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Abstract: One of the central problems in machine learning is how to effectively combine 
unlabelled and labelled data to infer the labels of unlabelled ones. In recent 
years, there has a growing interest on the transduction method. In this article, 
the transductive learning machines are described based on a so-called affinity 
rule which comes from the intuitive fact that if two objects are close in input 
space then their outputs should also be close, to obtain the solution of semi-
supervised learning problem. By using the analytic solution for this problem, 
an incremental learning algorithm adapting to on-line data processing is 
derived. 
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1. INTRODUCTION 

One of the most important subjects in current data mining research is 
semi-supervised learning in which some of the observations have been 
labelled by the supervisor, while the labels of others are not obtained for 
various reasons. We respectively call these two kinds of observations the 
labelled data and unlabelled data. The main problem to study is how to infer 
the proper label of the unlabelled data using the observations including 
labelled and unlabelled data and relevant knowledge. The classical method 
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for solving this problem is so-called induction-deduction method in which 
the labelled data are first analyzed to find a generalized rule and regard this 
rule to be justified for future observations (that is, from particularity to 
generality), and then this general rule is applied to the unlabelled data to 
infer their labels (that is, from generality to particularity). 

In recent years, however, the transductive method, proposed by 
Vapnik(1998) has gained much concern. For semi-supervised leaming, a 
general rule which is applied to both the unlabelled data and the possible 
other observations is indeed unnecessary in that only labeling those 
particular observations of unlabelled data is what we concern. The 
transduction method combined the labelled with the unlabelled data are used 
to derive the rule from particularity to particularity. 

Up to now, there have been several examples of successful realization of 
transduction and experimentation on its superiority against traditional 
method. Chapell et al. (1999) implemented transductive inference by 
minimizing the leave-one-out error of ridge regression, and demonstrated 
that this transductive way for estimating values of the regression is more 
accurate than the traditional method. Bennettet et al.(1998) introduced semi-
supervised support vector machines (S^VM) by overall risk minimization, 
and demonstrated that SWM either make an improvement or show no 
significant difference in generalization compared to the usual structural risk 
minimization approach. Joachims (1999) suggested transductive support 
vector machines(TSVM) to deal with text classification. Furthermore, he 
presented a new transductive leaming method in (Joachims, 2003) which can 
obtain the globally optimal solution by spectral methods. An algorithm was 
also proposed to robust achieve good generalization performance. Recently, 
Zhou et al.(2003a) studied semi-supervised leaming problems by Hamilton 
method, and he latterly used objects programming involving norm in Zhou et 
al.(2003b) to derive the solution. However, it should be pointed out that is 
different from our paper. Zhou Guang-ya et al. (1993) gave many affinity-
measures and applying mles which can be used in our discussing the 
machine leaming problems. 

In this paper, we deal with the semi-supervised leaming transduction 
method based on affinity-mle by measuring the affinity of different objects 
in general space, and obtain an incremental leaming algorithm. The principle 
comes from an intuitive fact that similar objects should have similar outputs. 
Because of the loose assumptions, this method has wider applications, more 
concise solution. We derive incremental learning algorithm adapting to on
line data processing. Its results are simple in expression and easy in 
calculation. 
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2. METHODS AND PROPERTIES 

Let X* be the input space and Y* be the output space. The obtained 
data set is 

{ ( x , , y , ) , ( x 2 , y 2 ) , - - - , ( x / , y / ) , X / ^ i , - - - , X / + „ } , 
x/ e J f % l < / < / + t/; y/ e 7% 1 < / < / , « = / +w, 

where /̂ * = {(Xi,yi),(x2,y2),-",(x/,y/)} is labelled data set and 
C/* = {x/+i,---,X/+„} unlabelled data set. {xi,X2,---,X/} are labelled 
objects and y/ is the label of X/ . We aim at inferring the labels of 
unlabelled data. For convenience, we assume that the labels stand for the 
different classes and discuss the classification problem. Let the number of 
the classes be c and C/ be the vector with the /-th element being 1 and others 
being 0. Therefore Y* may be taken as {ei,e2,---,ec} in classification 
problem. In order to obtain the labels estimates of x, for />/, a general 
labelling variable Z/ e i?^ is often considered, where 
Z/ = (z,i ,Z/25*• -'iZicY is an auxiliary variable to simplify the complexity in 
solving this problem, and z, is not necessary to hold the same form as Cy. 
Then we use y, = eargmax{z/̂ ;i<A:<c} as the estimates of the labels. The 
following conditions are requested for Z/. 1) If X/ is close to Xy , then the 
general label z, is also close to Zy. 2) For the labelled data, the Z/ and y/ 
are as close as possible. The measure of the closeness for two objects can be 
taken as various modes including the inclusion degree like that in Zhang et 
al(1996), similarity (or dissimilarity, distance) etc.. The former measures 
have wider applications. For example, they can be used for the general 
symbolic data in the cases where even the symmetry does not hold. We use 
Sij =s{\i,\j) to measure the affinity between two input objects X/ and 
Xy where the matrix {sy) need not to be symmetric, but assume them to be 
positive. If the entries of (^/,) are not all positive, we may consider 
s*j = Sij -^-c , s > -mm{Sij;1 < /, j <n}. Let ty = /(z,,Zy)be the affinity-
measure between two outputs Z/ and Zy, andffv), g(v), h(v) be nonnegative 
increasing functions of v. The idea based on the affinity-rule is that the 
greater the affinity-measure between X/ and Xy, the smaller the ~/(^,y) 
as the dis-affinity-measure between X/ and Xy , and the smaller the 
g-(/,y) dis-affmity-measure between z, and Zy ; /(Z;,y/) should be as 
small as possible for 1 < / < / . Therefore, we obtain a general framework as 
follows 
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max -ZZ/ (5 (x , ,Xy) )g ( / ( z , , z , ) ) -CÄ(^) , 
Z i , Z 2 , - - - , Z „ , ^ '=1 7 = 1 

/ /=1 

where C is a penalty factor which takes a tradeoff role among the multi-
objects functions. 

As a concrete realization, we take the decreasing function of the squared 
distance between two objects as the affinity-measure, a n d | | p - q | p as 
the dis-affmity-measure. Let f(v)=h(v)=g(v)=r(v)=v, ^(p,q) HI P ~Q IP ^ 
Z/ = ( Z / i , Z / 2 , " - , Z / c ) ^ , Z = (Z | ,Z2 ^---^Zj*)^ = (Z( i ) ,Z(2) ,*"5Z(c) ) , 

yi=(yn,yi2,"',yicy, l < / < / ; y y = 0 , y > / + l , and 
0̂ =(yUy2^"''^yny =(y(i).y(2)5---,y(c)). We always suppose Sy > 0 

without special declaration. Then we obtain the formal expression for semi-
supervised transductive learning machine based on the affinity-rule as 
follows 

min ZZ^(/- llz/-zy IP +c^, 
Z i , Z 2 , - - - , z « , ^ / = ! 7 = 1 

' ;=1 

(P) 

This is a convex programming and there is a globally optimal solution. Its 
Lagrangian function is 

/=1 7=1 
-M^. 

^ > 0 , / / > 0 . 

Note that 

n n c 

i=\ j=l <=I i=\ k=\ 

= E 
k=\ /=1 j ^ i i=\ j<i 

Let 
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Wij = -(Sij + Sß), J * /; Wii =0; W = (w /̂ )„><„; 
2 

^> ^^Wij, j jt i; D = diagid^,d2,--- ,d„), A = D-W; 

/ /=diag(U,--, l ,0,--- ,0), 

where there are / l's in / / , and 4̂ is a symmetric matrix. Therefore, 

k=\ I /=1 
I p = 2 Z z f , ) ^ Z ( , ) + - S | | z , - y , | P + ( C - A - / / ) # , ^ > 0 , / / > 0 . ( l ) 

To obtain the AT-7 points of (P), we calculate the derivative 

— = C- A-u 

= 4^Z(^)+ —/ , (Z ( t ) -y ( i ) ) 

When Z is the AT-r points of (P), then 

C - /I - // = 0, ;i > 0, // > 0, 
(2M + A/,)Z(t) =A/,y(i). (2) 

and the KKT conditions are hold 

/i(7i;i|z--y/IP^) = o, //^ = o. (3) 

In consideration of the limited space, we will omitt the following some 
lemmas and theorems, and prove them in another article. 

Lemma 1. The solutions of (P) with the condition (2) are constant values 
when A = 0 , which are trivial solutions. If the number of the labels for the 
labelled data is greater than one, then X>0 , 

Lemma 2. When /I > 0 , we have 
1) {21A + XIi) is invertible, and 
2) p{2l{2lD^XIi)-'W)<\, 
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We deal with the dual problem of (P) now. Substituting the results of (2) 
into (1), and using (2), we obtain 0 < Ä< C and 

* k=\ ^ k=\ 
(k)' 

So, when 0 < /I < C, by Lemma 2, the dual programming is 

1 c 1 c 
max - - Z/lyf^)//(2/^ + ÄIi)-^ ^liy(k) + -ll^ylk)hy{k) 

X I k=\ I k=\ 
0 < A < C 

{D). 

Lemma 3. For 0 < /I < C, L^ reaches the maximum when X = C, 

Theorem 4. For the nontrivial solutions^ (Z,^,/l , / /) = (Z,^,C,0) are 
the Lagrangian saddle-point of (P), and (Z,(^) are the globally optimal 
solution of (P), where 

Z = C{2lA^ChyY, and | - 7ZII Z/"Y/IP-

3. MAIN RESULTS 

To discuss the problem with real-time constrain, we study the situations 
with information increment. Suppose that the given n=l+u data have been 
expressed with the notations in Section 2. Let s =2l/C and denote 
respectively by A^, /^ (/?), Y^, and U^ as the aforementioned A, Ii, YQ 
and U in the case of n given data where U^ — sA^ + // {n) , 
Z{n) = U-^Y,^{sA„^h{n)yY, , /;(«) = diag(U,... 1,0,--.,0) , and 
rearrange these n data in such a way that the labelled data are in the front of 
the unlabelled data. We add a star to Z(n+1) to stand for the rearranging 
version of Z{n-\-l) with n+1 data. 

Now, we study the semi-supervised learning problem with information 
increment for different cases respectively. In consideration of the limited 
space, we will only give an outline of some proofs as follows. 

3.1) The {n+l)-\h point is unlabelled. Let 
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r„ n+\ 
Y. 
0 

ry \ 
M, Z(n^l) = , //(« + ! ) -

\^n+\J 

hin) ^ 
0 0 /(/7+l)x(«+l) 

and 

i«+i 

where ^„,„+i are an affinity vector between the («+7)-th point and the n data 
given before, that is, A,«+i ^ (ö î,«+i, ^2,«+i,'' *, ör„,„+i ) ^ , ^„+i,^ = ^„^^^j, and 

in+\ ^j^n+\ ün+XJ . 

By the analytic solution of transductive learning machine based on the 
affinity-rule, we get 

z (« + l) = [^A., + / / (« + !)]- ' i ; . i . 
Then 

5A.,Z(n + l) + //(« + l)[Z(« + l ) -y„„ ] = 0. 
Therefore we have 

Thus 

Z „ —lsAn-\-Ii{n) — -- An^n+\A^f^^^Zn\ ' / „ 

^n+\ 

/̂7+l 

- //^ 7 

<«+! 

By Sherman-Morrison-Woodbory formula 

we can write some simple expressions in Theorem 5. 

3.2) The (n+i)-th point is labelled, and its label is y„+i . Define an 
elementary matrix as 

P(/,7) = / - ( e , - e , ) ( e , - e ; ) ^ 
Then P(i,j)--P-^(ij). Let 

/'„+, = P(n + \,n)P{n +1,« -1)- • • P(« +1 , / + 2)P{n + !,/ + ! ) , 
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and Yn+\ = (YJ^y^+iY, With the similar notations in subsection 3.1 and the 
method in Section 2, we have 

where /(/+i) = ̂ i+\^f+] • Therefore we have 

rv ^ 
Ky n+\ J 

Z(n +1) = [sA„^, +Ii(n + l) + /(„ ,̂) ]-' 
(Y ^ 

So, 

^^n,n+\'^n + '5 'a„+iZ„+| + Z„+j "Yw+l = 0 

we obtain 

Z -

7 ^ 

^A +Ii{n)-
1 + ^<^/,+i 

>4 > 4 ^ U,{n)Y„-
1 + 5J„ 

•^/7,«+iy„+i J 

1 
\-\- sd^ 

" ( y / 7 + l '^^«,/7 + l '^A7) 
« + 1 

Since 

1 + sdn+\ 
c2 ^ 

l + ̂ J^+l 

c2 
1-

V 1 + sdn^x J 
TJ-^A , AT^ TJ-^ 

\^sd„^x -s^A 
.TJ-\A .A'^ t/«-', 

we may give some simple formulae in Theorem 5. 
According to the analytic expression for transductive leaming machine 

based on the affinity-rule, we can adjust the result in such a way that the 
labelled data are arranged in the front of the unlabelled data. Then 

Z*(^ + l) = P„^iZ(« + l) . 
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We now sumarize the cases of 3.1)- 3.2) in the following theorem. 

Theorem 5. Suppose that the solution of transductive learning machine 
based on the affinity-rule for the n data has been given as 
Z{n)=^U-^Yn -{sA„ + Ii{n))-^Yn . Let P„+i be the products of some 
elementary matrices defined as above. The incremental learning solution is 
that 

1) if the incremental information is the (/7+7)-th data which is an 
unlabelled point,then 

z„=[/+ 
1 

" « + 1 ^•^n,n+\'-'n •^n,n+\ 

]Z(n) 

- A'^ 7 

and 
Z*(/7 + l) = Z(w + l) = ( Z J , z , , 0 " 

2)if the incremental information is the {n+l)-th data which is a labelled point 
and its label is y„+i, 

Z - / -
[ + sä„+\ s A^^^_^^U„ A„^n+\ 

TJ-\ A AT [Z{n) 

1 + sd„+\ 
•U„ A.^7+iy«+i] 

1 
1 + sd^^x 

(y^+l ^^n,n+\^n) 

When arranging the labelled data in the former part and the n abeled data in 
the latter part of the solution vector, we obtain 

CONCLUSION 

We have described a semi-supervised learning problems by the 
transduction method in which both the labelled and the unlabelled data are 
used to derive the rule from particularity to particularity. Our transductive 
leaming machine based on affinity has several advantages. It is adaptable to 
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general input space objects and even can be extended to the situation with 
default values like those in Zhou et al. (1993). This method only requires a 
measure of affinity between the input objects and the input observation 
labels given by the supervisor to infer the proper labels on the other 
unlabelled objects. We have derived an incremental learning algorithm. 
Unlike other methods, when a new data comes, our method does not need to 
use both the original and the new data to solve the entire problem but uses 
the previous result and the new data to recurrence solution, and therefore is 
more adaptive to on-line processes. 
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