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Abstract 

Keywords: 

Stochastic hybrid systems arise in numerous applications of systems 
with multiple models; e.g., air traffc management, flexible manufac- 
turing systems, fault tolerant control systems etc. In a typical hybrid 
system, the state space is hybrid in the sense that some components 
take values in a Euclidean space, while some other components are dis- 
crete. In this paper we propose two stochastic hybrid models, both of 
which permit diffusion and hybrid jump. Such models are essential for 
studying air traffic management in a stochastic framework. 

Stochastic hybrid systems, Markov processes, Ito-Skorohod type sto- 
chastic differential equations, hybrid jumps. 

Introduction 

In this article we study some classes of stochastic hybrid models. 
Stochastic hybrid systems arise in numerous applications of systems with 
multiple modes, e.g., flexible manufacturing systems, air traffic manage- 
ment, fault tolerant control systems etc. For various applications of 
stochastic hybrid systems we refer to [3], [8], [I], [Illand the references 
therein. In a typical hybrid system, the state space is hybrid in the sense 
that some components take values in a Euclidean space while some other 
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components are discrete. The evolution of continuous and discrete com- 
ponents are intertwined in an intricate manner. This makes the anal- 
ysis of a hybrid system quite involved and challenging. Several classes 
of stochastic hybrid systems have been studied in the literature, e.g., 
counting processes with diffusion intensity [lo], [13], diffusion processes 
with Markovian switching parameters [Il l ,  [16], switching diffusions [8], 
[9], piecewise deterministic processes [5], [15], Markov decision drift pro- 
cesses [lletc. All these stochastic hybrid systems arise in different kinds 
of applications. 

Here we address two kinds of stochastic hybrid models. In the first 
model we construct a Markov process (X(t) ,  O(t)), where X(t)  E [Rd 

and O(t) E O = {1,2, . . . , N). Here X( t )  is governed by a stochastic 
differential equation of Ito-Skorohod type with drift coefficient, diffusion 
matrix and the 'jump' function depending on the discrete component 
O(t) . Thus X( t )  switches from one jump diffusion path to another as the 
discrete component O(t) moves from one state to another. On the other 
hand, the discrete component O(t) is a "controlled Markov chain" with 
a transition matrix that depends on the continuous component X(t) .  A 
change in the discrete state O(t) makes a switching in the continuous 
state. This apart the continuous state does jump at random times. At 
times this may lead to a situation where a switching triggers a jump 
and vice-versa. This model is discussed in the next section. Section 
3 is devoted to the study of a very general stochastic hybrid system. 
The state of the system at time t ,  denoted by (X( t ) ,  O(t)) takes values 
in u,(S, x On), where On = {1,2,. . . , N,) and Sn is a subset of [ R d n .  

Between the jumps (X(t) ,  O(t)) is a switching diffusion. That is O(.) is 
a pure jump process taking values in On; between successive jumps of 
O(t), X( t )  is a diffusion process. On the other hand, the infinitesimal 
jump rates of O(t) depends on X( t ) .  Let A, be a subset of Sn. If X( t )  
starting from some point in S,, hits A, then it executes an instantaneous 
jump to some S,. The destination of X( t )  at this moment is determined 
by a pre-determined map. The discrete component at this moment is 
also reset by a given map. We investigate a Markovian structure of this 
system by introducing another switching component in the systems. 

A typical construction of a hybrid systems is based on stochastic dif- 
ferential equations driven by Wiener processes and Poisson random mea- 
sures. For a comprehensive treatment of stochastic differential equation 
driven by Wiener processes and Poisson random measure we refer to [6], 
[7] and [12]. 
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1. Stochastic Hybrid Model I 
In this section we construct a Markov process (X( t ) ,  B(t)) taking val- 

ues in !Rd x O where O = {1,2, .  . . , N).  The evolution of the process is 
governed by equations of the following form: 

P(B(t + 6t = j), B(t) = i, X( s ) ,  B(s), s 5 t )  (1) 
= ,Aij (X(t))6t + O(6t), i # j 

Here b, a, g, X are suitable functions, X, 2 0, i # j, ~2 Aij  = 0, W ( - )  
is a standard Wiener process and p(., .) is a certain Poisson random 
measure on !R+ x R to be specified shortly. Under certain conditions we 
establish the existence of a pathwise unique solution of (1). We make 
certain assumptions on b, a, g, A.  Let 

We make the following assumptions on the above functions. 

( A l )  For each i = 1 ,2 , .  . . , N, b(.,  i )  is bounded and Lipschitz continu- 
ous. 

(A2) For each i = 1,2 , .  . . , N, a(. ,  i) is bounded and Lipschitz contin- 
uous. 

(A3) For i, j = 1,2, .  . . , N, Xi j ( . )  are bounded and measurable, Xij(.) 2 
0 for i # j, and c:, X U ( - )  = 0. 

(A4) Let K1 be the support of g(., ., .) and let Ul be the projection of 
K1 on R. We assume that Ul is bounded. 

Note that in ( I ) ,  the process B(t) is a pure jump process. Thus by 
the results of [6], B(t) may be represented by an integral with respect to 
a Poisson random measure. Following [4], [8], [9]we proceed to obtain 
this representation explicitly. To this end, we first embed O into !RN by 
identifying i with ei, the i th unit vector in R N .  For i ,  j E 0 , :  x E Rd,  
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let Aij(x) be consecutive (with respect to the lexicographic ordering on 
O x O) left closed, right open intervals on the real line, each having 
length Xij (x). Define a function 

by 
j - i if u E Aij(x) 

h(x, i, u) = 
otherwise. 

(2) 

Let (X(t),O(t)) be an Rd x O-valued process given by the following 
stochastic differential equation of Ito-Skorohod type. 

fort  2 0, X(O) = xo, O(O) = 00. I 
Here: 

(i) Xo is a prescribed Rd-valued random variable. 

(ii) O0 is a given O-valued random variable. 

(iii) W ( . )  is a d-dimensional standard Wiener process. 

(iv) p(dt, du) is a Poisson random measure with intensity dt x l(du), 
where 1 is the Lebesgue measure on R. 

By the construction of the function h in (2), it is clear that a solution 
of (3) is also a solution of (1). Thus we prove the existence of an a s .  
unique strong solution of (3). To achieve this we use the method in [6]. 

THEOREM 1 Assume (A1)- (A4). Let p(., .), W (.), Xo,  Oo be independent. 
Then the equation (3) has an a.s. unique strong solution. 

PROOF: Let (a, F, P) be the underlying (complete) probability space 
on which p(., .), W ( e ) ,  Xo,  O0 are defined. Let @(.) be the Poisson process 
on (R, F, P) corresponding to the given Poisson random measure p(., .). 
Let Kz = support of h(- ,  ., .) and Uz the projection of K2 on R. By (A3), 
U2 is a bounded set. Let U = Ul U U2. Then U is also bounded. Let Dg 
denote the domain of the Poisson process c(.). Let 

D = {t E Dp : fi(t) E U ) .  
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Since l ( U )  < oo, D is a discrete set in (0 ,  co) a s .  Let 7 1  < 7 2  < . . . < 
rn < . . . be the enumeration of all elements in D. Let 

Then it is easy to see that rn is an Ft- stopping time for each n and 
7, f oo a . ~ .  First we establish the existence and uniqueness of the 
solution in the time interval [ O ,  q]. TO achieve this consider the following 
stochastic differential equation: 

Y ( t )  = Xo + b(Y ( s ) ,  QO)dt + p(Y ( s ) ,  Qo)dW ( s )  
/o 

First assume Xo. = x  E [ R ~  and Qo = i E O for some x ,  i. Under ( A l ) ,  
( A 2 ) ,  the equation ( 4 )  has an a.s. unique strong solution which depends 
measurably on x i , :  and : W ( . ) .  The solution for the initial condition 
X o ,  Q0 is obtained by replacing ( x ,  i )  by ( X o ,  80). Now set 

The process { X l ( t ) ,  Q1( t ) ) tE[0 ,71~  is clearly the unique solution of (3 )  in 
the time interval [ O ,  T ~ ] .  Next, let x = x1 ( r l ) ,  8 = O(rl), : w ( . )  = 
w(-  + r l )  - W ( r l ) ,  and @ = ( f i ( t ) ) ,  where Dfi = { s  : s  + r1 E D g )  and 
p(s)  = @(s + 7 1 ) .  Proceeding as before we can determine the process 
( x 2 ( t ) ,  62(t)) on [0, .ill with respect to X ,  8, w and 3. Clearly .il = 

7 2  - 7 1 .  Define ( X  ( t )  , 6  ( t )  ) by 

It is now clear that ( X ( t )  , O(t))  is the unique solution of (3 )  in the interval 
[ O ,  r 2 ]  Proceedings this way ( X  ( t ) ,  B( t ) )  is determined uniquely in [ O ,  rn] 
for every n. Hence a.s. ( X ( t ) ,  Q ( t ) )  is determined uniquely for all time. 
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Some comments are in order. 

Remark 2.1 
(i) The boundedness assumption on b and a in (Al),  (A2) may be 

relaxed. It may be replaced by a growth condition of the following type: 
there exists a constant C such 

Similarly the Lipschitz continuity assumption in (Al),  (A2) may be re- 
placed by locally Lipschitz continuity. 

(ii) If for each i = 1,2, . . . , N, a(. ,  i )a* (., i )  is uniformly elliptic, i.e., 
the least eigenvalue of a( . ,  i)a* ( a ,  i) is uniformly bounded away from zero, 
then we can drop any kind of continuity assumption on b(.,i). In fact 
if b(., i )  is bounded and measurable and a( . ,  i )  is bounded and Lipschitz 
and (A3), (A4) hold, then under the uniform ellipticity condition it can 
be shown as in [8], [9], (3) has an a.s. unique strong solution. 

(iii) It is clear from the construction that the process (X( t ) ,  O(t)) is 
Markov. Let ,C denote the extended generator of (X( t ) ,  O(t)). Then for 
f E C2(IRd x O) c D ( L ) ,  it can be shown that 

where 

(6) 
and 

v,,~(A x { j } )  = Ixxl j ) (x  + g(x, i ,u) ,  i + h(x, i ,u))du for A E L ? ( R ~ ) .  J', 
(iv) Note that the times at which jumps or switchings occur are deter- 

mined by the stopping times r,, n = 1,2, . . . . But at every T,, a jump or a 
switching may not occur. For example if at t = 71, g(Y (rl -), 60, @(rl)) = 
0, there is no jump in the trajectory of X( t )  at this time. Similarly, if 
h(Y (71-), Oo,@(rl)) = 0, then O(t) remains at Oo and thus there is no 
switching in the trajectory of X( t )  at this time. If g(Y(rl-), OO,@(rl)) # 
0 but h(Y(rl-) ,  OO,@(rl) = 0, then there will be a jump at t = 71, 

but no switching at t = 71. Similarly if g(Y (rl -), OO,@(rl)) = 0, but 
h(Y(rl-) ,  O O , @ ( r l ) )  # 0, there is no jump but only a switching oc- 
curs at t = 71. On the other hand if g ( Y ( ~ l - ) ,  O O , @ ( r l )  # 0 and 
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~ ( Y ( T ~ - ) , Q ~ , ~ ~ ( T ~ ) )  # 0 there is a simultaneous jump and switching 
at t = 7 1 .  This kind of mechanism goes on for t > 71. 

(v) We now focus our attention to a specific case where jumps and 
switching always occur simultaneously. Let 

be a function which is bounded and measurable. Let the function g(., ., .) 
be given by 

( x )  if u E Aij(x) 
g(x, i, 4 = (7) 

otherwise. 

If g(., ., - )  is of the above form, then from (2) and (7), it is clear that the 
jumps and switchings always occur together. In this specific case the 
extended generator of (X(t),  Q(t)) can be expressed explicitly in terms 
of b, a, lj and Xij. Let C denote the extended generator of (X(t) ,  Q(t)) .  
Let f : IRd x O + R be a smooth function. Then using Ito's formula one 
can show that 

where Li f (x, i) is as in (6). 
(vi) Consider the non-degenerate case, i.e., when for each i 

is uniformly elliptic. In this case if for each i, b(.,  i )  is bounded and 
measurable, and a( . ,  i )  is bounded and Lipschitz continuous, (A3) holds 
and g(., a ,  .) is of the form ( 7 ) ,  then one can show as in [9]that the process 
(X( t )  , B(t)) is strong Feller. 

2. Stochastic Hybrid Model I1 
In this section we study a very general stochastic hybrid system. We 

refer to [2], [14]for analogous controlled stochastic hybrid systems. The 
state of the system at time t ,  denoted by (X(t) ,  Q(t)) ,  takes values in 
UF=l(Sn x On),  where On = {1 ,2 , .  . . , Mn) and Sn is a subset of Rdn.  
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Between the jumps of X( t )  the state equations are of the form 

dX(t)  = bn (X(t) ,  O(t))dt + an(X( t ) ,  O(t))dWn (t) 1 

where for each n E N 

are suitable functions, A$(.) > 0, i # j, : xz1 A$(.) = 0, : Xo, Oo are 
Sn- and 0,- valued random variables, and Wn(.) is a standard d,- 
dimensional Wiener process. For each n E N ,  let A, C S,,: D, C 

S,. The set A, is the set of instantaneous jump, whereas D, is the 
destination set. If at some random time X( t )  hits A,, then it executes 
an instantaneous jump. The destination of (X( t )  , O(t)) at this juncture 
is determined by a map 

After reaching the destination, the process (X( t ) ,  O(t)) follows the same 
evolutionary mechanism over and over again. 

To ensure the existence of such a pair of processes we need to make 
certain assumptions. 

For each n E N ,  let S, be the closure of a connected open subset of 
some Euclidean space w d n .  For each n E N ,  A, and D, are closed, and 
A, n D, = 4. 

We now make the following assumptions. 

(A5) For each n E N and i E O,, bn(., i )  is Lipschitz continuous. 

(A6) For each n E N and i E On, an(.,  i )  is Lipschitz continuous. 

(AT) For each n E N, i ,  j E On, A$(.) are bounded and measurable. 

(A8) The maps g,, n E N ,  are bounded and uniformly continuous. 

(A9) inf, d(A,, D,) > 0. 
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Let (R, F, P) be the underlying (complete) probability space on which 
Wn(- ) ,  Xo, O0 are defined. As in the previous section Q(t) can be ex- 
pressed as an integral with respect to a Poisson random measure. Let 
p(. , .)  be R+ x R-valued Poisson random measure with the intensity 
dt x l(du) as in the previous section. Construct the maps 

as in the previous section such that 

dO(t) = jR hn(X(t-),  O(t-), u)p(dt, du). 

Let 
q = a{wn(s) ,  P(A, B)ls I t ,  A E a([% t]), B E a(R)). 

Let Xo, 00, Wn (.) , p(., 9 )  be independent. Then as in the previous section, 
we can show that under (A5) ,  (A6) and (A7), the equation (8) has an 
a s .  unique strong solution, denoted by (Xn(t) ,  On(t)) which takes values 
in Rdn x On. Let 

71 = inf{t 2 01 : X(t)  E A,). (10) 

Then 71 is an stopping time. Now define the process (X(t) ,  O(t)) by 

Note that (X(r l ) ,  O(rl)) E Dm x em, for some m E N. From rl on the 
system continues with the same mechanism from the state (X(r l ) ,  O(rl)). 
Let 

Ft = v n q .  
Thus there is a sequence of Ft stopping times 0 = 70 5 71 < 72 < 73 < 
. . . < rm < . . . such that rm f m a.s. and in the interval [ r , ,~ ,+~) , :  
m = 0,1, . . . the process (X(t) ,  O(t)) evolves according to (8) for some 
index n E N. At times rm, m > 1, there is an instantaneous jump 
determined by the map g,. 

Note that, though in each interval of the type [T,,T,+~), the evo- 
lution of (X(t) ,  O(t)) follows a Markovian type dynamics, the process 
(X( t ) ,  O(t)), : t E [0, m), is not a Markov process. This is because 
we have not thus far accounted for a dynamical variable ~ ( t ) ,  to be 
introduced shortly, which is intricately linked with the evolution of 
(X(t)  , O(t)) . Let ~ ( t )  be an N valued process defined by 
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The process q( t )  is a piecewise constant process, it changes from n to m 
when ( X ( t ) ,  Q ( t ) )  jumps from the regime S, x O, to the regime Sm x Om. 
Thus q( t )  is an indicator of a regime and a change in q( t )  means a 
switching in the regimes in which ( X ( t ) , Q ( t ) )  evolves. One can show 
that the process ( X ( t ) ,  Q ( t ) ,  q ( t ) )  is Markov. To see this more clearly 
we investigate the equations governing the process ( X ( t )  , Q ( t )  , q ( t ) ) .  To 
this end, let 

3 = { ( x ,  i ,  n) lx  E S,, i  E On)  

A = { ( x , i , n ) l x ~ A , ,  ~ E O , )  

D = { ( x ,  i ,  n ) ( x  E D,, i  E 0, )  

Clearly ( X ( t ) ,  Q ( t ) ,  q ( t ) )  is an 3-valued process. The set A is the set 
where jumps occur and D is the destination set for this process. The 
sets u,(S, x On) ,  u,(A, x 0,) and u,(D, x 0,) can be embedded in 
3, A and D respectively. 

Let do denote the injection map of U,(D, x On) into D. Define three 
maps g i :  A+ ~ , : i  = 1,2,::  h :  A+ N 

( x  i ,  n )  = the first component in do (g,(x, i ) )  1 
6 ( x  i ,  n )  = the second component in do (9, ( x ,  i ) )  (13) 

( x i  n )  = the third argument in do(g,(x, i ) ) .  J 
To describe the evolution of ( X ( t ) ,  Q ( t ) ,  q ( t ) )  there is a sequence of Ft 
stopping times 

7 1 < 7 2 < 7 3 <  . . .  < T m <  . . .  
7, CCI a s .  which are the successive hitting times of A, such that for 
t  = 7, 

where lji, h are defined in (13). For 7, < t < Tm+l 

where b(x , i , n )  = bn(x , i ) ,  a ( x , i , n )  = a n ( x , i ) ,  h ( x , i , n , u )  = h n ( x , i , u ) .  
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The stopping time Tm+l is defined by 

The equations for (X(t) ,  Q(t) ,  ~ ( t ) )  may thus be summarized as follows: 

where S is the Dirac measure. 
From the above equation it is clear that the ,!?-valued process 

is a Markov process. Note that the stochastic hybrid model constructed 
in this section generalizes the stochastic hybrid models studied in [2], 
[14]. In the stochastic hybrid model studied in [2], there is no discrete 
component like Q(t). In [14]the discrete component Q(t) is included, 
but this component remains unchanged when the continuous component 
X( t )  makes an instantaneous jump. In our model we have removed 
this restriction on the dynamics of Q(t) ,  and allow it to change when 
X( t )  changes. Thus we automatically have simultaneous jumps and 
switchings. Moreover in [14], the same functions b, a, X i j  are used in 
every component of the state space Sn x On, whereas in our model, these 
functions depend on the index n. Thus our dynamics are more general 
than the one treated in [14]. Hence we have constructed a stochastic 
hybrid model which is more general than the models in [2]and [14]. 

3. Conclusion 

In this paper we have explicitly constructed two stochastic hybrid sys- 
tems. We established the existance and uniqueness of a strong solution 
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in both cases, and showed that both solutions are Markov processes. 
The important point is that both models allow for simultaneous jumps 
in the trajectory and model parameters, the "so-called" case of a hybrid 
jump. 
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