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Abstract: Dynamic Programming (DP) has been widely used as an approach solving the 
Markov Decision Process problem. This paper takes a well-known gambler's 
problem as an example to compare different DP solutions to the problem, and 
uses a variety of parameters to explain the results in detail. Ten C++ 
programs were v^ritten to implement the algorithms. The numerical 
results from gamble's problem and graphical output from the tracking 
car problem support the conceptual definitions of RL methods. 
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1. INTRODUCTION 

The three fundamental classes of RL methods are dynamic programming 
(DP), Monte Carlo (MC) and temporal difference (TD) methods. Almost all 
the RL methods are evolved from or from the combinations of these 
fundamental RL methods. 

Dynamic Programming (DP) is one of the major methods used to solve 
MDP( Markov Decision Process) problems (Puterman, p.81). The pohcy 
iteration method is the straightforward way to apply DP to an MDP problem. 
A random policy or any non-optimal policy is evaluated by calculating the 
state values using the Bellman equation. A new policy replaces the old policy 
and is regarded as a more optimal policy than the old one, based on the 
calculated state values. The loop then keeps going on until either policy or 
state values converge and do not change. Value iteration is actually an 
improved version of policy iteration. It truncates the policy improvement 
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process in policy improvement and still keeps a guaranteed convergence 
toward the optimal solution. 

The basic idea of MC methods is based on averaging sample returns. If a 
state or state-action pair has been visited many times, the average value of the 
returns of these visits is supposed to converge to the true value of this state or 
state-action pair. Based on this assumption, MC methods only consider and 
use experience. MC methods do value evaluation and improvement 
simultaneously, 

TD methods combine the advantages of both MC and DP methods. TD 
methods do not require a complete knowledge of the environment. However, 
TD methods use bootstrapping which is similar to DP methods. On the other 
hand, TD methods do not go through the whole episode. In stead, they use a 
number of steps in each episode. The most commonly used on-policy TD 
method is SARSA, and off-policy TD method, which evaluates one policy 
while following another, is Q-leaming method. 

2. GAMBLER'S PROBLEM 

A classic Gambler's problem is used to show a DP solution to a MDP 
problem. The description of the problem is as foUowings: "A gambler bets on 
the outcomes of coin flips. He either wins the same amount of money as his 
bet or loses his bet. Game stops when he reaches 100 dollars, or loses by 
running out of money." (Sutton and Barto, p. 101) 

Figures 1 and 2 show the value function and optimal policy when p=0.4, 
where p is the winning rate. The state value function is no longer linear. 
There are some local maximums when the capital reaches 25, 50, and 75. 
Fifty is the state with the most abnormally high state value. The policy is to 
reach the high value states before reaching the goal. 

Capila 

Figure 1. Optimal State Value 
Functions (p=0.4) 

Figure 2. Optimal Policy (p=0.4) 

There are many spikes in the graph shown in Figure 2, and they are 
considered noise. We found that it is caused by roundup errors of the floating 
point limitation of CPUs. Different errors are shown on AMD, Pentium, and 
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Sun CPUs. The computer makes the wrong decision due to the floating point 
limitation by truncating the number after the 16th digit. The solution to this 
problem is that an updated policy must increase the action value by at least 
the smallest decimal number which the CPU can handle, for example, l̂ "'̂  
for double precision. By applying this concept, and changing the policy 
improvement rule from 

" If (actionvalue > previousmaxvalue) 
Then choose this action" to 

" If (actionvalue > previous_max_value-M0E-16) 
Then choose this action ," all the noise is eliminated. The optimal 

policy graphs for 0<p<0.5 are all the same. Another way to explain this is 
that because of the nonlinear property of the state value fiinction, there is a 
certain amount of bet which can result in obtaining an optimal return for each 
state before betting all the capital. The exception to this is when current states 
are local maximums (25, 50, 75). 

The local maximum is the smallest integer value divisible by a 
polynomial of two from the number of states. The reason is that the gambler 
problem is a discrete MDP problem, and every state has an integer value as 
capital. Keeping this in mind, let us ftirther compare the results in Figures 3 
and 4. Figure 3 has 1,024 states, which is a polynomial of two. So the local 
minimum is as small as 1. The result of this is that if a player sets a slightly 
different goal, for example, from 1,023 to 1,024, there may be completely 
different optimal policies for different goals, as can be seen in Figure 4, 
which has 1,023 states. 

59 117 175 233 291 349 407 465 523 581 639 697 755 613 871 929 987 

C«pttal 

233 291 349 407 465 523 581 $39 697 755 813 871 929 987 

Figure 3. Optimal Policy (0<p<0.5), 
1,024 States 

Figure 4. Optimal Policy (0<p<0.5), 
L023 States 

3. TRACKING CAR PROBLEM 

The tracking car problem is very special which could be solved by using 
MC, DP, and TD methods. Thus, the tracking car problem can be used to 
compare the three methods. The specification of tracking car problem is as 
follows. "Find the best strategy to accelerate or decelerate a racing car at a 
turning track. The maximum velocity of the car is 5. A random accelerate on 
either vertical or horizontal direction may occur." (Sutton and Barto, p. 127) 
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Figure 5. Optimal 
Tracks from On-Policy 

MC algorithm. 
There are more 

problem because 

Figure 6. Optimal Figure 7. Optimal 
Tracks from DP Value Track from SARAS and 

Iteration algorithm. Q-leaming algorithms, 
states defined in DP algorithm for this tracking car 

car positions on track with a particular vertical and 
horizontal speed are counted as factors of states. There are four horizontal 
and four vertical speed, and they can not both be zero. So, the number of 
states is calculated by 

NumberOfStates=OnTrackPositions*(4*4-1) (1) 

DISCUSSION ON RESULTS AND CONCLUSIONS 

MC methods have a very close relationship to TD methods, which are 
also based on experience and sample episodes but bootstrap. If we increase 
the number of steps in the TD methods till the end of every episode, MC may 
be viewed as a special case of TD methods. MC methods are based on 
experience and sample episodes. They do not require a full definition of the 
environment, which is the major advantage of MC over DP methods. MC 
methods do not bootstrap and convergence of state or action values is 
guaranteed by a large number of visits on every state or action. 

In practice, we found that correct setting of initial value of every state is 
critical for the correct convergence of state or action values. For example, we 
set that every state has been visited 45 times and every visit has a return of 1 
before the loop starts. As a result, all states values are set much higher than 
their real values. The first several iterations of loop then would not set states 
to very low values. We then guarantee values of states slowly get close to 
their true values from only one side of their true values, so that large number 
of visits on every state are guaranteed. 

Choosing greedy actions to update action values makes Q-leaming an off-
policy TD method, while SARSA is an on-policy TD method which uses e-
greedy method. Figure 7 shows that SARSA intends to take a saver track and 
avoid being on the most left and the most top lanes of the track because the 
probability of being off the track is high on those lanes. Q-leaming then 
chooses more greedy tracks than SARSA. If there is no or low-probability of 
random left and right accelerations, the results from Q-leaming would be 
more close to the real optimal solution. If the probability of random 
accelerations is high, SARSA is the method to use. In most cases, greedy 
methods are more close to the real optimal solutions. 
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This study covers the major concepts of reinforcement learning and the 
Markov decision process. DP, MC, and TD methods are discussed and 
compared through solving problems. A noise reduction method and computer 
floating point limitations are also discussed. Ten C++ programs were written 
to implement the algorithms. The numerical results from gamble's problem 
and graphical output from the tracking car problem support the conceptual 
definitions of RL methods. 
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