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Abstract We propose a novel stochastic approach to reconstruct the unknown 
input of a partly known dynamical system from noisy output data. 
We assume that the unknown function belongs to a Reproducing Ker- 
nel Hilbert Space (RKHS). We then design an algorithm based on the 
Markov chain Monte Carlo (MCMC) framework which is able to recover 
the minimum variance estimate of the input given the output data. 
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1. Introduction 
Deconvolution is the process of reconstructing the input of a dynam- 

ical linear system starting from sparse and noisy output data. This 
problem is important and encountered in many domains of applied sci- 
ence (see e.g. [2, 71). It is also often difficult to solve since it is subject 
to ill-posedness and ill-conditioning [2, 141. Usually, the system designer 
does not have sufficient information to overcome these difficulties by re- 
stricting the unknown function to a finite dimensional model.' The most 
attractive and employed technique to effectively solve the deconvolution 
problem is instead nonparametric regularization, which does not restrict 
the unknown function to a particular parameteric form (see e.g. [9, 
141). Many nonparametric deconvolution algorithms select a function 
from an infinite dimensional Reproducing Kernel Hilbert Space (RKHS) 
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[I ,  51. The key feature of such spaces is their capability to approx- 
imate arbitrarily well a very rich class of functions [8]. The unknown 
function is then estimated as the solution of a Tychonov-type variational 
problem [13], containing a quadratic term related to the adherence of ex- 
perimental data and another one which penalizes unlikely solutions, i.e. 
functions whose norm amplitude is large. The resulting estimator has an 
interpretation in stochastic terms [7, 141. In fact, under certain Gaussian 
assumptions, it provides the minimum variance estimate of the unknown 
function given the data.2 In real applications, a Tykonov-type estima- 
tor has unknown parameters that must be included in the estimation 
procedure. For example, the regularization parameter, which is a key 
one since it establishes the right amount of regularization to include in 
the estimation process, is almost always unknown [12]. Other unknown 
variables can be present in the linear relationship between the function 
and the measurements. If we employ a stochastic framework where we 
model all these additional unknown parameters as random variables, it 
turns out that the minimum variance estimate of the function requires 
the evaluation of analytically intractable integrals (see Section 1 in [lo]). 

In this paper we present a new approach to face this problem together 
with an efficient algorithm based on a stochastic simulation technique 
known in literature as Markov chain Monte Carlo (MCMC). Our tech- 
nique is able to reconstruct a function belonging to a generic RKHS 
together with all the other unknown parameters present in the problem. 
In contrast to the approach in [lo], our computational scheme avoids 
any kind of discretization of the domain where the function of interest is 
defined. The paper is organized as follows. In Section 2 we describe the 
measurement model and recall some properties of RKHSs (that are used 
in the other sections). In Section 3 we describe our stochastic decon- 
volution model and the resulting estimation problem. In Section 4 the 
algorithm which implements the model introduced in Section 3 is illus- 
trated. The performance of the new approach is then tested in Section 
5 by one simulated case study. Conclusions are finally offered in Section 
6. 

2. Preliminaries 

2.1 The Measurement Model 
For any vector w, we use wi to refer to the i - th  component of w. 

Moreover, all the vectors are column vectors. We define our problem in 
mathematical terms. We are given a vector of measurements y E X n .  
The measurement values depend on an unknown function f : X + 
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%, where X is a compact domain on 34, and on an unknown random 
vector u E Xn.  The dependence between the function and the i - t h  
measurement is 

~i = Li ( f 8) + ui (1) 
where the mapping f + Li( f ,  8) is a linear and continuous functional be- 
tween a space containing continuous functions and %. Moreover, 8 E X d  
is an unknown random vector whose probability density function, prior 
to making the measurements, is p s ( 0 ) .  We are also given a model for 
the statistics of the measurement noise. To be specific, we assume u is 
a zero-mean Gaussian random vector whose positive definite covariance 
matrix is C,(B). We assume that the functions L, ps, and C, are known. 
In addition, given 0, u is independent from f .  The problem of estimating 
8 and f without additional information is ill-posed (ill-posed problems 
are described on page 7 of [13]). 

2.2 Reproducing Kernel Hilbert Spaces 
Our approach to this ill-posed inverse problem is to place a Bayesian 
prior on a special type of function space H called Reproducing Kernel 
Hilbert Space (RKHS). We briefly sketch some properties of these spaces 
which are relevant in the context of the present work. We use L2(X) to 
denote the classical Lebesque space of square integrable functions on X ,  
equipped with the inner product < ., . >z. 

DEFINITION 1 We say that M : X x X + % is positive definite if for 
all finite sets {xl, x2, ..., x k }  C X the k x k matrix whose (i, j )  entry is 
M(xi, xj) is positive semi-definite. Moreover, we say that M is a Mercer 
kernel if it is continuous, symmetric and positive definite. 

The following theorem can be obtained by combining the Spectral The- 
orem for compact operators and Mercer's theorem (see [4]). 

THEOREM 2 If M is a Mercer Kernel, there exist a sequence { A j  2 0 : 
Xj+1 2 Xj ,  j  = 1, .  . . , oo) and a basis in  L ~ ( x )  of continuous functions 
{q5j : j  = 1, .  . . , m} such that 
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where the above convergence is uniform in  X  x X .  

The following proposition can be derived from [I, 41. 

THEOREM 3 For each Mercer kernel M  there exists a unique Hilbert 
space H such that 

w for each x  E X ,  M ( x , . )  E H 

the span of the set { M ( x ,  .), x  E X )  is dense i n  H 

for each f E H and x  E X ,  f (x) =< f (.), M ( x ,  .) >H 

If X j  > 0 for every j,  the associated RKHS H has the representation 

equipped with the inner product < ., . >H where, given f ,  g E H with 
f = CF1 aj$j and g = Cgl bj4j ,  we have 

The theorem above enables us to interpret H as a certain subset of 
smooth functions in L 2 ( x )  generated by the eigenvectors { $ j ) .  The 
smoothness condition does in particular concern the behavior of the 
generalized Fourier coefficients { a k )  and is regulated by the eigenvalues 
of M  

We conclude this section by defining the notation O to be a subset of 
gd and K  : O x X  x X  + 8 to be a parameterized Mercer Kernel; i.e., 
for each 0  E O,  K ( 0 ,  -, .) is a Mercer Kernel. In addition $(., 0 )  and Xi(0) 
are the eigen-functions and eigen-values corresponding to K ( 0 ,  a ,  a ) .  

DEFINITION 4 W e  use ~ ~ ( 0 )  to denote the n x N matrix whose (i, j )  
entry is L i ($ j ,  0 ) .  In addition, we denote with AN (0)  the N x N diagonal 
matrix whose i - th  entry of the diagonal is equal to Xi(0). 

DEFINITION 5 Let N  the set of natural numbers. Given A C N ,  we 
define the following notation: 
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2.3 An Example of RKHS 

In this section we review some properties of an example RKHS space 
parameterized by the integer m > 0. We define the Green's function Gm 
and the reproducing kernel Km on [0, T] x [0, TI, T E 3 as 

0 i f x < y  
1 i f x > y a n d m = l  

(x - y)m-l/(m - I)! otherwise 

Given a function f : [0, T] -+ R, we use f to denote the i - th  derivative 
of f .  The RKHS associated to Km is then 

equipped with the inner product 

f : [O,T]-+% 

For the special case m = 1, the following closed forms for d j  and X j  are 
available (see [15]) 

f (m) E L~ [o, TI 
a n d f o r j = O ,  ... , m - 1 ,  f ( j ) ( 0 ) = 0  
and f (j) is absolutely continuous 

3. Statement of the Estimation Problem 

We now define our estimation problem in a Bayesian framework. We 
start by defining a Bayesian prior for the unknown function f on the 
RKHS corresponding to K (8, ., .). 

Assumption: Given 8, the function f is a random field of the form 
f (x) = Cj",l aidi(x), where {ai) are Gaussian and independent random 
variables and the variance of ai is Xi(8). In addition, each ai is inde- 
pendent of the measurement noise u. 
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Figure 1. Bayesian network describing the stochastic deconvolution problem 

A graphical description of the joint probability density function of y,  f 
and 0 is given by the Bayesian network in Figure 1. It is important to 
note that the node 0 is connected via a direct link with both f and y. We 
also note that given the other two nodes in the network, y depends on 
f and 0 through C,(O) and L ( f ,  0 ) .  In addition, the probability density 
function of f given 8 depends on 0 through the sequence { X i ( 0 ) ) ,  i.e., 
the smoothness parameters contained in 0 parameterize the norm in the 
RKHS H. 

THEOREM 6 The m in imum variance estimate of the function f ,  given 
0 and y ,  is 

where H is the RKHS corresponding to K ( 0 ,  ., .). 
(see Appendix for the proof) 

Equation (3) shows that if f is the only unknown in the model depicted 
in Figure 1, its optimal estimate is provided by a Tikhonov-type varia- 
tional problem. The solution of such problem is linear in the data y and 
admits a closed form which is well known in literature (see e.g. [14]). 
However, in real applications 8 is seldom completely known. The esti- 
mation problem we aim to solve when 0 is uncertain is described below. 

Problem: Let p(ylai,  0 )  and p(ai 10) the probability density functions of 
y given (a i ,  0 )  and of ai given 0 ,  respectively. Let also p ( y )  the marginal 
probability density function of y. Given the Bayesian network of Figure 
1 and known the data y, determine the m in imum variance estimate of 
f ( x ) ,  i .  e. compute f ( x )  = Czl Bi4i (x )  where 
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The function f̂  takes into account all the possible sources of uncertainty 
present in the problem and represents our ideal estimate of the ran- 
dom field f .  However, its determination turns out difficult since the 
computation of iLi will in general require the solution of an analytically 
intractable integral. We describe the strategies developed in order to 
circumvent these problems in the next Section. 

4. MCMC Deconvolut ion Algorithms in RKHS 

We solve our stochastic deconvolution problem by reducing it to the 
reconstruction (in sampled form) of two finite-dimensional probability 
density functions. The numerical procedure relies on the MCMC frame- 
work (for an overview on MCMC theory see e.g. [6]). To simplify our 
notation below, dependence of some operators on 0 is implicit. 

4.1 Step 1: Reconstruction of p(OIy) 
The first goal is to reconstruct the probability density function of 0 given 
y after integrating out the unknown random field f from the probabilis- 
tic model of Figure 1. For this aim, the following proposition is useful. 
It can be proved by employing the linearity of the operator L and the 
fact that v is independent from f .  

THEOREM 7 W e  have 

where Cy is an n x n matrix, such that 

We then have that p(0ly) cx p(ylO)p(O) and a MCMC strategy can be 
employed in order to recover in sampled form this marginal posterior. 
In particular, we firstly obtain an approximated covariance matrix C of 
the random vector 0 given y as the inverse of the Hessian of the mi- 
nus log of p(ylO)p(O) computed at its mode (in 6). We then resort to a 
random-walk Metropolis scheme to reconstruct p(61y). In other words, 
we use a proposal density which consists of a Gaussian distribution cen- 
tered at the current point of the Markov chain with covariance matrix 
proportional to C. 
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4.2 Step 2: Determination of the Minimum 
Variance Estimate of f given y 

THEOREM 8 Let A = {x E N; x N ) .  Also, let C V , - ~  the n x n matrix 
such that Cv , -A( i , j )  = C v ( i , j )  + L i L j [ K - A ( x ,  y ) ] .  Then,  by denoting 
with p (y laN ,  0 )  the probability density function of y given aN  and 0 ,  we 
have: 

exp (-i(Y - ~ " a " ) ~ ( & , , - ~ ) - ' ( ~  - ~ ~ a " ) )  
p(y laN1 0 )  = [ d e t ( 2 ~ C , , - ~ ) ] ~ ~ ~  

Proof: The model of measurements can be rewritten as follows 

where is zero-mean normal random vector independent from aN and 
having covariance matrix equal to This completes the proof. 

The following result can be obtained using Bayes formula and Theo- 
rem 8. 

THEOREM 9 Given y and 0 ,  the random vector aN is Gaussian having 
covariance matrix g a ~  and mean j i , ~  where: 

N -1 N T -1 C,N = [ ( A  ) + ( L  C ~ , - , ( L ~ ) I - '  

We remark that A", L N  and may depend on 0.  Thus, f i l a ~  can 
be computed for some of those values of 0 located in high probability 
regions in accordance with the marginal posterior obtained (in sampled 
form) at step 1 of the proposed algorithm. This analysis obtains crucial 
information regarding how the a posteriori probability density function 
of a component ai differs from its a priori probability density function. 
The spectrum of many physical transformations L is located at low fre- 
quencies. If one also has that the higher i, the lower is the spectral 
content of 4i, as e.g. in eq. ( 2 ) ,  many of the amplitudes in the set { a i )  
may be insensitive to the output data. This means that from a certain 
index i the minimum variance estimate of ai will be close to the mean 
of the prior, i.e. close to zero. This makes it possible to find a value of 
N SO that, for every t ,  xZ1 iii4i ( t )  Cgl  iii4i ( t ) .  
Finally, after determining the number of amplitudes ai which is worth 
reconstructing, the marginal posterior of aN given y can be recovered. 
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Figure 2. Simulation Left A posteriori probability density function of 9 2  obtained 
in sampled form by MCMC. Right A posteriori and a priori variance of ai as function 
of i having set 81 and 9 2  to their minimum variance estimates 

For this aim, let Ok be a sample drawn from the distribution of O given 
y as obtained in step 1. Then, it suffices drawing samples from a Gaus- 
sian distribution having mean ,G,N (Ok) and covariance matrix 2 , ~  (Ok)  
by using a sufficiently large set of realizations Ok. 

5. Numerical Experiments 

We consider a semi-blind deconvolution problem, i.e. a deconvolution 
problem where the relationship between the unknown input and the 
output data is only partly known. Let 

Then, the simulated function f to reconstruct, taken from [3], is f (x) = xi=l ~ ~ P p j , ~ ( x )  where 0 < x < 1 and wl = 0.3, w2 = 0.6, pl = 12, 
p2 = 4, ql = 7, q:! = 11. f is modeled as the unknown input of a shift- 
invariant linear system with impulse response equal to x([O, 02]), where 
x(A) is the indicator function of a set A and O2 is equal to 0.27, a value 
drawn from a uniform random variable between 0 and 1. The function 
has to be reconstructed from 50 output observations, collected by us- 
ing a uniform sampling grid and corrupted by a white Gaussian process 
with a constant CV% equal to 10. We model the unknown function 
as xzl ~ ~ 4 ~ ~ , ~  where ai are independent Gaussian random variables of 
variance Xi = OIXw,,i (note that O1 represents the regularization parame- 
ter). Moreover, we model O1 and O2 as uniform and independent random 
variables on [0, p], with p + +m, and [O, 11, respectively. In Figure 2 
(left panel) we report the a posteriori probability density function of O2 
as reconstructed in sampled form in the first step of our algorithm by 
a MCMC run where 5500 samples were generated.4 The minimum vari- 
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Figure 3. Simulation Top Minimum variance estimate of ai as function of i .  Mid- 
dle minimum variance estimate of f (continuous line) with 95% confidence interval 
(shaded area) and true function (dashed line). Bottom panel Reconvolution (contin- 
uous line) vs noisy samples (bullets) 

ance estimate of this parameter turns out to be 0.258, a value close to 
truth. Such estimate together with that of has been then employed in 
order to compute the covariance matrix of eq.(4) when N is set to 100. In 
Figure 2 (right panel) we plot the diagonal elements of such matrix and 
of the matrix AN (& ) . This plot suggest that only few components ai are 
identifiable from the data. The second step of the algorithm has been 
then performed by setting N to 50 and generating 1500 samples of a N .  
In Figure 3 we plot the minimum variance estimates of the components 
of aN (top panel) and of f (solid line, middle panel), which appears close 
to the true function (dashed line, middle panel), together with the 95% 
confidence interval (shaded area, middle panel). Finally, in the bottom 
panel of Figure 3 the reconvolution against the noisy samples is depicted. 

6 .  Conclusions 

We have proposed a new Bayesian deconvolution algorithm based on 
the MCMC framework. The technique we have introduced improves on 
the existing deconvolution algorithms proposed in literature in some im- 
portant aspects. In particular, differently from the approach developed 
in [lo], our approach is well suited for the reconstruction of a function 
belonging to a generic RKHS and avoids any kind of discretization of 
the domain X where the unknown function is defined. 

Future developments of this work could consist in extending the esti- 
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mation technique here presented for reconstructing functions from non- 
linearly related output data. 

Appendix: Proof of Theorem 6 

In the sequel, the dependence of C,, L and {Aj)  on 6 will be implicit. Given a 
function f E H, where f = Cp1 ajq5j(x), let a N  the vector containing the first N 
components of {a,). Let also f: (5) = Cg1 a;$, (x), where x E X. We define the 
following prior distribution for a N  

The conditional density for y given a N  and 6 is 

The corresponding negative log of the likelihood for a certain y E Sn and a certain 
a N  is 

N 2 N 

l N ( y , a N ~ 6 )  = - 
1 I fa ' I H  + 1 log(2ahj) + - log det[2rrEV] 

2 j=1 2 

We point out that H, being a RKHS, is a subset of the space of continuous functions 
and convergence in the topology induced by 1 1 1 1 ~  implies uniform convergence (see 
[4]). Then, as N -+ oo, the following pointwise convergence holds 

where l(y, f (6) is defined by 

Thus, given the model of Figure 1, maximizing l(y, f 10) with respect of f corresponds 
to recovering the maximum a posteriori estimate of f given y and 6. This, combined 
with the linearity of L and the gaussianity of f ,  completes the proof. 

Notes 
1. Otherwise, this would reduce deconvolution to  a standard parametric estimation prob- 

lem, easily solvable by traditional methods as nonlinear least squares 
2. There is a strong relationship between RKHSs and Gaussian processes, see e.g. Section 

1.4 in [14]. 

3. all the functions in H are in fact continuous, see Proposition 3 on pag.36 of [4]. 

4. Results displayed in the sequel have been obtained by assessing the convergence of the 
generated Markov chains through the binary control of Raftery and Lewis [ll]. In particular, 
we have always required to estimate quantiles 0.025, 0.25, 0.5, 0.75, 0.975 of all the unknown 
parameters with precision respectively 0.005, 0.01, 0.01, 0.01, 0.005 and with probability 0.95 
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