
FINITE SEGMENTATION FOR XML CACHING

Adelhard Türling and Stefan Böttcher
Faculty of electrical engineering, computer science and mathematic, Fürstenallee 11, D-
33102 Paderborn, Germany, Email: Adelhard.Tuerling@uni-paderborn.de, stb@uni-
paderborn.de

Abstract: XML data processing often relies on basic relations between two XML
fragments like containment, subset, difference and intersection. Fast
calculation of such relations based only on the representing XPath expression
is known to be a major challenge. Recently XML patterns have been
introduced to model and identify handy subclasses of XPath. We present the
concept of ST-pattem segments that uses sets of adapted tree pattems in order
to describe a finite and complete partitioning of the XML document's data
space. Based on such segmentations, we present a fast evaluation of XML
relations and show how to compute a set of pattems for an optimal
segmentation based on frequent XPath queries.

Key words: mobile databases; XML; query pattems; XPath; caching.

1. INTRODUCTION

Whenever XML data is exchanged, processed and cached on computers
within a network, data management meets new challenges. For example, in
networks of resource-limited mobile devices, efficient usage of data storage
and data transportation over a wireless network is a key requirement̂ ^"^ .̂ In
such a network, a common situation is that a client queries for data of a
dedicated source. Within such a network, it may be of considerable
advantage to share and exchange cached XML data among several
neighboring clients, compared to a solution where data is only transferred
between each requesting client and a dedicated server. One of the main new
challenges in such a data sharing scenario is the organization of the data
space which is shared among the clients. This includes specifying how the
data space can be divided into handy segments, how to profit from

mailto:Adelhard.Tuerling@uni-paderborn.de
http://paderborn.de

184 Adelhard Türling and Stefan Böttcher

distributed data according to these segments, and how cooperative usage in a
network can enhance data processing. A basic challenge of fragmentation is
to identify a finite set of atomic XML fragments for cooperative usage.
Whether or not data segments have to be requested in order to fulfill an
operation, must be decided by data processing components on the fly,
without losing time for extensive intersection tests and difference fragment
computations on XML data. To enable collaborative use of a so called
segmentation, we identify two requirements for the segmentation's atomic
data units, namely the segments. Firstly, segments can be easily (re-)joined
and identified (minimal operating costs). Secondly, most query results can
be represented by such segments or joins of such segments with little or no
dispensable offset (fitting granularity). Obviously there is a conflict between
the requirement of a fitting granularity and the need of a finite and
collaboratively accepted segmentation. We address this area of conflict and
show how to find an optimal segmentation based on access frequency
analysis of XML patterns.

The remainder of our paper is organized as follows. In Section 2, we
propose to expand the common definition of patterns towards what we call
ST-pattem and give a short introduction in the main features and properties.
In Section 3, we show in detail how to use the most frequent patterns as a
base to decompose the data space into disjointed segments. In Section 4, we
discuss related work. And within section 5, we present the summary and
conclusion of our contribution.

<!ELEMENTcarEMPTY>
<!ATTLISTcar

name CDATA #REQUIRED
year CDATA #REQUIRED
price CDATA #REQUIRED
type (truck | convert | limo)

#REQUIRED
>
<!ELEMENT contact EMPTY>
<!ATTLIST contact

name CDATA #REQUIRED
image CDATA#REQUIRED

>
<!ELEMENT offer (seller. car+)>
<!ELEMENT offers {offer+)>
<!ELEMENT seller (contact+)>
< IATTLIST seller

town CDATA #REQUIRED

name name type

Figure 1. Example DTD Figure 2. Example for ST-pattem

Finite Segmentation for XML Caching

2. FOUNDATION AND ST-PATTERN

185

In this section, we shortly review the concept of DTD graphs and XML
patterns. We introduce search-tree patterns (short ST-pattem) based on
additional nodes namely split nodes that partition a node's child set. We use
ST-pattems as logical data descriptions for data processing that are easy to
handle and that allow a good degree of granularity. We here withhold the
formal and complete definition of ST-pattem and their operations due to
page limitation and refer to future publications. Instead, we give some
examples and an overview of properties.

2.1 Definition of the DTD graph

DTDs are schema definitions for XML documents. As long as the DTD
is acyclic, such a DTD can be rolled out and represented as a tree. Each
element, text-node and attribute occurring in such a DTD is converted to a
node in the DTD graph. The parent-child relation (and the attribute-relation)
between the elements and the attributes of a DTD are represented by directed
edges within the DTD graph. A DTD graph for the DTD of Figure 1 can be
seen in Figure 3. In a DTD graph, a '*' is concatenated to a node's label to
indicate that the DTD allows the occurrence of that node at that position in
an arbitrary quantity, e.g. for ca r , o f f e r and c o n t a c t . Ignoring the
special annotation '*', a DTD graph can also be seen as an XML pattern.

Q offer

year pnce type

[truck, convert, limo]

Figure 3. Example DTD graph

2.2 XML patterns

XML tree patterns are used in the context of XML as expressions that
describe XML fragments. These patterns can be seen as tree models for
XML queries. Nodes of a pattern can be labeled with any tag name, the
wildcard '*' or the relative paths V/', where '*' indicates any label and 7/'
represents a node sequence of zero or more interconnected nodes. Directed
edges represent parent —> child relations. These edges must correspond to

186 Adelhard Türling and Stefan Böttcher

relations defined in a DTD, e.g. fulfill the restriction of a single incoming
edge for each node, to be valid according to the given DTD. Furthermore,
we use the same terminology for patterns as used for XML documents. For
example, we call all nodes that can be reached by outgoing edges the node's
children, the incoming edge leads to the node's parent, all children of a node
are in sibling relation and the transitive closure of all nodes reached by
outgoing (incoming) edges is called the set of descendent (ancestor) nodes.

offers (/) offers

offer vJoffer

a)
name year type

t) c)
name year

a)

'[2000, ^j Wpiice iJtnick

Figure 4. Pattern c) is the intersection of
the two ST-pattems a) and b).

Figure 5. The 3 most frequently
accessed patterns.

2.3 ST-patterns

In contrast to basic XML patterns^, ST-patterns are restricted to rooted
patterns because they describe XML fragments that correspond to absolute
XPath expressions. Li addition, we introduce a new node type called split
node which contains simple selection information as used in XPath filters.
As an example in Figure 2, the additional nodes labeled 'truck' and 'type'
restrict the pattern to cars of type truck. Such patterns support a minimal
subset of possible filter expressions known from XPath, just enough to
describe the granularity required. With the DTD given in Figure 1, an XPath
query which asks for car-offers of type 'truck' and which is interested in car-
names and available car-sellers could be:

offers/offer/* [@type='truck' or self: :name()='seller']//@name.

Figure 2 shows the corresponding ST-pattem. We call an XML data-
fragment that is selected by an ST-pattem the fragment related to a pattern or
for short, pattern fragment.

Finite Segmentation for XML Caching 187

2.4 Operations and properties of ST-patterns

Split nodes are of a specific comparison type and contain specific
decision criteria. We distinguish between two types of split nodes: range-
based and equality-based split nodes. See Figures 4a and 4b. Split nodes are
related to two nodes in the ST-pattem. The two related nodes are called split
parent and reference node (short ref. node). The ref node must be a leaf
node in the pattern. In our examples throughout the paper, we visualize a
split node and its ref node with an identical texture where the split node is
gray and the ref. node is white, indicating that the ref node must fulfill the
split node's decision criteria. The split parent is the first node on the ref.
node's ancestor-axis in the pattern that is marked as multiple occurring in the
DTD graph. This relation indicates that the sub fragment represented by this
split parent is constrained by the split node. The c o n t a c t , o f f e r or c a r
node might be split parents in our example. A split parent's sub decision tree
can have multiple split nodes, which follow a predefined tree-level-based
order. We call the complete sub tree of a split parent, its sub decision tree.

We define two ST-pattems to be space equal, if they describe the same
pattern fragment for a given DTD and for any XML document valid to that
DTD. The two operations compress and extend are used to space equally
transform ST-pattems e.g. for normalization purposes.

The three operations union, intersection and difference map two given
ST-pattems onto a resulting ST-pattem. For any valid XML document, the
resulting ST-pattem describes a pattem fragment that is equal to the result of
the given operation applied to the pattem fragments of the two operands.

See Figure 4c as an example for an intersection of the pattems 4a and 4b.
We say that two ST-pattems are disjointed, if for every pair of
corresponding leaf nodes that they have in common, (1) the two nodes must
be ref. nodes and (2) the split nodes they belong to have no overlapping
decision criteria.

Evaluating operations on ST-pattems can be done by adapting fast XML
match algorithms. Similar to the more complex XPath expressions, ST-
pattems are used to select fragments of an underlying XML document and
thereby address the document with a fine granularity. For example, any ST-
pattem can be split into two pattems, where each of the resulting pattems
addresses a fragment with about half the size of the fragment the original
pattems addressed. Thus, any fragmentation granularity can be achieved.

188 Adelhard Türling and Stefan Böttcher

3. SEGMENTATION

In Section 2, the definition and some operations for ST-pattems have
been introduced. Now we show how these patterns can be used to organize
fast XML data processing. Therefore we reconsider that every ST-pattem
(based on the DTD) represents a pattern fragment in an XML document
(usually in an underlying XML database).

We use pattern fragments as atomic data items in any data processing. In
addition, a pattern fragment belongs to a specific pattern segmentation. A
pattern segmentation represents a complete decomposition of the whole
underlying schema S and is based on the given DTD tree. Beyond the DTD
tree detail level, a schema S might even be decomposed by additional
equations or ranges on specified node values to support specific
requirements. In this section, we shape the requirements for segmentations
and show how they are constructed relying on ST-pattems.

3.1 Requirements for a fitting segmentation

It is elementary for the success of data processing to find the appropriate
set of patterns which represents the segmentation. Their corresponding
pattern fragments are the atomic data units our XML processing is based on.
Thus, the patterns shall represent fragments that are handy in the following
sense: For a given XPath request, it shall be easy to find the optimal set of
patterns where the union U of those pattems relates to an XML fragment that
is the smallest possible superset of the XML fragment represented by the
XPath request. The parts of the fragment related to U, that are not needed to
answer the XPath request, should be minimal or none for frequent requests.
We call these parts clipping offsets of pattems corresponding to an XPath
request. Data transfer overhead caused by the segmentation must be minimal
and come out as a clear advantage compared with savings based e.g. on
caching.

Finite Segmentation for XML Caching 189

name year price typeiiaiiie year pnce type aajiie yeai price K-pename year pnce type

Figure 6. Colored schema graph (numbers represent colors)

3.2 Pattern segmentation

Formally, we define:
A pattern segmentation S is a set of pair-wise disjointed ST-pattems {pi,

p2j ... 5 Pn}where the union of all pi results in a pattern Pcompiete(S)
representing the whole data space, e.g. given by the corresponding DTD.
The graph representation of Pconpiete(S) is called the segmentation's schema
graph. Notice that the DTD graph is a valid schema graph. In general, there
are many different valid segmentations for a single schema graph. For the
DTD graph, the DTD's pattern itself as well as S = {//*} are valid
segmentations with |S| = 1. Figure 8 shows a segmentation with five
patterns. Figure 6 shows the corresponding schema graph. To encode the
specific segmentation in a schema graph, we introduce colored schema
graphs. For example in Figure 6, the numbers inside the nodes represent
their colors. All leaf nodes that are not ref nodes have an associated color
identifying the pattern in the segmentation they belong to. The following has
to be proven to verify that a set of ST-pattems S is a segmentation:
• For each pair of patterns in S, the intersection test shows that they are

disjointed.
• Pcompiete(S) must bc spacc equivalent to the underlying DTD's pattern.

3.3 Glue nodes and the ID constraint

As the set of ST-pattems of a segmentation are pair-wise disjointed, the
pattem fragments they describe, describe a pair-wise disjointed partitioning
of the XML document's leaf nodes. For a given segmentation, a major
requirement is to guarantee that the union, intersection and difference of any
two pattems of the segmentation can also be applied to their related XML
fragments. Thus, we have to assure to track the pattem fragments'

190 Adelhard Türling and Stefan Böttcher

relationships to each other. In the context of XML trees, one-to-one and one-
to-many relationships are supported" .̂ For example, in the segmentation of
Figure 8, the segment defined by pattern ps has a one-to-many relationship to
all other segments. The segments defined by the patterns pi, p2, P4, Ps all
have a one-to-one relationship to each other. We define some multiple
occurring nodes from the DTD to be glue nodes which we require to have a
unique key attribute. If the DTD doesn't support the required IDs they can
be added in a preprocessing step. We don't have to apply the union,
intersection or difference operation to the pattern fragments directly. It is
enough to calculate the operations on the corresponding pattern and to use
the resulting pattern as a filter for a joined pattern fragment. To guarantee
that any two pattern fragments can be joined, we use pairs of IDs and
references. In our small example, the c a r node and the o f f e r node are
both glue nodes and as the DTD does not support ID attributes for them, we
have to provide additional ID attributes. To identify a segmentation's glue
nodes, each pair of patterns of the segmentation is tested. A pair's glue node
is the first multiple occurring node they have in common in the colored
schema graph starting at the patterns' leaf nodes. Based on the glue node's
ID, any relationship between XML fragments that correspond to a
segmentation's patterns can be joined. In our example, the fragment
corresponding to the pattern ps can be joined with any fragment
corresponding to pattem p2 up to ps (one-to-many relationship), by using the
o f f e r ID as a join criterion. Fragments corresponding to the pattems pi, p2,
P4, Ps can be joined by using the c a r ID as a join criterion (one-to-one
relationship). As we see, the number of glue nodes is bounded by the amount
of multiple occurring nodes, but can be smaller and is segmentation
dependent. For example, the multiple occurring c o n t a c t node is not a glue
node, since it is not needed to join pattem fragments.

Input: given DTD graph
Sorted list of most frequent query pattems L= {qi,..., qn}
Initialize: S = {//*}
Ref node order: O = {0}
Max. node index: Î ax = const, (e.g. 2)
Clip tolerance T = const, (e.g. 0.9)
Max |S|: jS^x = const, (e.g. 100)
10 For each qi inLdo {
11 For each pj in S do {

4 XML supports special id/id_ref attributes to support n to n relations. Our techniques support
such relationships but are not optimized for them.

Finite Segmentation for XML Caching 191

12 Ifintersect(qi,pj):7^0 {
13 Ptempi = compress (intersect (qi, pj))
14 Ptemp2 = compress (difference (qi, pj))
15 If (max_amount_split_node_series(ptenpi) < Imax) and
16 (max_amount_split_node_series(ptenp2) <̂ Imax) and
17 ((size(pattem_fragment (ptempi) / size(pattem_fragment (pj) < T)) or
18 (size(pattem_fragment (ptempi) / size(pattem_fragment (pj) < T))) {
19 remove pj from S
20 if not contained(Stempi.newRefNode,0)

add(Steii]pi .newRefNode,0)
21 if not contained(Stemp2-newReflSrode,0)

add(Stemp2.newRefIS[ode,0)
22 add(Stempb S)
23 add(Stemp2, S)
24 } }
25 break if | S |>= |SU
25 }

Figure 7. Segmentation algorithm

3.4 Construction of the finite pattern segmentation

The amount of different patterns corresponding to a non-recursive DTD
is already finite, if split nodes are not used, because there is a finite set of
possible patterns for each set of edges. A pattern with the maximum amount
of edges and nodes is the DTD graph itself. As we introduce split nodes, we
have to constrain the size of segmentations by a threshold |S|max. The value
of IS Imax correlates with the granularity of the segmentation and must be
adjusted application-context dependent, considering DTD complexity and
the amount of represented data. In order to keep the pattern set of a
segmentation finite, we restrict the amount of segments in a segmentation to
a fix maximum |S|niax- For example, for the DTD graph given in Figure 3, a
valid segmentation with |S| = 5 is shown in Figure 8. Additionally we might
constrain the depth of sub decision trees to limit the segmentation's schema
graph complexity and the amount of ref. nodes in a single pattem.

A good solution to establish a fitting segmentation is to analyze the
access frequency to certain tree patterns and to build a segmentation
according to the most frequently accessed pattem. Our algorithm is based on
that concept and takes a sorted list L of the most frequent requests as input.
The resulting segmentation can guarantee that any of the requests in L can
be answered exactly by joined pattem fragments of the segmentation. The
algorithm of Figure 7 creates such a segmentation. Starting with an initial
segmentation S = {//*}, it splits pattems until |S| = |S|niax. For each frequently

192 Adelhard Türling and Stefan Böttcher

requested pattern qi of L, it has to be checked with which of the exiting
patterns pi in S it intersects (Hnel2) and for each intersecting pattern pj the
intersection and difference has to be calculated (lines 13, 14). Thereafter,
each such pj is removed from S, and the segments intersect(qi,, pj) and
difference(qi,, pj) are added to the segmentation (lines 19, 22, 23). The ref
node order simply correlates with the sequence in which they are first
referenced by a split node (lines 20, 21). Iterating the above steps, we keep
the set of patterns in the segmentation disjointed and thus the segmentation
valid. Figure 8 shows a possible resulting segmentation for |S|max=5.
Constructing a segmentation according to the presented algorithm, patterns
that are used to answer frequent requests are in general very specific and
represent a small segment of the XML document. In comparison,
infrequently requested patterns are in general more unspecific in the sense of
conglomerations and are related to bigger segments in the XML document.

otfei

cm*

iiottxixck O price

2000. <x]

name year type name ye?Ji type

Pi P2

name year t '̂pe name yenr type

P3 P4 P5

Figure 8. A pattern segmentation for the given DTD

3,5 Thresholds

In addition, the algorithm provides the two thresholds Imax and T to adjust
the basic segmentation algorithm (lines 15 to 18).

The threshold Imax constrains the amount of descendent sequenced split
nodes in the resulting patterns. Using this threshold can compensate two
drawbacks. First, such sequences can expand a schema graph's sub-tree
exponential. Since the schema graph is the 'construction plan' for any
further data processing, transmitting and fast processing of the schema graph
are important operations and a rather compact graph is preferred. Second,
such series result in related XML fragments that are in a one-to-one relation
which need to have ID nodes as introduced in 3.3. T is a threshold that

Finite Segmentation for XML Caching 193

corresponds to the degree of acceptable clipping tolerance. Since the
transmission of a slightly bigger pattern fragment is acceptable, this
threshold can prevent unneeded granularity. For this threshold, it is
important to take the related pattern fragment's size in the XML document
into account, rather than just to stick to the pattern's relative fraction of the
schema graph. As mentioned, both thresholds must be set up according to
the application's domain. The algorithm of Figure 11 creates the valid
segmentation shown in Figure 8 for the input L = {5a, 5b, 5c}, T=l, Î ax ^ 2
and the given DTD.

3.6 Mapping from and to XPath

In general, applications based on XML access XML fragments by XPath
expressions. Mapping such an XPath query to patterns of a finite
segmentation is easy. Since all patterns of the segmentation are disjointed,
we just have to identify which patterns contribute to the result. Therefore, we
represent the colored schema graph as an XML document and query it with
the given XPath expression. Each color in the result represents a contributing
pattern and the join of the related pattern fragments is the minimal superset
of the XML fragment selected by the given XPath expression. If after
joining the exact result is needed, the obtained superset can be queried by the
standard XPath evaluation engine, e.g. a SAX filter. Mapping from ST-
pattems to XPath is even simpler. Each node of a pattern represents a node-
test, each edge a child-axe and each split node a conjunctive-filter-criterion
of its split parent in a corresponding XPath expression.

3.7 Segmentation in application context

As seen in Section 3.5, a fitting segmentation, e.g. for the system
introduced in Section 2, can be calculated in a preprocessing step.
Thereafter, the colored schema graph, e.g. in number scheme representation
form, can be published. Even more, we suggest adapting the segmentation
continuously according to query behavior, if the overall clients' focus
changes. For example, think of a train schedule where the focus changes
naturally with elapsing time. In such cases, an update of the colored schema
graph and the information about some invalid pattem segments has to be
distributed. A centralized technique, that keeps track of focus changes, is to
let the client send the original XPath expression with the request towards the
server. The server or an intermediate caching server can analyze the query,
can match it with the requested pattem, and can calculate the amount of data
that is not needed in the answer-pattern fragment. This information can be
used in order to identify inefficient segmentations and can thereby lead to an

194 Adelhard Türling and Stefan Böttcher

adjustment of the segmentation and a reduced response. Cache management
for server and cUent can use the colored schema graph as index structures for
lookups and store the pattern fragments in joined form in their memory.
Thus, finding the set of missing and locally available segments can be done
fast by querying the locally available colored schema graph.

As the originator of a request joins the pattern fragments as they arrive,
the IDs introduced in Section 3.3 are used for accurate matching of any two
pattern fragments using join optimization concepts^ '̂ ^̂ . Any cache server
contributing more than one segment can even send its pattern fragments in
joined form to reduce calculation overhead and transmission of redundant
ref nodes in one-to-one relations. An alternative solution to the usage of
filters to obtain the exact answer to the last XPath request as introduced in
Section 3.7, is to mark nodes during the join process as 'not belonging to the
current request' and thus defining a temporary view.

As well as changes in the segmentation, updates in XML documents
must be propagated. A simple solution could be a master server that
coordinates updates and distributes the list of effected pattern fragments to
indicate that they are outdated. Since ST-pattems guarantee that their
decision criterions (the ref nodes) are included in the pattern fragment,
finding and updating affected patterns can be performed in a decentralized
manner and thus only a moderate amount of communication between master
server and any cache server is needed. For example, after updating an
outdated value, the client can decide whether the changed node still belongs
to the original pattern or belongs to a different pattern and can publish that
information.

3.8 Properties of finite segmentations

Besides the properties of ST-pattems discussed in Section 2, patterns of a
finite segmentation have some properties which make them perfectly
suitable for XML data processing. As seen in Section 3.6, it is easy to find
the set of needed patterns to answer any query. The found set is optimal,
since all patterns in the segmentation are disjointed. The algorithm of Figure
7 finds a finite segmentation providing pattern fragments that answer
frequent queries with no or minimal clipping offset. With finite
segmentations, we have the instrument to build fast data processing modules
for XML data. As discussed in Section 3.6, the use of DD nodes in coexisting
pattern fragments with one-to-one relations turn out as no disadvantage,
since they are transferred and stored redundancy free, if accessed in
common. The additional IDs introduced to manage union-, intersection- or
difference-joining of pattern fragments are an acceptable overhead compared
to the achievable savings, e.g. with finite segmentation caching.

Finite Segmentation for XML Caching 195

4. RELATED WORK

Tree patterns are well known in the context of XML data processing and
especially used to improve query response times. To search frequent XML
tree patterns in XML documents^ is a widely adapted technique and is used
for various applications, ranging from indexing optimal access pathŝ "^ to the
formulation of various classes of XML queries"̂ '̂ . We follow these
approaches, as we use frequent access tree patterns to achieve optimization
goals. With the latter two approaches, we have in common to use tree
patterns to specify subclasses of queries. Tree pattems represent the tree-
structure of XML query languages like XPath^ or XQuery^, and are treated
separately from regular expressions also found in such queries. In the
context of querying and maintaining incomplete data, Abiteboul^^ shows a
solution for XML data. The presented incomplete data trees are similar to
our colored schema graphs, in that they use conditions on the elements' data
values and are based on DTDs. Different to our approach, their incomplete
tree is used for fast calculation of missing parts in a single client.

In comparison to all these approaches, we use tree pattems to identify
sets of pattern fragments and include some information also found in regular
expressions and handle them in a search tree manner. A caching strategy
based on frequently accessed tree pattems is introduced in Yang^. We extend
the approach of classical pattems presented in Yang^ to ST-pattems
including predicate filters, which enable us to express finer XML
granularity. Our approach also differs in that we support cooperative caching
by sets of pair-wise disjointed pattems.

A different approach for XML caching is to check whether cached data
can contribute to a new request by testing the intersection of cache entries
and an XPath query^^ and thereafter compute difference fragments as partial
results^^. Such tests are known to be NP-hard for XPath expressions^^' ^̂ and
difference computations are known to be resource consuming. In
comparison, our approach focuses on efficient computation and thereby
requires only minimal resource consumption.

5. SUMMARY AND CONCLUSIONS

We expect finite pattem segmentation to be a solution for splitting a huge
XML document into handy atomic units to support fast data processing
based on simple and fast intersection and containment decisions, e.g. in the
area of cashing, replication or query processing. The drawback of using
normalized data units is a clipping offset caused by answering a request by a
slightly bigger superset. This is acceptable, since frequent requests can be

196 Adelhard Türling and Stefan Böttcher

answered with minimal or no clipping offset based on a well adjusted
preprocessed segmentation. Especially in the area of mobile data processing,
it is important to minimize communication costs and preserve the mobile
client's resources. Besides communication resources, we keep shared CPU
resources to a minimum because costly intersection or containment tests are
reduced to simple lookups. In the context of collaborative data processing, it
is important that participating clients interact and interchange data based on
a set of predefined data units. Otherwise, advantages of collaboration will be
consumed by adjusting and comparing (slightly) different data objects.

Currently we implement a mobile peer-to-peer approach which will use
finite segmentation caching for any data exchange. In our further research,
we address the challenge of segmentation adoption and update propagation
for the overall system. Adapting ST-pattems towards dependent patterns, not
containing the decision criteria, and distributed query processings^' ^̂ based
on ST-pattems, seem to be further promising steps. We use these search tree
patterns (ST-pattems) to model virtual schema expansion which we intend to
discuss in detail in future publications. Our solution is especially tailored to
adapt to context switches in query behavior supporting, e.g., a fine
granularity in hot spot areas.

REFERENCES

1. Chin-Wan Chung, Jun-Ki Min, Kyuseok Shim: APEX: an adaptive path index for XML
data. SIGMOD Conference 2002: 121-132 [DBLP:conf/sigmod/ChungMS02]

2. Torsten Grust: Accelerating XPath location steps. SIGMOD Conference 2002: 109-120
3. Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, Henry F. Korth: Covering indexes

for branching path queries. SIGMOD Conference 2002: 133-144
4. Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, Divesh

Srivastava: Structural Joins: A Primitive for Efficient XML Query Pattern Matching.
ICDE 2002

5. Nicolas Bruno, Nick Koudas, Divesh Srivastava: Holistic twig joins: optimal XML pattern
matching. SIGMOD Conference 2002: 310-321

6. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0 W3C recommendation,
1999.

7. D. Chamberlin, D. Florescu, J. Robie, J. Simon, and M. Stefanescu. XQuery: A Query
Language for XML W3C working draft, 2001.

8. L. H. Yang, M. L. Lee, W. Hsu. Mining Frequent Query Pattems in XML. 8th Int.
Conference on Database Systems for Advanced Applications (DASFAA), 2003.

9. Liang Huai Yang, Mong-Li Lee, Wynne Hsu: Efficient Mining of XML Query Pattems for
Caching. VLDB 2003: 69-80

10. Stefan Böttcher, Adelhard Türling: XML Fragment Caching for Small Mobile Intemet
Devices. Web, Web-Services, and Database Systems 2002: 268-279

11. Franky Lam, Nicole Lam, Raymond K. Wong: Efficient synchronization for mobile XML
data. CIKM 2002: 153-160

Finite Segmentation for XML Caching 197

12. Douglas B. Terry, Venugopalan Ramasubramanian: Caching XML Web Services for
Mobility. ACM Queue 1(1): (2003)

13. Jan Hidders: Satisfiability of XPath Expressions. DBPL 2003: 21-36
14. Georg Gottlob, Christoph Koch, Reinhard Pichler: XPath Query Evaluation: Improving

Time and Space Efficiency. ICDE 2003: 379-390
15. Georg Gottlob, Christoph Koch, Reinhard Pichler: The complexity of XPath query

evaluation. PODS 2003: 179-190
16. S. Böttcher: Testing Intersection of XPath Expressions under DTDs. International

Database Engineering & Applications Symposium. Coimbra, Portugal, July 2004.
17. Yanlei Diao, Michael J. Franklin: Query Processing for High-Volume XML Message

Brokering. VLDB 2003: 261-272
18. Alan Halverson, Josef Burger, Leonidas Galanis, Ameet Kini, Rajasekar Krishnamurthy,

Ajith Nagaraja Rao, Feng Tian, Stratis Viglas, Yuan Wang, Jeffrey F. Naughton, David J.
DeWitt: Mixed Mode XML Query Processing. VLDB 2003: 225-236

19. S. Böttcher, Adelhard Türling: Caching XML Data for Mobile Web Clients. International
Conference on Internet Computing IC'04, Las Vegas, USA, Juni 2004.

20. Serge Abiteboul, Luc Segoufin, Victor Vianu: Representing and Querying XML with
Incomplete Information. PODS 2001 [DBLP:conf^pods/AbiteboulSV01]

