructuring of a (sequential) program.

Data parallelism can also be exploited by using a data parallel programming
language like Fortran90 or HPF (High-Performance Fortran) [Forum, 1993]
which use a single control flow and offer data parallel operations on portions of
vectors or matrices. The communication operations to exchange data elements
between neighboring processors do not need to be expressed explicitly, but are
generated by the compiler according to the data dependencies.

23 Loop parallelism

The iterations of a loop can be executed in parallel if there are no dependen-
cies between them. If all loop iterations are independent from each other, the
loop is called a parallel loop and provides loop-level parallelism. This sour-
ce of parallelism can be exploited by distributing the iterations of the parallel
loop among the processors available. For a load balanced parallel execution,
different loop distributions may be beneficial.

If all iterations of the loop require the same execution time, the distributi-
on can easily be performed by a static distribution that assigns a fixed amount
of iterations to each processor. If each iteration requires a different amount of
execution time, such a static distribution can lead to load imbalances. There-
fore dynamic techniques are used in this case. These techniques distribute the
iterations in chunks of fixed or variable size to the different processors. The re-
maining iterations are often stored in a central queue from which a central ma-
nager distributes them to the processors. Non-adaptive techniques use chunks
of fixed size or of a decreasing size that is determined in advance. Examples
of non-adaptive techniques are FSC (fixed size chunking) and GSS (guided
self scheduling) [Polychronopoulos and Kuck, 1987]. Adaptive techniques use
chunks of variable size whose size is determined according to the number of
remaining iterations. Adaptive techniques include factoring or weighted facto-
ring [Banicescu and Velusamy, 2002; Banicescu et al., 2003] and allow also an
adaptation of the chunk size to the speed of the executing processors. A good
overview can be found in [Banicescu et al., 2003].

Loop-level parallelism can be exploited by using programming environ-
ments like OpenMP that provide the corresponding techniques or by imple-

8 High Performance Computational Science and Engineering

menting a loop manager that employs the specific scheduling technique to be
used. Often, sequential loops can be transformed into parallel loops by apply-
ing loop transformation techniques like loop interchange or loop splitting, see
[Wolfe, 1996] for an overview.

24 Task parallelism

A program exhibits task parallelism (also denoted as functional parallelism)
if it contains different parts that are independent of each other and can therefore
be executed concurrently. The program parts are usually denoted as tasks. De-
pending on the granularity of the independent program parts, the tasks can be
executed as single-processor tasks (S-tasks) or multiprocessor tasks (M-tasks).
M-tasks can be executed on an arbitrary number of processors in a data-parallel
or SPMD style whereas each S-task is executed on a single processor.

A simple but efficient approach to distribute executable S-tasks among the
processors is the use of (global or distributed) task pools. Tasks that are ready
for execution are stored in the task pool from which they are accessed by idle
processors for execution. Task pools have originally been designed for shared
address spaces [Singh, 1993] and can provide good scalability also for irre-
gular applications like the hierarchical radiosity method or volume rendering
[Hoffmann et al., 2004]. To ensure this the task pools have to be organized in
such a way that they achieve load balance of the processors and avoid bott-
lenecks when different processors try to retrieve executable tasks at the same
time. Bottlenecks can usually be avoided by using distributed task pools that
use a separate pool for each processor instead of one global pool that is acces-
sed by all processors. When using distributed task pools, load balancing can be
achieved by allowing processors to access the task pools of other processors if
their local pool is empty (task stealing) or by employing a task manager that
moves tasks between the task pools in the background. In both cases, each pro-
cessor has to use synchronization also when accessing its local pool to avoid
race conditions. The approach can be extended to distributed address spaces by
including appropriate communication facilities [Hippold and Riinger, 2003].

The scheduling of M-tasks is more difficult than the scheduling of S-tasks,
since each M-task can in principle be executed on an arbitrary number of pro-
cessors. If there are several tasks that can be executed concurrently, the availa-
ble processors should be partitioned into subsets such that there is one subset
for each M-task and such that the execution of the concurrent M-tasks is finis-
hed at about the same time. This can be achieved if the size of the subsets of
processors is adapted to the execution time of the M-tasks. The execution time
is usually not known in advance and heuristics are applied.

High Performance Computational Science and Engineering 9

M-tasks may also exhibit an internal structure with embedded M-tasks, i.e.,
the M-tasks may be hierarchically organized, which is a typical situation when
executing divide-and-conquer methods in parallel.

3. Basics of M-task programming

This section gives a short overview of the Tlib library [Rauber and Riinger,
2002] that has been developed on top of MPI to support the programmer in the
design of M-task programs. A Tlib program is an executable specification of
the coordination and cooperation of the M-tasks in a program. M-tasks can be
library functions or user-supplied functions, and they can also be built up from
other M-tasks. Iterations and recursions of M-task specifications is possible;
the parallel execution might result in a hierarchical splitting of the processor
set until no further splitting is possible or reasonable. Using the library, the pro-
grammer can specify the M-tasks to be used by simply putting the operations
to be performed in a function with a signature of the form

void *F (void * arg, MPI_Comm com, T Descr *pdescr)

where the parameter arg comprises the arguments of the M-task, comm is the
MPI communicator that can be used for the internal communication of the M-
task and pdescr describes the current (hierarchical) group organization.

The Tlib library provides support for (a) the creation and administration of
a dynamic hierarchy of processor groups, (b) the coordination and mapping
of M-tasks to processor groups, (c¢) the handling and termination of recursive
calls and group splittings and (d) the organization of communication between
M-tasks. M-tasks can be hierarchically organized, i.e., each function of the
form above can contain Tlib operations to split the group of executing pro-
cessors or to assign new M-tasks to the newly created subgroups. The current
group organization is stored in a group descriptor such that each processor of
a group can access information about the group that it belongs to via this des-
criptor. The group descriptor for the global group of processors is generated by
an initialization operation. Each splitting operation subdivides a given group
into smaller subgroups according to the specification of the programmer. The
resulting group structure is stored in the group descriptors of the participating
processors. An example is the Tlib operation

int T SplitGrp (T Descr *pdescr, T_Descr *pdescrl,
float pl, float p2)

with 0 < p1 + p2 < 1. The operation generates two subgroups with a fraction
pl or p2 of the number of processors in the given processor group descri-
bed by pdescr. The resulting group structure is described by group descriptor

10 High Performance Computational Science and Engineering

pdescri. The corresponding communicator of a subgroup can be obtained by
the Tlib operation

MPI Comm T.GetComm (T Descr *pdescrl).

Each processor obtains the communicator of the subgroup that it belongs to.
Thus, group-intemal communication can be performed by using this communi-
cator. The Tlib group descriptor contains much more information including the
current hierarchical group structure and explicit information about the group
sizes, group members, or sibling groups.

The execution of M-tasks is initiated by assigning M-tasks to processor
groups for execution. For two concurrent processor groups that have been crea-
ted by T_SplitGrp(), this can be achieved by the Tlib operation

int T Par (void * (*f1) (void *, MPI_Comm, T Descr *),
void * pargl, void * presi,
void * (*£f2) (void *, MPI_Comm, T Descr *),
void * parg2, void * pres2,
T Descr *pdescrl).

Here, £1 and £2 are the M-task functions to be executed, pargl and parg?2
are their arguments and pres1 and pres2 are their possible results. The last
argument pdescrl is a group descriptor that has been returned by a preceeding
call of T_SplitGrp (). The activation of an M-tasks by T_Par () automatically
assigns the MPI communicator of the group descriptor, provided as last argu-
ment, to the second argument of the M-task. Thus, each M-task can use this
communicator for group-internal MPI communication. The group descriptor
itself is automatically assigned to the third argument of the M-task. By using
this group descriptor, the M-task can further split the processor group and can
assign M-tasks to the newly created subgroups in the same way. This allows
the nesting of M-tasks, e.g. for the realization of divide-and-conquer methods
or hierarchical algorithms.

In addition to the local group communicator, an M-task can also use other
communicators to perform MPI communication operations. For example, an
M-task can access the communicator of the parent group via the Tlib operations

parent_descr = T_GetParent (pdescr);
parent_comm = T _GetComm (Parent_descr);

and can then use this communicator to perform communication with M-tasks
that are executed concurrently.

High Performance Computational Science and Engineering 11

4, Examples for M-task programming

In this section, we describe some example applications that can benefit from
an exploitation of task parallelism. In particular, we consider extrapolation me-
thods for solving ordinary differential equations (ODEs) and the Strassen me-
thod for matrix multiplication.

4.1 Extrapolation methods

Extrapolation methods are explicit one-step solution methods for ODEs. In
each time step, the methods compute r different approximations for the same
point in time with different stepsizes hq,. .., h, and combine the approximati-
ons at the end of the time step to a final approximation of higher order [Hairer
et al., 1993; Deuflhard, 1985; van der Houwen and Sommeijer, 1990b]. The
computations of the r different approximations are independent of each other
and can therefore be computed concurrently as independent M-tasks. Figure 2
shows an illustration of the method.

() initialization

Figure 2. One time step of extrapo-
lation method with r = 4 different
stepsizes. The steps to perform one step
with a stepsize h; is denoted as micro-
step. We assume that stepsize h; requi-
res 7 — ¢ + 1 microsteps of the genera-
ting method which is often a simple Eu-
ler method. The r approximations com-
. extrapolation table puted are combined in an extrapolation
table to the final approximation for the
time step.

generating
method

The usage of different stepsizes corresponds to different numbers of mi-
crosteps, leading to a different amount of computation for each M-task. Thus,
different group sizes should be used for an M-task version to guarantee that
processor groups finish the computations of their approximations at about the
same time. The following two group partitionings achieve good load balance:

(a) Linear partitioning: we use r disjoint processor groups (71, ..., G, who-
se size gi,...,9r is determined according to the computational effort
for the different approximations. If we assume that stepsize h; requires

T — 1+ 1 microsteps, a total number of Z(r—z-{-l) (1/2)r-(r+1)
=1

microsteps have to be performed. Processors group G; has to perform ¢

12 High Performance Computational Science and Engineering

processors

extrapolation (*pdsecr) {

comphte group_sizes (no_grps);
T SphtGrpEpr (pdescr, &grp_descr1, grp_number, my_rank);

euler_step()

euler_step()

euler_step()

next stepsize

euler_step()

build extrapolation table():
step_su{e_control(),

Figure 3. M-task structure of extrapolation methods expressed as Tlib coordination program.

steps of those Thus, for p processors in total, group G; should contain
g9i=p- (r+1) processors.

(b) Extended partitioning: instead of r groups of different size, [r/2] groups
of the same size are used. Group G; performs the microsteps for stepsi-
zes h; and h,_;+1. Since stepsize h; requires 7 — % + 1 microsteps and
stepsize hy—;4+1 requires 7 — (r — ¢ + 1) + 1 microsteps, each group
G; has to perform a total number of r + 1 microsteps, so that an equal
partitioning is adequate.

Figure 3 illustrates the group partitioning and the M-task assignment for
the linear partitioning using the Tlib library. The groups are built using the
Tlib function T_SplitGrpExpl() which uses explicit processor identificati-
ons and group identifications provided by the user-defined function compu-
te_group_sizes(). The group partitioning is performed only once and is then
re-used in each time step. The library call T Parfor () is a generalization of
T_Par() and assigns the M-tasks with the corresponding argument vectors to
the subgroups for execution.

Figure 4 compares the execution time of the two task parallel execution
schemes with the execution time of a pure data parallel program version on a
Cray T3E with up to 32 processors. As application, a Brusselator ODE has be-
en used. The figure shows that the exploitation of task parallelism is worth the

High Performance Computational Science and Engineering 13

runlimes for extrapotation msihod, 14
T T

rurdbmes for extrapolation method, re4
Y T T

0,426

['X Y SR I HITITTI SRRTINE ROSINE p (. N ¥ (8

0075

rurtime In seconds

008 e b

o.025}

ODE system size

Figure 4. Execution time of an extrapolation method on a Cray T3E.

effort in particular for a large number of processors. When comparing the two
task parallel execution schemes, it can be seen that exploiting the full extent of
task parallelism (linear partitioning) leads to the shortest execution times for
more than 16 processors.

4.2 Strassen matrix multiplication

Task parallelism can often be exploited in divide-and-conquer methods. An
example is the Strassen algorithm for the multiplication of two matrices A, B.
The algorithm decomposes the matrices A, B into square blocks of size n/2:

(Cii Cia) _ (Ay Ag) (Bn By)
Co1 Oy Ag Ao By By

and computes the submatrices C11, C12, Ca;, Cog separately according to

Ciui = Q1 +Qs— Qs+ Q7
Ciz Q3+ Qs
Coy Q2+ Q4
Co = 1+Q3—Q2+Qs

where the computation of the matrices @1,..., Q7 require 7 matrix multipli-
cations for smaller matrices of size n/2 x n/2. The seven matrix products can
be computed by a conventional matrix multiplication or by a recursive appli-
cation of the same procedure resulting in a divide-and-conquer algorithm with
the following subproblems:

Q1 strassen(Ai + Agg, Bi1 + Bas);
Q2 = strassen(Ag1 + Ag, Bi1);
Qs = strassen(A11,B1a — Ba);

14 High Performance Computational Science and Engineering

Qs = strassen(Aas, Boy — B11);
Qs = strassen(Ai1 + Ai2, By);
Qs = strassen(Ag — A1, Bt + Bia);
Q7 = strassen(Aig — Az, B2y + Bao);

processors

strassen (arg, comm, *pdsecr) {
per = {0.25, 0.25, 0.25, 0.25};
T_SplitGrpParfor (4, pdescr, &descri, per);

" f= (Task_C11 ansk C12, Task ci1,.‘rask C22);
T:Parfor (f. parg,-pres, &descr1),

time

st'rassen()

Figure 5. Task structure of the Strassen method using the Tlib library.

Figure 5 shows the structure of a task parallel execution of the Strassen algo-
rithm and sketches a Tlib program. Four processor groups of the same size are
formed by T_SplitGrpParfor () and T_Parfor() assigns tasks to compute
C11, Ci2, Ca1 and Cae, respectively, to those groups. Internally, those M-tasks
call other M-tasks to perform the subcomputations of (1, ..., (7, including
recursive calls to Strassen. Communication is required between those groups
and is indicated by annotated arrows. Such a task parallel implementation can
be used as a starting point for the development of efficient parallel algorithms
for matrix multiplication. In [Hunold et al., 2004b] we have shown that a com-
bination of a task parallel implementation of the Strassen method with an ef-
ficient basic matrix multiplication algorithm tpMM [Hunold et al., 2004a] can
lead to very efficient implementations, if a fast sequential algorithm like Atlas
[Whaley and Dongarra, 1997] is used for performing the computations on a
single processor.

High Performance Computational Science and Engineering 15

s5. Exploiting orthogonal structures of communication

For many applications, the communication overhead can also be reduced by
exploiting orthogonal structures of communication. We consider the combi-
nation of orthogonal communication structures with M-task parallel program-
ming and demonstrate the effect for iterated Runge-Kutta methods.

51 Iterated Runge-Kutta methods

Iterated Runge-Kutta methods (RK methods) are explicit one-step solution
methods for solving ODEs, which have been designed to provide an additional
level of parallelism in each time step [van der Houwen and Sommeijer, 1990a].
In contrast to embedded RK methods, the stage vector computations in each
time step are independent of each other and can be computed by independent
groups of processors. Each stage vector is computed by a separate fixed point
iteration. For s stage vectors vy, ..., v, and right-hand side function f, the
new approximation vector y1 is computed from the previous approximation
vector Yy by:

'Uéo) = flyx), I=1,...,s

8§
'véj) = f(y,;-i—h,iZalivzj_l)), I=1,...,s, j=1,....m

=1

s
YV = gkt e Y bivhy,
=1

8
(m—1) Vi + P Z b ’Uém—l)
=1

Yi+1

After m steps of the fixed point iteration, yéITanZI) is used as approximation

for yx41 and y,(xl_l) is used for error control and stepsize selection.

A task parallel computation uses s processor groups G1, ..., G with sizes
g1, - - - gs for computing the stage vectors v, ..., vs. Since each stage vector
requires the same amount of computations, the groups should have about equal
size. An illustration of the task parallel execution is shown in Figure 5.1. For
computing stage vector v;, each processor of G; computes a block of elements
of the argument vector (1, j) = Y+ hk D i—q alivf 1) (Where j is the current
iteration) by calling compute_arguments (). Before applying the function f
to p(l,7) in compute_fct () to obtain 'uéj), each component of u(l, §) has to
be made available to all processors of G, since f may access all components
of its argument. This can be done in group-broadcast () by a group-internal
MPI._Allgather() operation. Using an M-task for the stage vector computation,

16 High Performance Computational Science and Engineering

/IIRTUAL PROCESSOR GRID /

=\

iterated_RK (*pdescr) {

per = {0.5, 0.5};
T_SplitGrpParfor (2, pdescr, &descr2, per);

‘‘‘‘‘ R |

- L P e ,3 . »
(Lo e S CE SRR,
! f=(irk_task, irk :tagk);

v
I-l
v
3
.0
b~/
—
o
c
o
-~
-
c
- -
[13
»
®
17
(1]
P
: N
oy

next stepsize
next iteration

= = .}

: compute_approx!

mét;on_vecto r();

H
L....I ________________ -

‘} J

Figure 6. Exploiting orthogonal communication structures for iterated RK methods.

an internal communication operation is performed. Before the next iteration
step 7, each processor needs those parts of the previous iteration vectors 'v% 1)
to compute its part of the next argument vector u(l, 7). In the general case
where each processor may have stored blocks of different size, the easiest way
to obtain this is to make each processor the entire vectors v? i1 available. This
can be achieved by a global MPI_Allgather() operation. After a fixed number
of iteration steps, the next approximation vector y,4; = y,ﬂ)l is computed and
is made available to all processors by a global MPI_Allgather() operation.

5.2 Orthogonal Communication for Iterated RK Methods

For the special case that all groups have the same size g and that each proces-
sor stores blocks of the iteration vectors of the same size, orthogonal structures
can be exploited for a more efficient communication. The orthogonal commu-
nication is based on the definition of orthogonal processor groups: For groups
G1,...,Gs with Gy = {qu, - - ., qi4}, we define orthogonal groups Q1,...,Qq
with Qx = {qx € G1,1 = 1,..., s}, see Figure 7. Instead of making all com-
ponents of vf 1) available to each processor, a group-based MPI_Allgather()

High Performance Computational Science and Engineering 17

PROCESSOR ORIENTED VIEW DATA ORIENTED VIEW
G G
ot B Q Q, Q
ORTHOGONAL pmmmme e mmme ey e ,
iq 9 114 9y 114 Qyg !
GROUP STRUCTURE L2000 002 22 i 013 723
1 [[vi
INITIAL DATA —] 1w
DISTRIBUTION
v Q Q Qg
DATA EXCHANGE W it T it 9%
BY 2 Py N .
MULTI-BROADCAST [| [[l] LV
IN ORTHOGONAL ; | S o
GROUPS = N

c)

REPLICATED DATA
IN ORTHOGONAL
GROUPS

PARTIAL USE OF DATA
FOR NEXT
COMPUTATION

d)
FULLY DISTRIBUTED
COMPUTATION

OF
NEXT APPROXIMATION
VECTOR

Figure 7. Exploiting orthogonal communication structures for the iterated RK method using
two stage vectors v1 and v and corresponding processor groups G1 = {q11,q12,q13} and
G2 = {qa1,q22, q23}. Part (a) illustrates the group structure with orthogonal groups Q1, Q2, @3
(left) and the distribution of v; and v among the processors of G; and G2. Part (b) illustrates
the data exchange within the orthogonal groups after the computation of the argument vectors,
leading to a replication of the corresponding blocks of v1 and vz in the orthogonal groups, see
part (c). Part (d) illustrates the usage of the stage vector blocks for the computation of the next
approximation vector y,41. Each processor uses only a part of the replicated data blocks.

18 High Performance Computational Science and Engineering

IRK with Radau 17 for n=2000 on GLIC, dense ODE system IRK with Radau IIA7 for sparse ODE system n=2048 on T3E

a2 32
task pacailet with ort .

o

mixed task a

sk parallal with oriv
mixed task and data parallel -

a2 &4
number of processors number of processors

Figure 8. Execution times of iterated RK method based on Radau IIA7 on CLiC for dense
ODE systems (left) and on Cray T3E for sparse ODE systems (right).

operation can be used on Q1, ..., Q4 concurrently where each processor of Q
contributes a block of v’j_l to make the other processor of () exactly tho-
se blocks available that it needs for the computation of the argument vectors.
Thus, each time step contains group-local communication operations only. Fi-
gure 8 compares the resulting execution times for a specific iterated RK method
on two different platforms, a Cray T3E and a Beowulf Cluster (CLIC).

6. Conclusions

Exploiting multiple levels of parallelism often leads to parallel programs
that show a better scalability than parallel programs that rely on a single source
of parallelism. This can be observed for many examples from scientific com-
puting. In particular, many algorithms provide a source for a multiprocessor
task parallel execution that can be used for a group-based execution. In this
context, it is often beneficial to use orthogonal communications to exchange
data between the different subgroups in such a way that global communication
operations are avoided whenever possible.

References

Banicescu, I. and Velusamy, V. (2002). Load balancing highly irregular computations with the
adaptive factoring. In Proc. of the IEEE - International Parallel and Distributed Processing
Symposium (IPDPS 2002) - Heterogeneous Computing Workshop. IEEE Computer Society
Press, Fort Lauderdale.

Banicescu, I., Velusamy, V., and Devaprasad, J. (2003). On the Scalability of Dynamic Sche-
duling Scientific Applications with Adaptive Weighted Factoring. Cluster Computing, The
Journal of Networks, Software Tools and Applications, 6(3):215-226.

Deuflhard, P. (1985). Recent progress in extrapolation methods for ordinary differential equati-
ons. SIAM Review, 27:505-535.

Forum, H. P. F. (1993). High Performance Fortran Language Specification. Scientific Program-
ming, 2(1).

High Performance Computational Science and Engineering 19

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1996). PVM
Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel Computing.
MIT Press, Cambridge, MA.

Hairer, E., Norsett, S., and Wanner, G. (1993). Solving Ordinary Differential Equations I: Non-
stiff Problems. Springer—Verlag, Berlin.

Hennessy, J. and Patterson, D. (2003). Computer Architecture — A Quantitative Approach. Mor-
gan Kaufmann, 3nd edition.

Hippold, J. and Riinger, G. (2003). Task Pool Teams for Implementing Irregular Algorithms on
Clusters of SMPs. In Proc. of the IPDPS (International Parallel and Distributed Processing
Symposium), Nice, France. IEEE.

Hoffmann, R., Korch, M., and Rauber, T. (2004). Using Hardware Operations to Reduce the
Synchronization Overhead of Task Pools. In Proc. of the Int. Conference on Parallel Proces-
sing (ICPP), pages 241-249.

Hunold, S., Rauber, T., and Riinger, G. (2004a). Hierarchical Matrix-Matrix Multiplication ba-
sed on Multiprocessor Tasks. In Bubak, M., van Albada, G., Sloot, P. M., and Dongarra, J. J.,
editors, Proc. of the International Conference on Computational Science ICCS 2004, Part I,
LNCS 3037, pages 1-8. Springer.

Hunold, S., Rauber, T., and Riinger, G. (2004b). Multilevel Hierarchical Matrix Multiplication
on Clusters. In Proc. of the 18th Annual ACM International Conference on Supercomputing,
ICS’04, pages 136-145.

Polychronopoulos, C. and Kuck, D. (1987). Guided self-scheduling: A practical scheduling
scheme for parallel supercomputers. IEEE Transactions on Computers, C-36(12):1425-1439.

Rauber, T. and Riinger, G. (2000). A Transformation Approach to Derive Efficient Parallel Im-
plementations. IEEE Transactions on Software Engineering, 26(4):315-339.

Rauber, T. and Riinger, G. (2002). Library Support for Hierarchical Multi-Processor Tasks. In
Proc. of the Supercomputing 2002, Baltimore, USA. ACM/IEEE.

Singh, J. (1993). Parallel Hierarchical N-Body Methods and their Implication for Multiproces-
sors. PhD thesis, Stanford University.

Snir, M., Otto, S., Huss-Ledermann, S., Walker, D., and Dongarra, J. (1998). MPI: The Complete
Reference, Vol.1: The MPI Core. MIT Press, Camdridge, MA.

van der Houwen, P. and Sommeijer, B. (1990a). Parallel Iteration of high—order Runge—Kutta
Methods with stepsize control. Journal of Computational and Applied Mathematics, 29:111—
127.

van der Houwen, P. and Sommeijer, B. (1990b). Parallel ODE Solvers. In Proc. of the ACM Int.
Conf. on Supercomputing, pages 71-81.

Whaley, R. C. and Dongarra, J. I. (1997). Automatically Tuned Linear Algebra Software. Tech-
nical Report UT-CS-97-366, University of Tennessee.

Wolfe, M. (1996). High Performance Compilers for Parallel Computing. Addison Wesley.

II

DISTRIBUTED COMPUTING

