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Abs t rac t  Proper orthogonal decomposition ( P O D )  is a Galerkin method which 
has been introduced in a fluids mechanics context. I t  is also known as 
Karhunen-Loeve decomposition and principal component analysis. The 
idea of POD consists in using a priori known information on the solu- 
tion u of P D E ,  for example snapshots ui = u ( t i ) ,  to determine a set 
of functions which are the eigenfunctions of an Hilbert-Schmidt opera- 
tor. This basis can be used to solve the PDE with a smaller amount 
of computations. Convergence estimates have been proved recently in 
the parabolic case starting from a particular discretization scheme [7 ] .  
Moreover it has been proved that the method converges independently 
from the scheme [6] .  We consider the case of a linear parabolic equa- 
tion. We give a first convergence estimate in a case where u is regular. 
However classical POD does not look satisfactory and an improvement 
consists in considering a POD which takes into account the derivative of 
u. We will also present some insights into the control of the approxima- 
tion by introducing what will be called a good order of approximation. 

Keywords: Proper orthogonal decomposition, Karhunen-Love decomposition, model 
reduction. 
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1. Principle of Proper Orthogonal 
Decomposition (POD) 

1.1 Proper Orthogonal Decomposition of a 
Function u E L2(0, T ;  X )  

Let X be a real separable Hilbert space endowed with the scalar prod- 
uct (., .)x, let T > 0 be a positive real and let u € L2(0, T ;  X) be a (class 
of) function depending on time t E [0, TI with values in X .  We define 
the POD operator K(u)  : X -+ X: 

We consider the kernel z(s ,  t )  = b ( v ( s ) ,  u( t ) )x  and we define the auxil- 
iary POD operator k ( u )  : L2(0, T) -+ L2(0, T): 

By concern of clarity, we denote K = K(u)  and k = i?(u). The oper- 
ators K and i? are self-adjoint semi-definite. Moreover i? is a Hilbert- 
Schmidt operator since the kernel z is L ~ ( [ o ,  T ] ~ ) .  We can therefore - - - 
index the eigenvalues of K in a non-increasing sequence: XI  > A:! > 

. . > xk > . . > 0. We assume that u is not the null function so that 
the spectrum of i? is not zero. 

LEMMA 1 T h e  operators K and have the  same  eigenvalues with same  
multiplicity. 

Proof. Let 1 be an eigenvalue of the operator i? with multiplicity r > 
1. We consider a set ( v ~ ) ~ < ~ < ~  - - of orthonormal eigenvectors in L2(0, T )  

and we define the set ($k)l<k<r by posing gk = l/&(u, ~ ~ ) ~ 2 ( ~ , ~ ) .  
Then the set ($k)l<k<T - - is a s 2  of orthonormal eigenvectors of the op- 
erator K in X for the eigenvalue 1. Conversely, if X is an eigenvalue of 
the operator K and if ($k)l<k<T is a set of orthonormal eigenvectors of 
K in X ,  the set ( v ~ ) ~ < ~ < ~  - - defined by vk = l / f l ( ~ , $ ~ ) ~  is a set of 
orthonormal eigenvectors of i? in L2 (0, T) for the eigenvalue A. 

DEFINITION 2 T h e  n o n  zero eigenvalues of the operator K ,  indexed i n  
a n o n  increasing order, are called the  P O D  eigenvalues associated with 
the function u. A set ( g k ) k > ~  of orthonormal eigenvectors of K in X 
corresponding to these eigenialues i s  called a set of P O D  eigenvectors 
associated wi th  the function u. 
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Remark .  The POD eigenvectors depend on the space X .  If the 
fonction u is in L2(0, T; X l )  n ~ ~ ( 0 ,  T; X2),  the POD eigenvectors in X1 
differ from the POD eigenvectors in X2. 

Remark .  We have not uniquess of the POD eigenvectors, although 
we have uniquess of the eigenspaces of the operator K .  We define the 
approximated subspaces 6 = span(&, . a , qe) which do not depend 
of the POD vectors in the case when Xe > Xe+1 and we denote Y = 

X 
the space spanned by the POD eigenvectors in X. 

Remark .  The POD eigenvectors correspond to eigenvalues which are 
indexed in a non increasing order: the order of indexation is significant. 

Example.  The method of snapshots. Let us consider real num- 
bers a > 0 and 0 = to < . < trv = T such that ti+l - ti = CJ 

for i = 0,.  - .  , N - 1. Let u be a piecewise constant function defined 
by posing u( t )  = Ui+l  E X for t €]ti, ti+l]. The values ( u ~ ) ~ ~ ~ ~ ~  
are called snapshots. The proper orthogonal decomposition of u corre- 
sponds to the method of snapshots. For any cp E X, we have: K(u)cp = 

1/N ~ z ~ ( u i ,  9)xui .  The method of snapshots consists in considering 
the correlation matrix Kc,, defined by: 

Then we denote vk = ( v ~ , ~ ) ~ < ~ < ~  E R ~ ,  for k = 1," .  , N ,  a set of 
orthonormal eigenvectors of the matrix Kc,, . Ort honormal eigenvectors 
of the operator K(u)  are given by posing: +k = I / J ~  xE1 Vi,kui. In 
practice, we compute the proper orthogonal decomposition of a function 
u by approaching u with a piecewise constant function. The method of 
snapshots allows us to compute the proper orthogonal decomposition of 
this piecewise constant function. 

Let us mention at last two characterizations of the POD eigenvectors. 

THEOREM 3 Let (gk)k>1 be a set of POD eigenvectors associated with 
u. Then for any .t 2 0 , t h e  vector Ge+1 satisfies: 

1 lT (u(t) ,  1/11+1)$ dt = 
T 

max (u(t)A4Rdt. (4) 
T 0 (de+i, +e+i)x V E S P N ~ I , , + ~ P \ { O )  $1 (P, PIX 

Conversely, if (qk)k>1 is a set of orthonormal vectors i n  X which satisfy 
equality (4), then ($k)k>l - is a set of POD eigenvectors associated with 
u. 

Remark .  In case when the function u is piecewise constant, we still 
call the values of u snapshots. The previous proposition characterizes the 
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POD eigenvectors as the best correlated to the snapshots in a quadratic 
mean sense. 

THEOREM 4 Let ($k)k>l be a set  of P O D  eigenvectors associated with 
u. For a n y  integer l 2 fi and for any  orthonormal set  (cpk)k>1 - in X ,  we 
have the following inequality: 

Moreover we have: 

I n  particular for .t = 0 ,  the s u m  of the P O D  eigenvalues i s  equal t o  the 
energy of u. Conversely, if ($k)k>l  i s  a set of orthonormal vectors i n  
X which satisfy equations ( 5 )  and ( 6 ) ,  then  - i s  a set o f  P O D  
eigenvectors associated wi th  u. 

1.2 Proper Orthogonal Decomposition of a Set 
of Functions 

Let n E N* be a positive integer and let ( u ~ ) ~ ~ ~ ~ ~  be a set of (class 
of) functions in L2 ( 0 ,  T ;  X )  . We define the POD operator K : X -+ X 
b y  posing: 

DEFINITION 5 T h e  n o n  zero eigenvalues of the operator K ,  indexed i n  
a n o n  increasing order, are called the P O D  eigenvalues associated with 
the set  ( u ~ ) ~ < ~ < , .  A set ($k)k>l of orthonormal eigenvectors of K i n  X 
corresponding to these eigenv&es is  called a set  of P O D  eigenvectors 
associated with (ui)1 

The theorems analogous to theorems 3 and 4 hold. 
Example. Let us consider a function u E L 2 ( 0 ,  T ;  X ) .  If the time 

derivative d u l d t  is in ~ ~ ( 0 ,  T ;  X ) ,  we can consider the proper orthogonal 
decomposition associated with (u, d u l d t ) .  

2. Problem Formulation 
Let V and H be real separable Hilbert spaces. We assume that the 

embedding V c H is dense continuous. So there exists a constant a > 0 
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such that l l . l l H  5 all.llv. We identify the space H with the dual space 
HI. Then the space H = H' is identified with a dense subspace of the 
dual V '  of the space V ,  with continuous embedding. 

Let a : V x V + R a bilinear continuous elliptic form. So there exist 
real numbers ,8, K > 0 such that for any c p ,  $ E V we have la(cp, $ ) I  < 
PIIcpllvll$llv and ~II911$ L 4 9 ,  cp). Let 4 E H and f E L2(0 ,T ;  V ' ) ,  
with T > 0. We consider the following parabolic problem: 

( p )  { $ ( ~ ( t ) ,  P ) H  + a ( u ( t ) ,  9) = ( f  ( t ) ,  V ) V / X V  t E [O,T], 9 E 
("(0),  ( P ) H  = ( $ 7  ( P ) H  Y' E v, 

(8) 
where (., . ) H  is the scalar product in H and (., .)v,xv is the duality 
V ' ,  V .  We denote W ( 0 ,  T ;  V )  = { u  E L2(0,  T ;  V) ldu /d t  E L2(0,  T ;  V ' ) )  
the space of (class of) functions in L2(0,  T ;  V )  the time derivative of 
which is in L2(0,  T ;  V ' ) .  We denote C(0 ,  T ;  H )  the space of continuous 
functions with values in H .  The space W (0,  T ;  V )  is identified with a 
subspace of C(0 ,  T ;  H )  in the following sense: any (class of) function 
in W (0,  T ;  V )  admits a continuous representative with values in H. We 
have the following result ([4], theorems 1 and 2, p. 619-620): 

THEOREM 6 The problem ( P )  admits a unique solution u in W (0,  T ;  V ) .  

Let u be the solution of problem (P). Then u E ~ ~ ( 0 ,  T ;  V )  n L2(0, T ;  H )  
and we can consider the proper orthogonal decomposition of u in both 
cases X = V and X = H .  Let ($k)k>l be a set of POD eigenvectors 
associated with u in one of both cases-x = V or X = H .  Let l > 1 be 
an integer and let 5 = span(Gl, . . , $0 be the approximated subspace 
of order l. We consider the following problem ; 

THEOREM 7 In both cases X = V and X = H ,  the sequence (Ue)e>l of 
the solutions of the problems (P,) converges towards the solution-u of 
the problem ( P )  as l + +oo in L2(0,  T ;  V )  strong. 

3. Estimates of the Error of 
POD-Approximation in a Regular Case 

Now we want to give an estimate of the error llUe - u I I ~ ~ ( ~ , ~ ; V )  We 
consider a case when the function u is regular. We make the following 
assumption: 
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Assumption 1. Still denoting u the solution of the problem (P) in 
W (0, T; V), we assume that the time derivative duldt is in the space 
L2(0, T ;  V). 

This assumption is sensible because of the following result ([12]theo- 
rem 3.2, p. 70): 

THEOREM 8 I f f  and df ldt  are in ~ ~ ( 0 ,  T ;  H )  and if the initial condition 
4 is in V, then duldt is in L2(0, T ;  V).  

Under assumption 1, we can also consider the POD approximation of the 
problem (P) by defining the proper orthogonal decomposition associated 
with (u, duldt). In this case we will obtain an estimate of the error of 
approximation according to the POD eigenvalues. 

3.1 Case of the POD Associated with u 

We consider the case X = V and we still denote ($k)k>l a sequence of 
POD eigenvectors associated with u. The theorem 4 alhws us to write 
the following equality in V for t E [0, TI and for any ! 2 1: 

We define two fonctions ue and Ze by posing for t E [0, TI: 

As the function Ue, which is the solution of the problem (P!), is in the 
space f i  = s ~ a n ( $ l ,  ' ' , d!), we have Ul(t) = ~ : = 1  (Ue(t)> $k)~$k.  
By definition, the set ($k)k>l - is orthonormal in V, so the Pythagore 
theorem gives: 

We observe the following equality: 

and we know from theorem 4 that the rest Cr=e+l X k  tends towards 
zero as t i m. We only have to estimate the term l1ue - ~ l ~ ~ ~ 2 ( o , T i v ) ~  

We denote xe = Ue - ue. The function u (resp. Ue) is the solution 
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of problem ( P )  (resp. (Pe))  so the function ze satisfies the following 
equality for cp E Ye: 

as well as (za  ( 0 )  , p) = (G (0 )  , 9) H .  If we take cp = ze (0 )  , we obtain 

Ilze(0) 1 1  5 IIGt(0) 1 1  and if we take cp = ze( t )  in equality ( l 4 ) ,  we obtain 
the following equality after integration on [0, TI: 

Then we get: 

where E > 0 is a real to be chosen below. Let us recall that the definition 
of the form a gives for any cp E V : ~ l l ( p 1 1 $  L a((p,(p) I PII(p11$. 

Moreover we assume K - P/2 > 0. Now we choose E > 0 such that 
K - Q / ~ E  - P/2 > 0 and we obtain the following estimate: 

~, 

The term I ~ ~ ! ~ ~ z ( o , T ~ )  tends towards zero as ! -+ cc by definition of 
Ga and because of equality (6 )  in theorem 4. Moreover equality (10) 
holds in V for almost any t E [O,T], so in H for any t E [O,T] because 
u E C ( 0 ,  T ;  H ) ,  in particular for t = 0 ,  and we obtain that the term 
llGt(0) 1 1 $  tends towards zero as C -+ m. However we have in general 
d u l d t  E ~ ~ ( 0 ,  T ;  V ' ) ,  which does not ensure the convergence of the term 
IdZt/dtli2(,,,;,). That is why we are led to make assumption 1. 

THEOREM 9 Under  assumpt ion I ,  we  choose E > 0 such that  K - a / 2 ~  - 

P/2 > 0 and we set: 

W e  choose X = V and we consider the proper orthogonal decomposition 
associated t o  the function u. W e  get the following es t imate:  
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o n  the error between the solution u of the problem ( P )  and the approxi- 
m a t i o n  Ue ,  which is  the solution of the problem (Pe) .  

Proof. According to inequality ( 1 7 ) ,  it suffices to proove that the 
term l l d G e / d t 1 ~ 2 ( o , T ; X )  tends towards zero as I i m. As the sub- 

v 
space Y = ~ p a n ( $ ~ ) k > ~  is closed in V and as u E L 2 ( 0 , T ;  Y )  ac- 
cording to equality ( l o ) ,  we obtain, under assumption 1 ,  that d u l d t  E 
L 2 ( 0 ,  T; Y ) .  We can then write the following equality in V for t E [0, TI : 

d"/dt ( t )  = C z l  (du /d t ( t ) ,  + k ) v $ k S  Then we have ~ d ~ / d t l l t 2 ( o , T ; v )  - - 

1 1  C L e + i  ( d u / d t ( t ) ,  +k)v+k l l~2(o jT;v )  which tends towards zero as I i 
m. On the other hand, we have the bound l l . l l H  5 aII.llv and we get the 
expected result from equalities ( 1 2 )  and ( 1 3 )  as well as from inequality 
( 1 7 ) .  

3.2 Case of the POD Associated with (u ,du /d t )  

The definition of the term pe in theorem 9 let the term 

arise, which represents the energy of the rest of the time derivative of u. 
It seems quite natural to consider the proper orthogonal decomposition 
associated with the set (u ,  d u l d t )  so that the POD eigenvalues also take 
into account the energy of d u l d t .  

We still consider the case X = V and we denote ($k)k>l a set of 
POD eigenvectors associated with (u, d u l d t ) .  In this case we have the 
following equality, according to theorem 4, in particular according to 
equality (6) : 

We set c = r n a x ( & a 2 / ( 2 ~  - a/& - P ) ,  ( K  - ~ I ~ E ) / ( K  - a / 2 ~  - ,B/2))  and 
we can now express the following theorem: 

THEOREM 1 0  Under  assumpt ion 1, we choose X = V and we consider 
the proper orthogonal decomposition associated with (u ,  d u l d t ) .  W i t h  the  
above notations,  we obtain the following estimate: 
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4. Choosing the Order of Approximation 
When proper orthogonal decomposition is utilized for model reduc- 

tion, the question arises of the choice of the order e 2 1 of approximation. 
The integer l must be large enough for the approximation to be good 
and small enough for the model to be reduced enough. The usual crite- 
rion (cf. for example [I, 5, 8, 9, 10, 111) consists in setting a percentage 
6 E [O,1] then in choosing the smaller integer l 2 1 such that: 

where the Xks are the POD eigenvalues. As the sum of the POD eigen- 
values is equal to the energy of u, this criterion consists in projecting 
the studied system onto the modes which capture the largest portion of 
the energy of u. We are going to see that this criterion can be irrelevant 
and we will propose alternative ideas. 

4.1 A Counter-example to the Usual Criterion 
of the Choice of the Order of Approximation 

We still consider the parabolic case of the problem (P ) .  We set R = 
]0,1[, V = H i  (R), H = L2 (R) and X = V. We define the bilinear form a 
by posing a(. ,  .) = (., .)v so that the problem (P) is the variationnal form 
of the heat equation with homogeneous Dirichlet boundary conditions. 
Let and $2 be orthonormal vectors in V but not in H defined by: 

Then we have 

We set T = 1 and we define two orthogonal functions hl and h2 in 
L2 (0, T) by posing for t E [0, TI : hl (t) = I and h2(t) = 1.2 sin(20rt). 
We set at last for x E R and t E [0, T] : u(x, t )  = h l ( t ) $ ~ ~ ( x )  + 
h2(t)g2(z).  We assume that the function u is the solution of the problem 
(P) for a well chosen right-hand term f . We still denote K the POD 
operator associated with u and we observe that K+l = $1 and KG2 = 
0.72 $2 so the vectors ($1, $2) are the POD eigenvectors associated with 
u and the POD eigenvalues are X1 = 1 and X2 = 0.72 . We denote yl  
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(resp. y2) the solution of the projection of the problem (P) onto span(gl) 
(resp. span(g2)). As XI > X2 we expect the projection onto span(gl) to 
be better than that onto span($2), that is: 

In fact, this inequality is not satisfied. Indeed a computation with Maple 
allows us to obtain: 

instead of the expected inequality (24). If we set the percentage S = 58% 
and if we apply criterion (22), we find l = 1 and we compute yl, whereas 
the function yz is a best approximation of the solution u of the problem 
(P ) .  We could conclude that the POD set (GI,  $2) is not well indexed 
and that the indexation must be modified to consider the set (Q2,gl).  
However, if the number of POD eigenvectors is infinite, it is difficult to 
reindex them. We rather consider the point of view which consists in 
keeping the same order of indexation as that of the eigenvalues and in 
going deeper into the calculation of the approximation. 

4.2 Definition of Some Criteria for Choosing the 
Order of Approximation 

Let us first mention two natural criteria for choosing the order of 
approximation. The first natural criterion is the absolute value l 2 1 of 
the order of approximation: we can decide not to go over a certain value, 
for instance in order to limit the computation time. This is not the usual 
point of view: in general, one prefers to choose the smallest integer l 2 1 
which satisfies a certain condition, for example the inequality (22), which 
amounts to favouring the precision of the approximation rather than the 
speed of computation ; we will follow this line by defining criteria for 
the order of approximation. The second natural criterion consists in 
utilizing the bounds (19) and (21) in theorems 9 and 10 to ensure a 
given precision. 

We still make the regularity assumption 1 and we set X = V. We 
consider the case of the proper orthogonal decomposition associated with 
the solution u of the problem (P) .  We propose the following definition: 

DEFINITION 11 W e  define the real numbers E ,  pe > 0 as theorem 9. T h e  
integer l 2 1 is  a good order of approximation if we have the following 
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inequality: 

THEOREM 1 2  If the integer ! 2 1 i s  a good order of approximation,  the 
Galerkin projection of the problem ( P )  on to  the subspace is  better 
t h a n  the  Galerkin projection onto  the  subspace I$', for a n y  subspace Y: 
orthogonal t o  Ye in Y ,  in the following sense: 

where UT is  the  solution obtained by Galerkin projection on to  I$'. 

DEFINITION 1 3  W e  define real numbers  E ,  pe > 0 as in theorem 9 .  T h e  
integer l > 1 i s  a very good order of approximation if the following 
inequality holds: 

THEOREM 1 4  If the integer ! 2 1 i s  a very  good order of approxi- 
ma t ion ,  then  for any  integer k 2 1 + 1 the Galerkin projection of the 
problem ( P )  onto  the subspace = span('$l , .  . . , $e-ll  $e )  i s  better in 
the sense of the n o r m  L2(0, T ;  V )  than  the projection onto  the  subspace 
s ~ a n ( ' $ l ,  ' '  , '$t-1, $ k ) .  

Analogous definitions can be expessed in the case of the POD associ- 
ated with (u,  d u l d t )  . 

5. Conclusion 

We have recalled the principle of proper orthogonal decomposition and 
we have considered POD-Galerkin methods for a parabolic problem. If 
the solution u of the parabolic problem ( P )  is regular, i.e. u satisfies 
assumption 1, we can obtain bounds of the error of the POD-Galerkin 
approximation in the case X = V .  We have considered the POD asso- 
ciated with u and the POD associated with ( u , d u / d t ) .  These bounds 
do not depend on the discretization scheme and allow us to define some 
criteria for choosing the order of approximation. 
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