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Abstract We consider the problem of assigning transmission powers to the nodes 
of a wireless network in such a way that all the nodes of the network 
are connected by bidirectional links and the total power consumption is 
minimized. 

A new exact algorithm, based on a new integer programming model, 
is described in this paper together with a new preprocessing technique. 
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1. Introduction 
Ad-hoc wireless networks have been significantly studied in the past 

few years due to their potential applications in battlefield, emergency 
disasters relief, and other application scenarios (see, for example, Singh 
et al., 1999, Ramanathan and Rosales-Hain, 2000, Wieselthier et al., 
2000, Wan et a l , 2001 and Lloyd et a l , 2002). Unlike wired networks of 
cellular networks, no wired backbone infrastructure is installed in ad-hoc 
wireless networks. A communication session is achieved either through 
single-hop transmission if the recipient is within the transmission range 
of the source node, or by relaying through intermediate nodes otherwise. 

We consider the problem of minimum transmit power bidirectional 
topology in multi-hop wireless networks where individual nodes are typ­
ically equipped with limited capacity batteries and therefore have a re­
stricted lifetime. Topology control is one of the most fundamental and 
critical issues in multi-hop wireless networks which directly aff'ect the 
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Figure 1. Wireless communication Figure 2. Costs for the mathemati-
model. cal formulation IP. 

network performance. In wireless networks, topology control essentially 
involves choosing the right set of transmitter power to maintain ade­
quate network connectivity. In energy-constrained networks, where re­
placement or periodic maintenance of node batteries is not feasible, the 
issue is very critical since it directly impacts the network lifetime. 

In Ramanathan and Rosales-Hain, 2000 the problem of controlling 
topology using transmission power control in wireless networks is firstly 
approached in terms of optimization. It is showed that a network topol­
ogy which minimizes the maximum transmitter power allocated to any 
node can be constructed in polynomial time. This is a critical criterion 
in battlefield applications since using higher transmitter power increases 
the probability of detection by enemy radar. In this paper, we focus on 
the minimum power topology problem in wireless networks with omnidi­
rectional antennae. It has been shown in Clementi et al., 1999 that this 
problem is NP-complete. Related work in the area of minimum power 
topology construction include Wattenhofer et al., 2001 and Huang et al., 
2002, which propose distributed algorithms. 

Unlike in wired networks, where a transmission from i to m generally 
reaches only node m, in wireless networks with omnidirectional antennae 
it is possible to reach several nodes with a single transmission (this is 
the so-called wireless multi-cast advantage^ see Wieselthier et al., 2000). 
In the example of Figure 1 nodes j and k receive the signal originated 
from node i and directed to node m because j and k are closer to i 
than m, i.e. they are within the transmission range of a communication 
from i to m. This property is used to minimize the total transmission 
power required to connect all the nodes of the network. For a given set 
of nodes, the Minimum Power symmetric Connectivity (MPC) problem 
is to assign transmission powers to the nodes of the network in such 
a way that all the nodes are connected by bidirectional links and the 
total power consumption over the network is minimized. Having bidi­
rectional links simplifies one-hop transmission protocols by allowing ac-
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knowledgement messages to be sent back for every packet (see Althaus 
et a l , 2003). It is assumed that no power expenditure is involved in 
reception/processing activities, that a complete knowledge of pairwise 
distances between nodes is available, and that there is no mobility. 

2. Problem description 
In order to formahze the problem, a model for signal propagation 

has to be selected. We adopt the model presented in Rappaport, 1996. 
Signal power falls as ^ , where d is the distance from the transmitter 
to the receiver and K, is an environment-dependent coefficient, typically 
between 2 and 4 (we will set K = 4), Under this model, and adopting 
the usual convention (see, for example, Althaus et a l , 2003 and Monte-
manni et al., 2004) that every node has the same transmission efficiency 
and the same detection sensitivity threshold, the power requirement for 
supporting a link from node i to node j , separated by a distance dij, is 
then given by 

Pij = (dij)'' (1) 

It is important to notice that the results presented in this paper are 
still valid in case more complex signal propagation models more complex 
are taken into account. 

We assume that there is no constraint on maximum transmission pow­
ers of nodes. However, the algorithm we discuss in this paper can be 
extended straightforwardly to the case when this assumption does not 
hold. If, for example, node i cannot reach node j even when it is trans­
mitting to its maximum power (i.e. dfj > maximum power of node i), 
then Pij can be redefined as -hoo. 

MFC can be formally described as follows: 
Given the set V of the nodes of the network, a range assignment is a 
function r : F —> TZ^. A bidirectional link between nodes i and j is said 
to be established under the range assignment r if r(i) > pij and r( j ) > 
Pij. Let now B{r) denote the set of all bidirectional links established 
under the range assignment r. MFC is the problem of finding a range 
assignment r minimizing Yliev'^i'^)^ subject to the constraint that the 
graph (y, ß ( r ) ) is connected. 

As suggested in Althaus et al., 2003, a graph theoretical description 
of MFC can be given as follows: 
Let G = {V^E^p) be an edge-weighted graph, where V is the set of 
vertices corresponding to the set of nodes of the network and E is the set 
of edges containing all the possible (unsorted) pairs {i, j } , with z, j G F , 
i y^ j ' A cost Pij is associated with each edge {i, j } . It corresponds to 
the power requirement defined by equation (1). 
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For a node i and a spanning tree T of G (see, for example, Kruskal, 
1956), let {i^ir} be the maximum cost edge incident to i in T, i.e. 
{i^ir} ^ T and pu^ > pij V{i, j } G T. The power cost of a spanning 
tree T is then c{T) = Y2ievPiiT' Since any connected graph contains 
a spanning tree, and a broadcast tree must be connected, MFC can 
be described as the problem of finding the spanning tree T with min­
imum power cost c{T). This observation is at the basis of the integer 
programming formulation which will be presented in Section 3. 

3. An integer programming formulation 

A weighted, directed graph G' = (F, A^p) is derived from G by defin­
ing A = {{ij),{j,i)\{ij} e E}U {{i,i)\i G F } , i.e. for each edge in 
E there are the respective two (oriented) arcs in A, and a dummy arc 
(i,i) with Pa = 0 is inserted for each i e V. pij is defined by equa­
tion (1) when i ^ j . In order to describe the new integer programming 
formulation for MFC, we also need the following definition. 

Given (i, j ) G A, we define the ancestor of (z,j) as 

a Pij = mm^i^ky^EiPik} 

arg maxkev{Pik \Pik < Pij } otherwise 
^i ^ J ^ ^̂  yij — '''''''•'•'•{hk^eEWiks ^2) 

According to this definition, (i,a*) is the arc originated in node i with 
the highest cost such that p^^i < pij. In case an ancestor does not exist 

for arc (i, j ) , vertex i is returned, i.e. the dummy arc (i,i) is addressed. 
In formulation IF a spanning tree (eventually augmented) is defined 

by z variables: Zij = 1 if edge { i , i} is on the spanning tree, Zij — 0 
otherwise. Variable yij is 1 when node i has a transmission power which 
allows it to reach node j , pij = 0 otherwise. 

(IP) Min Y^ ajVij 

ihJ)eA 

s.t. Vij < Vi^i 

^ij S Vij 

^ij S Vji 

/ . % • 

i€Sj€V\S,{i,j}€E 

Zij € {0, 1} 

Vij e { 0 , i } 

> 1 

V(i ,j)eA,a)j^i 

y{i,j}eE 

y{i,j}eE 

yscv 

\/{i,j} e E 

V ( i , j ) e A 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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In formulation IP an incremental mechanism is established over y 
variables (i.e. transmission powers). The costs associated with y vari­
ables in the objective function (3) are given by the following formula: 

Cij=Pij~Piai y{hJ)eA (10) 

Cij is equal to the power required to establish a transmission from 
node i to node j (pij) minus the power required by node i to reach node 
a'j {Piai)' III Figure 2 a pictorial representation of the costs arising from 
the example of Figure 1 is given. 

Constraints (4) realize the incremental mechanism by forcing the vari­
able associated with arc (i,a^) to assume value 1 when the variable as­
sociated with arc (i, j ) has value 1, i.e. the arcs originated in the same 
node are activated in increasing order of p. Inequalities (5) and (6) con­
nect the spanning tree variables z to transmission power variables y. 
Basically, given edge {i , j} G E, Zij can assume value 1 if and only if 
both yij and yji have value 1. Equations (7) state that all the vertices 
have to be mutually connected in the subgraph induced by z variables, 
i.e. the (eventually augmented) spanning tree. Constraints (8) and (9) 
define variable domains. 

3.1 Valid inequalities 

A set of valid inequalities is proposed in Montemanni and Gam-
bardella, 2003 for a formulation described in the same paper. Most 
of these inequalities can be easily adapted to formulation / P , and the 
remainder of this section is devoted to their description in terms of for­
mulation IP. 

In order to describe these valid inequalities, we will refer to the sub­
graph of G' defined by the y variables with value 1 as G^. Formally, Gy — 
(V, Ay)^ where Ay = {(i , j) G A\yij = 1 in the current solution of IP}. 

Connectivity inequalities: since graph Gy must be connected by 
definition, each node i must be able to communicate with at least another 
node. Its transmission power must then be sufficient to reach at least 
the node j which is closest to it. This can be expressed through the 
following set of inequalities: 

yij = l V(i,j) eAs.t. a } = i (11) 

Bidirectional inequalities 1: for each arc (i, j ) G A, if yij = 0 and 
y^^i = 1 then the transmission power of node i is set to reach node â -

and nothing more. The only reason for node i to reach node a* and 

nothing more is the existence of a bidirectional link on edge { i ,aH in 
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Gy. Consequently y^i^ must be equal to 1. This is what the following 

set of constraints states. 

Va^^i > Via}. - Vij ^ihj) ^ ^ S.t. a) ^ i (12) 

Notice that if yij = 1 then y^^i = 1 because of inequalities (4) and 
consequently in this case the constraint does not give any new contribu­
tion. If yij = 0 and y^^i = 0 then again the constraint does not give any 

new contribution. 
Bidirectional inequalities 2: consider arc (i, j ) G A, where j is the 

farthest node from i (i.e. 7( '̂, k) ^ A^a\= j) and suppose yij — 1. The 
only reason for node i to reach node j is the existence of a bidirectional 
link on edge {i, j } in Gy. Consequently yji must be equal to 1, as stated 
by the following set of constraints. 

yji > Vij V(i, j ) G A s.t. ß{i,k) G A,ai=j (13) 

Notice that if yij — 0 the constraint does not give any contribution to 
formulation IP. 

Tree inequality: in order to be strongly connected, the directed 
graph Gy must have at least 2{\V\ — 1) arcs, as stated by the following 
constraint. 

^ yij > 2{\V\ - 1) (14) 
{h3)eA 

Reachability inequalities 1: in order to define this set of valid 
inequalities, we need the following definitions. 

Ga = {V, Aa) is the subgraph of the complete graph G^ such that 
^a = {(hj)\ 0.) = i}' Notice that \Aa\ = \V\ by definition. 

T^i = {j ^V\ j can be reached from i in G^}. 
The inequalities are based on the consideration that, since graph Gy 

must be strongly connected, it must be possible to reach every node 
j starting from each node i. This implies that at least one arc must 
exist between the nodes which is possible to reach from i in Ga (i.e. 
TZi) and the other nodes of the graph (i.e. V\JZi). The following set of 
inequalities arises: 

Y, yki>l yieV (15) 
(/c,/)6A, keUi^ievyjii 

Reachability inequalities 2: in order to define this set of vahd 
inequahties, we need the following definition. 

Qi = {j ^V\ I can be reached from j in Ga}. 
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These inequalities are based on the idea that, since graph Gy must be 
strongly connected, it must be possible to reach every node i from every 
other node j of the graph. This means that at least one arc must exist 
between the nodes which cannot reach i in Ga (i.e. V\Qi) and the other 
nodes of the graph (i.e. Qi). The following set of constraints arises: 

E yik>i V i G F (16) 
il,k)eA,ieQi, keV\Qi 

In the remainder of this paper we will refer to formulation IP rein­
forced with inequalities (11)-(16) as IPR. We will use this last, reinforced 
formulation because the extra inequalities strictly constrain y variables 
to assume quasi-feasible values (in terms of jp^^^^j only and this leads 
to much shorter solving times (see Montemanni and Gambardella, 2003). 

4. Preprocessing procedure 
The theoretical result described in this section is used to reduce the 

number of edges of a problem (and consequently the number of variables 
of formulation IP). 

Given a problem, we suppose we have an heuristic solution, heu^ with 
cost cost(heu) for it. Given a node i, all its transmission power levels 
that, if implemented, would induce a cost higher than cost{heu) can be 
ignored. More formally: 

Theorem 1. If the following inequality holds 

'^Pij + X ] P^^^ cost{heu) (17) 
kev\{{i}^{j}}, af=k 

then edge {i,j} can be deleted from E. 

Proof If pij is the power of node i in a solution, this means that the 
power of node j must be greater than or equal to Pji{= Pij), i.e. arc (j , i) 
must be in the solution, because otherwise there would be no reason for 
node i to reach node j . The sum in the left hand side of the inequality 
represents a lower bound for the power required by nodes different from 
i and j to maintain the network connected. The left hand side of in­
equality (17) represents then a lower bound for the total power required 
in case node i transmits to a power which allows it to reach node j and 
nothing farther. For this reason, if inequality (17) holds, edge { i , i} can 
be deleted from E, D 

It is important to notice that once edge {i^j} is deleted from E, the 
value of the ancestor of arc (i, k) ((j, /)) with a^ = j {aj — i) has to be 
updated to â - (a |) . 
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5. The iterative exact algorithm lEX 

In this section we describe an algorithm which solves to optimality 
formulation IP (i.e. the minimum power symmetric connectivity prob­
lem). 

It is very difficult to deal with constraints (7) of formulation IPR in 
case of large problems. For this reason some techniques which leave some 
of them out have to be considered. We present an iterative algorithm 
{lEX) which in the beginning does not consider constraints (7) at all, 
and then adds them step by step only in case they are violated. 

In order to speed up the approach, the following inequality should 
also be added to the initial integer problem IPR: 

E % > i ^ i - i (IS) 
{hJ}eE 

Inequality (18) forces the number of active z variables to be at least 
| y | — 1 - this condition is necessary in order to have a spanning tree -
already at the very first iterations of the algorithm. 

The integer program defined as IPR without constraints (7) but with 
inequality (18), is solved and the values of the z variables in the solution 
are examined. If the edges corresponding to z variables with value 1 
form a spanning tree then the problem has been solved to optimality, 
otherwise constraints (19), described below, are added to the integer 
program and the process is repeated. 

At the end of each iteration, the last available solution is examined 
and, if edges corresponding to z variables with value 1 generate a set CC 
of connected components with \CC\ > 1, then the following inequalities 
are added to the formulation: 

E zij > 1 yc eCC (19) 
iecjev\c, {hj}eE 

Inequalities (19) force z variables with value 1 to connect the (else­
where disjoint) connected components in CC to each other. 

6. Computational results 

In this section we present some experiments aiming to evaluate the 
performance of the preprocessing technique described in Section 4 and 
of the exact algorithm presented in Section 5. 

Tests have been carried out on problems randomly generated as de­
scribed in Althaus et al., 2003. For each problem of size \V\ generated, 
\V\ points - they are the nodes of the network - have been chosen uni­
formly at random from a grid of size 10000 x 10000. 



Minimum Power Symmetrie Connectivity Problem in Wireless Networks 505 

The preprocessing technique and the lEX algorithm have been im­
plemented in ANSI C, and the callable library of ILOG CPLEX 6.0 (see 
http://www.cplex.com) has been used to solve the integer programs en­
countered during the execution algorithm I EX. Tests have been carried 
out on a SUNW Ultra-30 machine. 

In this paper consider networks with up to 50 nodes, but it is im­
portant to notice that in case the algorithm is used within a dis­
tributed/dynamic environment, the typical local vision of a node can 
be estimated in a few tens of nodes, that may be reflected into a much 
larger global network. 

6.1 Preprocessing procedure 
In order to apply the preprocessing procedure described in Section 

4, a heuristic solution to the problem must be available. For this pur­
pose we use one of the simplest algorithms available, MST, which works 
by calculating the Minimum Spanning Tree T (see Prim, 1957) on the 
weighted graph with costs defined by equation (1), and by assigning the 
power of each transmitter i to Puj,^ as described near the end of Sec­
tion 2. More complex algorithms, which guarantee better performance, 
have been proposed (see, for example, Althaus et al., 2003). It is worth 
to observe that if these algorithms have had been adopted, also the 
preprocessing technique would have produced better results than those 
reported in the remainder of this section. 

In Table 1 we present, for different values of | F | , the average percent­
age of arcs deleted by the preprocessing procedure over fifty runs. 

Table 1 suggests that the preprocessing technique we propose dra­
matically simplifies problems. It is also interesting to observe that the 
percentage of arcs deleted considerably increases when the number of 
nodes {\V\) increases. This means that, when dimensions increase, the 
extra complexity induced by extra nodes is partially mitigated by the 
increased efficiency of the preprocessing technique. This should help to 
contain the complexity explosion faced when the number of nodes goes 
up. 

6-2 lEX algorithm 

In Table 2 we present the average computation times required by 
different exact algorithms to solve to optimality problems for different 
values of |y | . Fifty instances have been considered for each value of |y | . 

The results in the second column of Table 2 are those presented in 
Althaus et al., 2003 (obtained on an AMD Duron GOOMHz PC) multi-
phed by a factor of 3.2 (as suggested in Dongarra, 2003). This makes 

http://www.cplex.com
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Table 1. Preprocessing technique. 
Average performance. 

Table 2. Exact algorithms. Average 
computation times (sec). 

1̂1 
10 
15 
20 
25 
30 
35 
40 
45 
50 

Arcs deleted (%) 
57^556 
63.781 
66.526 
70.393 
72.464 
74.647 
76.106 
77.568 
78.688 

1̂1 

1Ö~ 
15 
20 
25 
30 
35 
40 

Althaus 
et al., 
2003 

2.144 
18.176 
71.04 
188.48 
643.2 
2278.4 
15120 

Montemanni 
and 

Gambardella, 
2003 
0.192 
0.736 
8.576 

33.152 
221.408 
1246.304 
9886.08 

lEX 

0.052 
0.196 
0.601 
2.181 
13.481 
28.172 
79.544 

them comparable with the other results of the table. In the third col­
umn the results presented in Montemanni and Gambardella, 2003 are 
summarized. Table 2 shows that algorithm lEX outperforms, in terms 
of time required to retrieve optimal solutions, the other exact methods. 
In particular it is important to observe that the gap between the com­
putational times of this algorithm and those of the other methods tends 
to increase when the number of nodes considered increases. 

7. Conclusion 
In this paper we have considered the problem of assigning transmission 

powers to the nodes of a wireless network in such a way that all the nodes 
are connected by bidirectional links and the total power consumption is 
minimized. 

We have presented a new integer programming formulation for the 
problem and a new algorithm, based on this formulation, which retrieves 
optimal solutions according to the model considered. A preprocessing 
technique has been also proposed. 

We are currently researching on a framework where the algorithm we 
propose is used locally at each node of a distributed/dynamic network. 
The objective will be to evaluate the behavior of our novel approach in 
this context. 
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