
AGENT-BASED SIMULATION: 
MAST CASE STUDY 

Vladimir Maiik 
Department of Cybernetics, Czech Technical University in Prague, Czech Republic & 

Rockwell Automation Research Center, Pekahkh IOU, 155 00 Prague, CZECH REPUBLIC, 
marik@labe. fe1k.cvut.c~ 

Pave1 Vrba 
Rockwell Automation Research Center, PekaFskh lOa, 155 00 Prague, CZECH REPUBLIC 

pvrba@ra. rockwell, com 

Martyn Fletcher 
Agent Oriented Software Limited, PO Box 318, Cambridge CB4 IQJ, UK 

martyn.fletcher@agent-software.co.uk 

Summarizing all the spec& features of the simulation systems needed for 
agent-based systems, the paper documents that the simulation tools ofthis kind 
do represent rather complex development environment for agent-based systems 
than one-purpose simulation sofMare obvious in the case of "classical" 
centralized systems. The agent-oriented simulation tools explore and combine 
methods of real-time emulation, qualitative simulation, testing and diagnostic 
algorithms with classical methods of both the discrete and continuous 
simulation approaches, techniques of advanced visualization and run-time 
interfacing. The U4ST simulation tool and the detailed description of its 
extension for the Cambridge Packing Cell Testbed are used as a case study. 

1. INTRODUCTION 

In the case of multi-agent systems, under the term "simulation" we understand 
processes which are - in comparison to "classical" centralized systems - more 
complex and include more tasks than just single simulation in the classical meaning. 
There are many quite specific requirements and expectations put on simulation of 
the agent-based systems: 

a) First of all, we expect that the qualitative evaluation of emergent behavior 
of an agent-based system will be provided. 

b) Agent-based system can be simulated only by another agent-based system - 
the centralized approach is not adequate. It is necessary to stress, that the 
existing simulation tools like Matlab or Arena are not sufficient for this 
purpose. 

c) The simulation of both the controlled process and the agent-control system 
has to be provided. Because of the direct reusability of the agent-control 



62 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS 

algorithms, the agent-control part is, as a matter of fact, emulated as well. 
In such a way the agent-based simulation is usually organized as the 
interaction of two emulations. 

d) In the case of the agent-based simulation, there are two kinds of interfaces 
expected, namely a nice and instructive human-machine visualization 
interface, and - as a rule - a machine-machine runtime interface between 
the agent-control system and the controlled processlmanufacturing 
equipment (either emulated or physically connected - see below). 

The process of developing and implementing an agent-based system relies on 
several phases and widely explores the simulation principles of diverse nature. This 
is especially true in the case of systems without any central element where 
unexpected emergent behavior can appear. The following stages of the design 
process based on simulation can be gathered like this: 

(1) Identification of agents: The design of each agent-based system starts from a 
thorough analysis of (i) the system to be controlled or manufacturing facility to be 
deployed and (ii) the controVmanufacturing requirements, constraints, and 
hardwarelsoftware available. The result of this analysis is the first specification of 
agent classes (types) to be introduced. Ths  specification is based on the application 
and its ontology knowledge. The usual design principle - following the object- 
oriented methodology - is that each device, or each segment of the transportation 
path or each workcell is represented by an agent. In very up-to-date systems, also the 
product itself or semi-product can be considered as agent able to negotiate its own 
processing/assembling with the agents of the manufacturing environment. 

(2) Implementation/Instantiation of agent classes from the agent type library. This 
library is either developed (step I), or re-used (if already available). Particular 
agents are created as instances of the definitions in the agent type library. 
Furthermore, the implementation of communication links among these agent 
instances is established within the framework of initialization from these generic 
agent classes (for instance agents are given the names of their partners for 
cooperation). In such a way, the first prototype of an agent-based 
controVmanufacturing system (or similarly, a supply-chain management system) is 
designed. 

(3) Own Simulation: Behavior of a complex agent-based system is rather emergent 
than deterministic (Steels, 1994). The decision-making knowledge stored locally in 
the agents along with the patterns of inter-agent interactions result in an aggregate 
global behavior of the system, which cannot be precisely predicted in advance. Yet 
the direct experimental testing of the global behavior with the physical 
manufacturinglcontro1 environment being involved is not only extremely expensive, 
but non-realistic as well. Simulation is the only way out. For this purpose, it is 
necessary to have: 

- A good model of the controlled process or the manufacturing facility or the virtual 
enterprise. This model must depict all the entities within the factorylenterprise and 
their interfaces to the external world. 



Agent-based simulation: MAST case study 63 

- A good simulation tool for running the model of controlled processimanufacturing 
facilityivirtual enterprise to provide the emulation of the physical 
manufacturingicontrol environment. Standard simulation tools like e.g. Matlab, 
Arena, Grasp, Silk, AnyLogic etc. can be used for these purposes. 

- A suitable agent runtime environment for running the agents - reused from phases 
1 and 2 - and for modeling their interactions. On the basis of the results of agent 
platform comparison (Vrba, 2003a), the JADE platform as open-source or JACK 
(Howden, et al., 2001) as a commercial tool can be recommended. 

- System integration strategies developed and implemented in the form of sub- 
system interfaces. It is necessary to have the following two run-time interfaces: 
(i) an interface between the agent-control and the process emulation and 
(ii) an interface to link the agent-control with the physical manufacturing equipment. 
In the ideal case these two interfaces should be compatible (or identical at best) to 
enable the designer to switch from simulation/emulation system to the physical 
manufacturing/control system or virtual enterprise as appropriate. 

- HMI (human-machine interfaces) for all the phases of the system design and 
simulation. 

4. Implementation of the target control /manufacturing system: In this stage, the 
target control, manufacturing, production management or supply-chain system is re- 
implemented into the (real-time) running code. This implementation usually relies 
on ladder logic, structured text or function blocks at the lowest level of control. 
However, the higher-level control - carried out by the agents - is almost entirely 
reused, i.e. the same agents used in the simulation phase (3) are used also for the 
physical control. For instance in the ExPlanTech production planning MAS system 
(kha,  e t al., 2 001), there was 7 0% o f t he a gent c ode reused from the s imulation 
prototype. Therefore, the choice of the multi-agent platform in the phases (3) and (4) 
is critical - it is advised to operate with the same agent platform. 

The simulation phase is much more crucial for the development process of agent- 
based systems than it has been for the development of "classical" centralized 
systems. It enables besides others: 

- to predict the behavior of the system as a whole. The fact there is no central unit 
in the agent-based system represents a critical barrier in a wider applicability of the 
agent-oriented ideas. The simulation runs help to understand the system behavior 
and to detect the patterns of emergent behavior. Considering that the behavior of a 
MAS is emergent, to ensure that all types of possible behavior were 
exploredcovered by simulation still remains a painful problem (the situation is 
similar to that of system testing). 

- to predict and test the optimal scenario for the agent-based system 
development 

- to select the most optimal negotiation framework and strategy for individual 
units in the system 

- to directly link the simulation with real-life manufacturing/contro1 processes. 
That means that whereas a part of the agent-based system is engaged fully in the 



64 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS 

real-life activities, the remaining part can be just simulated. The shift of the 
borderline between the simulated (in more precise terms "emulated") and the real 
part o f t he system c an b e c arried out i n  a quite sm 00th way. This would help t o  
speed-up the initial "commissioning" process significantly. 

The requirements on simulation tools or platforms for MAS-oriented solutions 
call for new types of simulation systems (simulation platforms) with embedded 
MAS principles. One of pioneering systems of this kind, presented in this paper, is 
the MAST simulation tool being developed by Rockwell Automation (Vrba, 2003b). 
Another example of such a system is the agent-based control and simulation of the 
scaled-down form of chilled water system for the US-Navy ships (Maturana, at al., 
2004). 

2. MAST - Manufacturing Agent Simulation Tool 

The development of the MAST modeling and simulation tool started about three 
years ago as one of the pilot projects of Rockwell Automation Research Center in 
Prague aimed at the investigation of holonic systems, i.e. the exploitation of multi- 
agent technologies in manufacturing control. The original idea was to implement the 
agent-based solution for material handling domain, particularly the transportation of 
materials/products between various manufacturing cells on the factory shop-floor 
using conveyors and AGVs. The attention has been paid mainly to the identification 
of agents (see Section 1, phase I), i.e. the definition of agent types for basic 
components, like manufacturing cell, conveyor, diverter, AGV, etc., and the 
specification of communication protocols and scenarios used for the inter-agent 
cooperation (Vrba, 2003b). 

To be able to test and validate the agent functionality without being connected to 
the physical manufacturing equipment, the simulation, or more precisely the 
emulation of the manufacturing environment had to be implemented as well (see 
Section 1, phase 3). Basically, simulated movement of virtual products triggers 
virtual sensors that send signals to appropriate agents while the control actions taken 
by agents are propagated back to the simulation through virtual actuators. The 
simulation part of the MAST tool is tightly linked with the GUI (HMI-interface) that 
provides the visualization of the simulation and allows the user to interact with it. 

The agent behavior is aimed at the transportation of products among user- 
requested manufacturing c ells. The a gents c ooperate with each other via message 
sending in order to find the optimal routes through the system - a cost based model 
is applied where each conveyor provides a transportation at predefined cost. The 
work cells are interconnected via a network of conveyors and diverters (switching 
components) that route transported products through the conveyor network 
following the optimal, i.e. least-cost routes. Main stress is put on the failure 
detection and recovery - the user can simulate a failure of any component and trace 
the reaction of agents looking for another delivery routes while avoiding the broken 
component. It is important to say that there is no central control element - the 
decision making and control processes are distributed over the agents that work 
autonomously and use message sending and on-line service discovery for mutual 
collaboration. The plug-and-operate approach is thoroughly applied for system 



Agent-based simulation: MAST case study 65 

integration allowing to addldeletelchange any componentfagent through the GUI on 
the fly. 

For the implementation we decided to use the JAVA language because of the 
variety of JAVA-based FIPA-compliant agent development tools being available 
today, most of them as open sources. Originally, the development started with the 
FIPA-OS agent platform but due to the performance and memory consumption 
issues we selected the JADE platform instead. The main advantage of using the 
object oriented language - JAVA in this case - is that the description of a particular 
agent type is represented by a single JAVA class containing the general specification 
of agent's attributes and the set of rules according to which the agent behaves. Such 
a class is then used to create as many instances as required (see Section 1, phase 2) 
without the need to program the behavior of each agent instance individually. 

3. APPLICATION OF MAST TO CAMBRIDGE PACKING 
CELL 

3.1 The Cambridge Packing Cell Overview 

Although there is a number of academic and industrial research organizations active 
in the holoniclagent-based control field, there are very few holonic systems 
deployed in real factories making real products today. Main reasons for this situation 
are the higher investments needed to implement the agent-based manufacturing 
system and also a number of research issues that remain to be resolved like the 
appearance of unpredictable, emergent behavior of a community of agents (see 
Section 1) or missing framework for evaluation of the holonic system's performance 
and applicability (Fletcher, at al., 2003a). 

To give the opportunity to evaluate different holonic design and development 
strategies, the holonic packing cell has been constructed in the Center for 
Distributed Automation and Control (CDAC) at the Cambridge University's 
Institute for Manufacturing. Ths  lab provides a physical testbed for experiments 
with agile and intelligent manufacturing with focus on two particular areas: 
(i) Automatic Identification (Auto-ID) systems and (ii) agent-based control systems 
(Fletcher, at al., 2003b). 

The automatic identification is an emerging technology designed to uniquely 
identify a specific product in a supply chain. It replaces the bar code with an 
Electronic Product Code (EPC) embedded in a radio frequency identification (RFID) 
tag comprised of a silicon chip and antennae. The EPC numbers, usually in form of 
96 bit code, are read wirelessly via high frequency radio waves - the RFID readers 
then pass the information to a computer or an application system (MESIEW). 

In the Cambridge packing cell, the RFID tags are attached to Gillette personal 
grooming items (razors, shaving gel, deodorant and shaving foam) and also to boxes 
to which these items are packed. The orders are placed by a user that can select any 
three out of the four Gillette product types to be packed into two types of gift boxes. 
The 1 ayout o f t he p acking c ell i s given i n  F igure 1 . I t  c onsists o f t hree c onveyor 
loops (Montech track) to transport the shuttles with boxes - the navigation of 
shuttles into and out of the loops is controlled by two, independently operating gates 
that are provided with EPC codes of passing boxes from the WID readers. Shuttles 



66 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS 

are held at two docking stations so that the robot (Fanuc M6i) can pick and place 
items into boxes. The items are held in a storage unit in four vertical slots (each for a 
particular type of the Gillette item); the items are picked up by the robot from the 
bottom of the slot and, in the case of unpacking operation, picked from the box and 
placed to the top of the slot. 

For controlling all the operations of the packing cell, the agent-based control 
system has been implemented (Fletcher, at al., 2003a). It comprises of the following 
resource agent classes with number of instances shown in brackets: Robot (I), 
Storage (I), Docking Station (2) ,  Gate (2), Track (I), Box Manager (1) and 
Production Manager (1). Additionally, there are the order agents associated with 
particular gift box orders (one agent per one order) and product agents representing 
all available boxes in the system. The processing of particular order starts with the 
negotiation between the order agent and product agents to select the appropriate box 
in which the items will be packed. The product agent representing selected box then 
uses its own intelligence and cooperation with resource agents to determine how 
best to be packed: (a) the order agent queries the storage unit if it is able to provide 
the requested items, (b) the order agent negotiates with docking stations to reserve a 
processing slot, (c) there is a negotiation with the gates to ensure a proper routing to 
docking stations using the information from WID readers, (d) once at the docking 
station, the product agent requests the robot to pack the items into the box (this 
includes a negotiation between the robot and storage unit). 

Figure 1 -Layout of the Cambridge packing cell 

The agent control system - implemented in JAVA and using the JACK 
Intelligent Agents platform - is running on a Personal Computer. To provide the 
agents with an access to sensor and actuator parameters of the cell, the blackboard 
mechanism is introduced. The blackboard, running also on a PC, holds the 
synchronized copy of the data registers of an Omron PLC (connected via Ethernet) 
related to the sensors and actuators data. The agents can read from and write to the 



Agent-based simulation: MAST case study 67 

blackboard and thus observe the current status of the cell and perform desired 
control actions. 

Recently, the CDAC testbed has been considerably extended with new 
manufacturing equipment. It includes mainly a second robot and storage area to 
increase the flexibility of the system allowing to (i) process more boxes 
concurrently, (ii) choose the appropriate place where the box will be packed based 
on availability of requested items in storages and (iii) simulate the failure conditions. 
New shelving storage system is used to hold the shuttle trays with both the empty 
and packed boxes as well as with the raw items that can be used to feed the storage 
areas. The shelving storage system is operated by a gantry robot that transports the 
trays with boxes or raw items between the particular shelves and the new docking 
station in the feeder loop where the tray is placed onto the waiting shuttle. 

It is obvious, that such a substantial hardware extension of the lab along with the 
new manufacturing scenarios being introduced requires a new agent-based control 
system to be deployed. It has been recognized, that the agent-based solution for the 
material handling tasks used in the MAST tool can be easily extended to provide the 
graphical simulation of the CDAC lab (see Figure 2 for a screenshot) and, 
eventually, to be directly used for the physical control of the packing cell. This paper 
reports on the primary results achieved in realizing the CDAC-related extensions of 
the MAST tool. Particularly, newly implemented agents, like the RFID reader, 
Docking Station, Robot, etc. are described and the issues regarding the use of MAST 
for the physical control of the cell are discussed. 

Figure 2 - Screenshot of MAST simulating Cambridge packing cell 



68 EMERGING SOLUTIONS FOR FUTURE MANUFACTURlNG SYSTEMS 

3.2 The RFID reader agent 

One of the major aim of the CDAC testbed is to demonstrate that the agent control 
can be integrated with the Auto-ID infrastructure. Physically, the lab is equipped 
with the RFID readers that send information about read EPC codes via Ethernet to a 
central server called Savant. The scanning period of the reader is quite high 
(e.g. 100 Hz) and within each scan all RFID tags that are in range of the reader are 
read at once. This results in large amount of redundant information generated by 
each reader that is sent to Savant. So the main purpose of Savant is to provide the 
EPC data filtering and storage in form of records containing the EPC number, name 
of the reader where it was read, timestamp and the flag if the RFID tag entered or 
left the reader. Such an information can be obtained from Savant by any client 
application using the SOAP protocol. 

In an agent-based solution that integrates the Auto-ID technology it is reasonable 
to have a mediator agent that provides the EPC data to the other agents via standard 
agent communication protocols. To be able to easily add the Auto-ID support in the 
MAST tool, we decided not to use the Savant server - signals from emulated RFID 
readers are sent directly to the associated WID reader agents (using a standard 
JAVA method call) that are doing the filtration locally. We have rather focused on 
implementing the mechanism of providing the EPC data to other agents. It is based 
on the FIPA subscribe-inform protocol which support has been embedded into all 
agent classes in MAST (by inheriting from general MASTagent class). Generally, 
this mechanism allows any agent (let say A) to subscribe for being informed by 
other agent (B) each time a particular event happens at the B-agent. In the case of 
the RFID reader agent, there are two events about which the reader informs the 
subscribed agents: (i) the product with an RFID tag entered the range of the reader 
and (ii) the product leaved the reader's range. In both these cases the reader agent 
sends thefipa-inform message including the EPC code(s) of the product to all agents 
that previously subscribed for one of these events. For subscription the fipa- 
subscribe message is sent to reader agent containing the workPieceIN string for the 
former or the workPieceOUT string for the letter type of the event (workpiece 
keyword is used in MAST to represent a product). 

3.3 The Gate agent 

The gate agent is responsible for routing the shuttles around the track. The gate is 
located at the crossing point of two conveyor loops (see Figure 1) and switches the 
shuttle coming from one of the two input tracks to one of the two output tracks in 
order to let the shuttle to remain in the current loop or to be rerouted to the other 
loop. How the particular shuttle will be switched obviously relates to the target 
docking station to which the box carried by the shuttle should be transported. 

For the implementation of the gate agent in MAST we took the advantage of the 
existing diverter agent and the concept of least-cost product routing. Basically, the 
diverter holds an up-to-date routing table that contains the names of the work cells 
(doclung stations) that are reachable using the diverter's output conveyors (tracks). 
These routing tables are determined by mutual cooperation of diverters, conveyors 
and workcells that exchange knowledge about reachable destinations along with 



Agent-based simulation: MAST case study 69 

costs of the delivery in a back-propagation manner (for further details see 
(Vrba, 2003b)). Once the product enters the diverter, the diverter agent searches the 
routing table for the product's destination workcell name in order to find out which 
of the output conveyors will direct the product to its destination following the least- 
cost route. 

The modification for the C ambridge p acking c ell 1 ies i n  the integration o f t he 
Auto-ID technology. The gate agent cooperates with the RFID readers using 
previously described subscription mechanism to get the EPC data of products 
incoming from input tracks to the gate. The issue is, that the EPC code, i.e, the ID of 
the product (represented as 24 characters string) does not directly contain the name 
of the destination docking station. To resolve this, the gate agent queries the product 
agent, that is supposed to be registered in the agent platform under a name that 
equals to the ID of the product (box). In the case that the EPC data sent by the reader 
contains more IDS (both box and items in it are marked with the W I D  tags), the gate 
agent have to contact the yellow pages services in the agent platform to determine, 
which of the IDS relates to the existing product agent. The product agent then 
informs the gate agent about its destination so that the gate can properly navigate it. 

3.4 The sensor agent 

The sensors are used to detect the presence of shuttles at particular places on the 
track. The associated sensor agents support the same subscription mechanism as 
RFID readers to inform the other agents. Sensors are used particularly in 
combination with gates to allow only one shuttle moving through the gate at the 
same time. For this purpose, there are usually two sensors in front of the gate (at 
input tracks) and two sensors at the exit from the gate (at output tracks). The input 
sensors are closed by default, which means that the shuttle is stopped by the sensor 
in front of the gate. Once the gate performs a switch-operation for selected waiting 
shuttle, the sensor agent that blocks this shuttle is informed (the subscribe-inform 
mechanism is used again) - the sensor opens and the shuttle enters the gate. The exit 
of the shuttle is detected by one of the output sensors that inform the gate so that 
another waiting shuttle (if there is some) can be processed. 

3.5 The robot and storage area agents 

The robot agent has been implemented to control the packinglunpacking operations 
performed by the Fanuc M6i robot. The packing operation starts by receiving a 
request from the product agent when the shuttle carrying the box reaches the 
docking station. The message sent to robot includes the specification of required 
items (e.g. two gels and one razor). The robot agent starts the negotiation with the 
storage area agent to get the index of the slot from which the item of given type can 
be picked up (there are four vertical slots each for one type of the Gillette item). If 
the item is present at the bottom of the slot, the robot picks it and places it into the 
box; if not present, the robot continues with the other required item. When all items 
are processed (either packed to box or missing in the storage), the robot agent 
informs the product agent that the operation has finished. 



70 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS 

3.6 The order and product agents 

The order agents are responsible for processing the user orders for packing the 
customized gift boxes. The box can contain any combination of three Gillette 
grooming products choosing from four different product types (razor, shaving gel, 
foam, deodorant). Automatically generated order agent (one per order) starts the 
negotiation with product agents that represent available boxes in the system (either 
empty or already packed). If there is an empty box of requested type available and 
the associated product agent is willing to cooperate (i.e, is not currently "working 
for" another order agent), it is committed the processing of the order. 

The product agent first contacts the y ellow-pages services to obtain the list of 
storage areas. In the following contract-net protocol the storages are giving their 
bids in terms of how many of requested items they can provide; they also include 
name of the robot that operates the storage and the names of the docking stations. 
The product agent selects the storage offering the best bid and starts another 
negotiation with the docking station agents to reserve a processing slot (slots 
previously reserved for other product agents along with the priority of the order are 
considered). The product agent then changes its destination to selected docking 
station - any time the shuttle carrying a box associated with the product agent enters 
the input W I D  reader of the gate, the gate contacts the product agent to get the 
name of its destination for proper navigation (see Section 3.3). 

Once the processing o f t he b ox i s  finished b y the robot (see S ection 3.5), the 
product agent informs the order agent about the state of the order while releasing the 
shuttle from the docking station to return to the main feeder loop (see Figure 1). If 
the order i s  not fully c ompleted, e .g. b ecause there were not enough i tems i n  the 
storage, the product agent restarts processing of the order, i.e. contacts the storages 
again to obtain remaining items. Such a flexible behavior allows (i) to distribute the 
packing operation over several robots according to the current availability of items 
in storages, ( ii) the product a gent t o  put o ff t he completion o f t he order until the 
missing items are inserted into a storage (e.g. by unpacking some boxes or by 
transporting raw items from shelving storage) and (iii) to integrate new storages and 
robots (possibly also new track loops) at runtime without the need to make any 
changes to program code of existing agent classes. 

3.7 Using MAST agents for the physical control of the CDAC lab 

As mentioned in Section 3.1, the idea is to use to MAST tool for the physical control 
of the Cambridge packing cell. However, there are still some issues that need to be 
resolved in order to reuse the MAST agents in the implementation of the target 
control system (see Section 1, phase 4). Particularly, the mechanism of accessing the 
sensor and actuator parameters have to be modified such that the MAST-agents will 
use the same interface for accessing either the simulation-part of the MAST tool (i.e. 
emulated hardware) or the physical manufacturing equipment of the lab. 

In the current implementation, the virtual sensors and actuators of the simulation 
engine of MAST are directly linked with appropriate agents via standard JAVA 
method calls. Similar approach as the blackboard mechanism described in Section 
3.1 will be used instead. The sensor and actuator data will be shared through the tags 



Agent-based simulation: MAST case study 7 1 

(data table) of the ControlLogix PLC using the prototype JAVA API. This API 
allows to directly access the data table, i.e, to read and write the tags remotely via 
Ethernet link from any JAVA program running on a PC. For example, in the case of 
the sensor component (Sect. 3.4), there is a sensor detecting presence of a shuttle 
and an actuator used to stoplrelease the shuttle. For each sensor there will be two 
tags in the PLC's data table distinguished by the name of the sensor (e.g. for sensor 
s l  there will be tags s l -sensor  and s l-actuator) .  As the simulation moves 
virtual shuttles around the track and the shuttle arrives at the sensor s l ,  simulation 
sets the s l -sensor  tag in the data table to t r u e .  It is scanned by the appropriate 
sensor a gent for changes t o  which the a gent reacts, i n  this case b y i nforrning the 
subscribed agents. The shuttle is stopped if the s l - ac tua to r  tag is set to s top .  
When the sensor agent decides to release the shuttle, it changes s l - ac tua to r  to 
go value to which the simulation reacts by releasing the shuttle. 

It is obvious that this mechanism allows to simply connect the agents with the 
physical hardware of the lab instead of the emulation-part of the MAST tool. The 
only thing needed is to link the physical sensors and actuators with the PLC (through 
its I10 interface) and store their values under the appropriate names. 

Another issue is how to get the EPC data from the readers to the RFID reader 
agents (Section 3.2). The most convenient solution is to implement a JAVA driver 
for the physical WID reader to receive unfiltered EPC data via the Ethernet directly 
from the reader and do the filtration locally in the RFID reader agent. The other way 
is to use the existing Savant server solution (see Section 3. l), i.e. to equip the WID 
reader agent with the ability to receive already filtered EPC data from the Savant. 

4. CONCLUSION 

The main idea presented in this paper is that the simulation of agent-based system 
requires substantially different class of simulation systems and tools in comparison 
to "classical" centralized systems. The simulation systems applicable in the field of 
multi-agent system 

a) have to be designed as agent-based systems as they have to - as a substantial part 
of their activities - emulate the behavior of the real MAS system. The off-line 
simulation mode is expected to be complemented or replaced by a real-time 
control of the physical real-life agent-based system or its part. 

b) are expected to carry out - in the off-line mode - the emulation with the goal to 
achieve the qualitative simulation (in the sense of A1 terminology) of the 
behavior of the MAS system as a whole with the stress to capabilities to detect 
the typeslclasses (in the optimum case all the typeslclasses) of potential emergent 
behavior. That's why, the models of agents should be mainly strongly 
knowledge-intensive ones suitable for qualitative simulation purposes. The 
knowledge-oriented analysis of behavior of each type of agents is a very 
important part of the simulation system design. 

c) are explored like testing, evaluation or diagnostic tools of the agent-based 
system, especially during the period of the system design. The testing should 
start from different initial conditions, under different failures of various 
components - but nobody can confirm that all the potential states of patterns of 



7 2  EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS 

behavior will be covered by the series of experimental simulation runs. 
Simulation - similarly to the case of software testing - cannot be considered as a 
complete evaluation of the system. 

d) can use - for the emulation of the controlled processlphysical manufacturing 
environment - existing standard discrete or continuous simulation tools (or their 
combination if both discrete and continuous processes have to be simulated 
concurrently) 

e) should be equipped by an efficient visualization module as the main "output" of 
the simulation processes is the "movie" showing the behavior of the system 

f) should run in real time and be equipped by a run-time interface to the real-life 
control hardware to enable the shift of the borderline between the simulation and 
real-time real-life control. 

Describing the MAST tool and its extension for the Cambridge testbed, we have 
documented that all the features mentioned above are really needed. Especially the 
analysis, development and implementation of the WID agents as well as the ideas 
behind the implementation of the real-time interface do represent the main technical 
contribution of this paper. 

Summarizing all the specific features of the simulation systems needed for agent- 
based systems, we can conclude: The simulation tools of this kind do represent 
rather complex development environments for agent-based systems than one- 
purpose simulation vehicles. 

5. REFERENCES 

1. Fletcher M, McFarlane D, Thome A, Jarvis D, Lucas A. Evaluating a Holonic Packing Cell. In Holonic 
And Multi-Agent systems for Manufacturing, LNAI 2744, springer Verlag, Heidelberg, 2003, pp. 
246-257. 

2.Fletcher M, McFarlane D, Lucas A, Brusey J, Jarvis D. The Cambridge Packing Cell - A Holonic 
Enterprise Demonstrator. In. Multi-Agent Systems and Applications 111, LNAI 2691, Springer 
Verlag, Heidelberg, 2003, pp. 533-543. 

3.Howden N. et al. JACK Intelligent Agents - Summary of an Agent Infrastructure. In Proceedings of 
IEEE International Conference on Autonomous Agents, Montreal, 2001. 

4.Maturana F, Staron R, Hall K, Tichy P, Slechta P, Maiik V. An Intelligent Agent Validation 
Architecture for Distributed Manufacturing Organizations. In Proceedings of the 6th IFlP 
Intemational Conference on Information Technology for Balanced Automation Systems in 
Manufacturing and Services, Vienna, Austria, 2004. 

5.Riha A, PEchouEek M, Vokflnek J, Mafik V. ExPlanTech: Exploitation of Agent-based Technology in 
Production Planning. In: Multi-Agent Systems and Applications 11, LNAI No. 2322, Springer 
Verlag, Heidelberg, 2002, pp. 308-322. 

6. Steels L. A Case Study in the Behavior-oriented Design of Autonomous Agents. In proceedings of the 
Third International Conference on Simulation of Adaptive Behavior, August 1994, Brighton, UK, 
pp. 445-452 

7.Vrba P. JAVA-Based Agent Platforms Evaluation. In: Holonic and Multi-Agent Systems for 
Manufacturing, LNAI 2744, Springer Verlag, Berlin Heidelberg, 2003, pp. 47-58. 

8.Vrba P. MAST: Manufacturing Agent Simulation Tool. In proceedings of IEEE Conference on 
Emerging Technologies and Factory Automation, September 2003, Lisbon, Portugal, Volume 1, pp. 
282-287. 




