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Abstract: In this paper, we present a new support vector neural network inference 
system (SVNNIS) for regression estimation. The structure of the proposed 
SVNNIS can be obtained similar to that in the support vector regression (SVR), 
while the output of the SVNNIS is unbiased compared with the SVR and the 
weights can be updated by the recursive least square method with forgetting 
factor. The advantage of this system is its good generalization capability. The 
simulation result illustrates the effectiveness of the proposed SVNNIS. 
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1. INTRODUCTION 

The Support vector machine (SVM) is derived from the Vapnik-
Chervonenkis (VC) theory [1],[2]. Recently, SVM has also been applied to 
various fields such as classification, time prediction and regression. When 
SVM is employed to tackle the problems of function approximation and 
regression estimation, the approaches are often referred to as the support 
vector regression (SVR)[3]-[8]. 

The SVR type of function approximation is very effective, especially for 
solving the problems of multidimensional function regression estimation. 
Another important advantage for using SVR in function approximation is 
that the number of free parameters in the function approximation scheme is 
equal to the number of support vectors. Since the kernels of the SVR are 
similar to the basis functions of the RBF network, it is shown here that the 
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SVR can be reformulated as a RBF network with basis functions normalized. 
Jongcheol and Sangchul (2002)[9] proposed a new Support Vector Fuzzy 
inference system and used the SVM without bias. Nevertheless, the output of 
the SVR is biased, making it unsuitable for the neural network inference 
system. To overcome this limitation, we proposed a new support vector 
neural network inference system (SVNNIS). In contrast to the SVR, the 
output of the SVNNIS is unbiased. As the SVNNIS is a linear-in-weight 
network, the weights can be computed by the recursive least square method 
with forgetting factor. 

This paper is organized as follows. Section 2 briefly introduced the 
fundamental ideas for SVM. In section 3, the new SVNNIS is proposed and 
its training process is described. Section 4 gives experimental results. Those 
results all showed the superiority of SVNNIS to the original SVR. 
Conclusions are given in Section 5. 

2. SUPPORT VECTOR MACHINES 

The structure of the network and the training algorithm are important 
factors that affect the performance of the neural network. It is possible to 
reduce the modeling errors by increasing the complexity of the network. 
However, increasing the complexity of the network may overfit the data, 
leading to a degradation of its performance and reduced network 
transparency, between modeling errors and the complexity of the network. A 
principle generally adopted is to choose a network with the simplest 
structure, yet giving an acceptable precision. In [2] SVM are proposed with 
the network structure selected to satisfy a given precision. Suppose we have 
given data {(x,,3/j),(x2,;^2X"-'(%'J^/v)} with x. ei?'" and y^eR, 
where N is the number of training data, x^ is the ith input vector, and y^ is 
the desired output for the inputx.. The SVM for estimating the nonlinear 
function /(•) is 

f(x) = f^(a; -a,)K(x,,x) + b (1) 

a* and a. are lagrange multipliers. The kernel function K(x., x) is defined 
as a linear dot product of the nonlinear mapping, 

K(x,,x)=(/>(x,)-(^(x) (2) 
The coefficients a* and a^ of (1) are obtained by minimizing the 

following regularized risk functional R^^ [ / ] , which is a combination of the 
model complexity and the empirical risk, for given error bound e, 

Rjn = k4+C.±LAy) (3) 



Intelligent Information Processing II 487 

Here, ||w|| is a term which characterizes the model complexity, C is a 
constant determining the trade-off and the £ -insensitive loss function L^ {y) 
is given by 

11/ (•̂ ) ~ '̂l ~ ^ otherwise 

The minimization of regularized risk function in (3) can be converted to 

the following constrained optimization problem, 

Y N N N N ' 

minH(a,a*)=min-^2](ö;* -a.){a* -a.)K(x.,x)-Yjfc- -a.)y. -^sY{d; -a.) 

subject tol 
a,a* e[0,c] 

(5) 

where the kernel function used is Gaussian and defined as 

-. ^ 11-̂  ~ ^i II ^(x,,x) = exp(-l! ^ ) (6) 

where cr is a constant. Note that only some of lagrange multipliers are not 
zeros and the corresponding vectors are called the support vectors. 

3. NEW SUPPORT VECTOR NEURAL NETWORK 
INFERENCE SYSTEM 

In this section, the proposed SVNNIS is based on the multivariate 
nonlinear system, which is given by y = f(x^,X2,"',Xj^) . Now, we 
describe the learning algorithm adopted to train the SVNNIS, which is 
divided into two phases, the initial phase and the learning phase. 

The initial phase is to determine the network inference system structure 
and the corresponding initial network weights through the SVR theory. 
When the cost function in (4) and the kernel functions in (6) are chosen, the 

initial weights and the structure of SVNNIS can be determined by the SVR 

theory as stated in the previous section. In this paper. After applying the 

SVR theory, an initial SVNNIS is obtained as 

y = i ß^Kix,x^) + b (7) 
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where ß^ - a* - a^, y is the output of the SVNNIS, K{x, x.) is a kernel 
function of the SVR theory, / is the number of kemel functions, which is 
equivalent to the number of support vectors, and ß = [ß^,ß2,"',ßj]is the 
weight vector of the network. Since the SVR given by (8)can be considered 
as a two-layer neural network linear in its weights, it is intuitive to 
reformulate it as a RBF network using normalized basis functions. Now, 
Let's review the RBF network. First, the RBF network consists of m inputs 
with each input represented by n. univariate basis functions, the number of 
weights is n = T~[ n. . Let the centers of the basis function can be chosen at 
the input data, Xf = [x . j , • • •, x.^ ], This is not restrictive, as the centers of the 
basis functions for this class of RBF networks can be chosen freely. Then the 
RBF network is given by 

where d. is the ///z weight; and fU- (•) is the ith Gaussian basis function given 
by 

//,(x,) = exp 
I - - ' | 2 ^ 

(9) 

where y and x' are, respectively the spread chosen to ensure a thorough 
coverage of the input space, and the center of the Gaussian function. The 
centers x' can also be considered as the fuzzy basis vector [10], since ^ . (•) is 
the fuzzy membership function. The ith multivariate basis function is a 
product of the univariate basis functions obtained from the inputvariables, i.e. 

m 

Mi{x,) = Y[^,^j{x,j) (10) 
M 

Where ju^ j{x^j) = exp(-(x^y - x'.jY I2y^). The centers x' are chosen from 
the input data x . From (10), ̂ . (x ) = 1. It is assumed for simplicity that each 
input has the same number of basis functions, i.e., 

n^n^ ="' = n^ (11) 
If (8) can be reformulated to the form of (9), the weights can also be 
estimated using linear least-squares method to overcome the biased problem 
of the SVR. For convenience, let the weights of the network be denoted 

Then (8) can be rewritten as 
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Let 

and 

y,.=x^;^y(^;)+c (»2) 

Ä(x,) = Y,Kjix,) 
y=i 

i^ = 

K,{x,) ••• K„{x,) 

K,{x,) ••• K„{x,) 

L^Ä{x,) 

(13) 

(14) 

(15) 

As the kernels in (13) are multivariate basis functions given by (9) and 
the SV are the respective centers, the two-layer neural network given by (13) 
can be rewritten as a RBF network. In matrix form, (13) becomes 

Y = y/ 

'or 

ßn. 

+ 

O'n^X 

ßl^X _ 

(16) 

where Y = {y^,-'^yj^Y- Since ViCy(x^)//l(x.) = 1, then 

_ij 11 
Eq.(17) can be rewritten as 

y = ^ 

where { ,̂, • • •, ̂ ^ jare the weights given by 

'ei' 

ß ' n . 

+ z,'V 

'e-„,: 

ß'r< + \ . 

= L'V 

" Ö , " 

0„ 

(17) 

(18) 



490 Intelligent Information Processing II 

¥ 

"^'" 

0„ 

- L\j/ 

'dl' 

e'„_ 

+ ¥ 

'eu: 

ß:^^. 

(19) 

Rearranging (20), the weights 0^,-",0^can be expressed in terms of 

= {y/'^y/) ^y/'^Ly/ 

'0[ 

ß ' n . 

+ 

<^« + l 

ßn + \_ 

(20) 

[0n 

From (21), the following network is obtained. 

yt 
.j=^ (21) 

7=1 

Where N j(x.) = Kj (x.) / Ä(x.) is the normalized basis function. For 
convenience, the network given by (22) is referred to as the support vector 
neural network inference system (SVNNIS). The architecture of the SVNN 
is shown in Figure 1. 

Figure L The architecture of the SVNNIS 

In the second phase, the SV of the SWNNIS are obtained by minimizing 
(5), the weights {ö,, • • •, ^„} are to be adjusted via the recursive least square 
method with forgetting factor algorithm. Rewriting (22) in matrix form gives 

y,^B'{x,)d (22) 
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where B{x,) = [N, (x. ),•••, A ,̂ (3c.)]' and ^ = [̂ , ,•••, Ö J \ The cost 
function is 

Eithtc^"-\y>-Mt)f, (23) 

y,(t) = B^{x,)d ^ (24) 
The linear least-squares estimate of the weights 0 is 

^=[^VrV'J^, (25) 
Where 

^=[iV,(x,),..-,iV,(x,)] (26) 

and 

Y-[y„-,yJ (27) 

The learning algorithm is Where / is the epoch number, a e (0,1) is a 

forgetting factor, j). is the estimate of the y. given by 

d(t + 1) = 0(t) + r/(t + 1)^^ (/ +1), (28) 

a-'P(t)x.{t + l) 

Where 

7(/ + l) = — 
\-ha-'x.\t + \)P(t)x.(t + \) 

£(t + l) = y. - j),(r + l), 

P(t + \) = a -'P{t) - a -'r]{t + l)x .̂ {t + \)P{t\ 

P(0) = /. 

The SVNNIS learning algorithm is summarized as follows. 
Step 1) For a given set of training data \(^^, yXi = 1,2, • • •, N\ X- e R", y. e R; 
a set of testing data {(3ĉ , jv';̂ ), A: = 1,2, •••, A/'], x^ eR^^y,^ E7? ; . 
Step 2) Initialize the SVNNIS structure with the given kernel function, the 
loss function, the threshold 6"̂  used for the determining the termination 
condition of the learning algorithm. 
Step 3) The support vectors are obtained by the sequential minimal 
optimization (SMO) algorithm, so we can construct a SVNNIS. 
Step 4) For each training pattern, compute the estimated result by (8) and its 
error. 

Step 5) Update the weight vector 0 incrementally by (28). 

Step 6) Compute the error defined by (23), 

Step 7) If the termination conditions are not satisfied, then go to step 4; 
otherwise, termin ate the learning process. 
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4. SIMULATION RESULTS 

The simulations were conducted in the Matlab environment. The SVR 
toolbox provided by Gunn [11]. In this study, the results of various cases 
with different loss functions (the s - insensitive function with 0, 0.01), 
different a s, and different C s are presented for illustration. The forgetting 
factor a used in the simulation is 0.95. To analysis the performance of the 
proposed SVNNIS, the modeling error is defined by as Root Mean Square 
Error (RMSE): 

IE {y y^) 
E = 

N 
(29) 

where N is the number of data, y^^ and j)^ are the system and the model 
output. 

In this paper, the functions is defined as 
y = x^'' with JCG[ -2 ,2 ] . (30) 

The test data sets with 200 patterns are also generated for both examples. 
The testing RMSEs of the SVR are obtained for various loss functions with 
different parameters sets [cr,C}. Detailed results are shown in [12]. From 
the simulations it can found that the parameter sets for the best performance 
in different loss functions are different. For example, in the case of using 
the s -insensitive function with 8 =0.1 as the loss function, 
when {cr,C}={0.5,5}, the performance is the best and the testing RMSE is 
0.0743. For this case, after the SVNNIS learning, the RMSE becomes 
0.0484. The testing RMSEs of SVR and of SVNNIS with s =0.1 

Table J. 

T = 0.5 

T = OJ 

r = l 

T = 2 

T = 3 

C=0.5 

0.09153 

0.03358 

0.04112 

0.01874 

0.01801 

0.00205 

0.01506 

0.00051 

0.04518 

0.01218 

C=l 

0.08548 

0.07348 

0.02381 

0.01475 

0.01515 

0.00300 

0.01073 

0.00078 

0.02276 

0.00804 

C=5 

0.07438 

0.0484 

0.02582 

0.01220 

0.01513 

0.00638 

0.00779 

0.00217 

0.00986 

0.00365 

C==10 

0.09071 

0.07546 

0.02901 

0.01603 

0.01609 

0.00793 

0.00784 

0.00301 

0.00815 

0.00278 

C=50 

0.09478 

0.09355 

0.03919 

0.02688 

0.01842 

0.01091 

0.00892 

0.00506 

0.00675 

0.00202 

C=100 

0.09736 

0.9668 

0.04545 

0.03334 1 

0.01941 

0.01207 

0.00946 

0.00579 

0.00658 

0.00189 

The learned results of SVR and SVNNIS are respectively displayed in 
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Figure 2(a) and (b) for illustration. They are all the cases of using the £ -
insensitive function with£'=0 and {cr,C} = {2,100}. These results match 
with the concept discussed in[13]. It can be found that the proposed SVNNIS 
can reduce the overfitting phenomena. 
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Figure 2. (a). Result obtained by SVR for function y=x̂ ^̂  
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Figure 2. (b). Result obtained by SVNNIS for function y=x 2/3 

5. CONCLUSIONS 

In this paper, a new support vector neural network inference system 
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was proposed to enhance the generalization capability of the SVR 
approaches. The basis idea of the approach is to adopt the structure similar 
with that of the SVR, while the output of the SVNNIS is unbiased compared 
with the SVR, the weights can be updated by the recursive least square 
method with forgetting factor. The advantages of this system are their good 
generalization capabilities. The simulation result illustrates the effectiveness 
of the proposed SVNNIS. 
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