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Abstract: We present a model machinery for the generation of aggregating views of
knowledge, the coupling of localized knowledge, and for carrying out meta-
observations, which record the dynamics of a knowledge generating system.
The machinery is based on the only assumption, that we can monitor events in
a system. Thus it applies to all e-business applications with client/server
computing.

1. THE COGNITIVE PERSPECTIVE

E-business often requires the exchange of textual information between partners
in differing situations and with a different social, educational, or cultural
background. Information is exchanged then as text data, whose interpretation
depends on the problem context of the producer, and of the receiver, respectively, as
well as on their respective ontologies. Thus, if context and/or ontology differ, the
exchange of information is likely to fail. This fudamental problem, is often
described as the problem of meaning and relevance. Seen from the perspective of
cognitive science, one may understand meaning as a pointer, which affiliates an
affordance in an ecological niche with an icon, which is usually a data object, e.g. a
word in a text. On the one hand, pointers may be interally valued by a numerical
inference value, which desribes the relevance with respect to affordances. On the
other hand, pointers as a whole may be externally valued by relevance number
which describes the relevance of the icon (embedded in a larger information object)
for the receiver of information.

Inference network models with two layers may be used to subsumize and model
these pointers, and affinity matrices can be used to represent the relationship
between affordances and icons. Inherence network models have been used before in
information retrieval and information filtering [1], while affinity matrices have been
used for data-affinity based load balancing in high performance distributed
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computing. In both cases, we have formal representations at hand, which can be
generalized to similar structures. A survey of these formal modeling approaches can
be found in [11].

The relevance of icons can equivalently be modeled with inference networks
consisting of two layers, or with affinity matrices, respectively. The canonical
composition of inference network models, and the canonical matrix multiplication,
respectively, may thus be used to jointly model meaning and relevance. Thus any
larger textual information object can be modeled straightforwardly, as long as its
components do not interfere with each other. The latter is for example true for
digitalized personal documents in inter-organisational e-government [12]. We shall
elaborate on these representations below.

In our picture, knowledge implies the ability to identify the pointers and to learn
from experience how to improve that identification. The identification is a process
rather than a single activity, which may be performed in a moment or in a series of
steps. Knowledge management technology can facilitate faster or more accurate
identification by
— supporting the human identification process
— automating the process and providing computed results to the human user or
— collecting and presenting experience, which can be used to construct or update

automatic identification algorithms or human knowledge on how to perform the

identifications.

In this paper, we shall primarily focus on the third task, and we shall explain
how monitoring in client/server computing can be exploited to come up with formal
knowledge representations.

2. THE ENGINEERING PERSPECTIVE

Recently, there has been started considerable work on higher order knowledge
mining, compare for example the approach in [13] based on clausal form logic [6].
While most of these approaches are founded in database engineering, our approach
stems from distributed systems engineering.

Distributed systems59 are message-oriented and adhere to the service paradigm.
This is both true for high performance computing and for information sharing
systems, and it even applies in parts and to some extent for distributed mainframe
environments. There are two basic communication paradigms implemented, namely
request/reply interaction and messaging based on some queueing service. The
Middle-ware is responsible for the execution of communication and in doing this, it
usually supplies additional support for distributed computing, such as security
services, transaction semantics, and computing context (e.g. virtual synchrony).

%% equivalently, we may speak of client/server systems
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Events and event models play an essential role in Middle-ware managed
systems. For example, next to the naming service, the event service is a primary
service in CORBA or CORBA-like systems. Among others, Middle-ware provides
us event tracing mechanisms, and with basic functionality to evaluate these
recordings and to apply them, e.g. for non-repudiation services. While most of this
add-on functionality primarily generates order relations, it is also possible to put
services on top of it, which supply us with inference relations, e.g. for data-affinity
based load balancing in distributed computing environments.

As these capabilities are creating demand, considerable work is being done on
the extraction of knowledge from these event tracings. The reasons for doing that are
quite diverse, ranging from meta-benchmarking approaches over performance tuning
and information system re-engineering to actual knowledge mining. The natural next
step of this work is to develop tools for engineering of the knowledge extracted and
for the monitoring of the observation extraction process itself.

Part of this monitoring is the creation of meta-observation on the internal
structure of knowledge bases and knowledge representations, which constitutes
some particular form of higher-order knowledge. In this paper, we present a
modeling machinery, which merges and generalizes some of the knowledge models
applied for actual engineering tasks in distributed systems.

3. THE MODEL BASELINE

First, we present the basic framework for our approach to knowledge modeling.
The standing thesis in behind is, that knowledge can be generated from the
clustering of observations of well identified and classified events. Thus knowledge
grounding is performed by event classification. This defines clear restrictions on the
scope of applicability of our theoretic framework, or rather, it identifies the place of
our ‘tool-box’ in the chain of knowledge generation.

The input to our model are the observations of classified events, i.e. events®
with well defined, observable a priori conditions, and well defined a posteriori
conditions. The output of our model, or, more precisely, the output of a machine
implementing (part of) the machinery defined by the model, are views of the
knowledge represented by the classified observations, couplings of different,

0

localized knowledge representations, and meta-observation reports.

Both views and meta-observation reports represent higher-order knowledge to a
different extent: Views plainly describe aggregated knowledge, while meta-
observation reports inform us about the internal structure of observations, e.g. their
dynamics. Moreover, our model framework also supports the coupling of localized
knowledge, represented by views. This includes the coupling of automatically

%0 The term event does not imply that it has no extension in time.
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generated knowledge®', i.e. grounding categorization, with human expert
knowledge.

We shall proceed as follows: We first define the basic model and we introduce
two representations of it, one in terms of hierarchical graphs and the other in terms
of numerical matrices. The representation with hierarchical graphs enables us to
define skew views of the knowledge, where part of the knowledge is aggregated and
another part is not.

The representation with matrices enables us to give numerical pictures of these
graphs as well as of their aggregated views. Finally, we explain how local
knowledge may be combined technically with other knowledge. Combinations are
worked out on the the level of representations only, in order to avoid a mixing up of
the physical observations and their homomorphic (virtual) images in our model.

31 Events, a priori observables, a posteriori
observables, and profiles

In our approach, knowledge is a localized model of the correlation between a
priori observables and posteriori observables, which is formally represented by
inference matrices, as they appear in inference network models ([5]), where they are
also sometimes called link matrices. This model is drawn from the observation of
events and the structuring of these events. Each event is associated the same a priori
observables and the same a posteriori observables. In the following, the event set
will be denoted by E. The set of a priori observations is denoted by O- and the set a
priori observable states is denoted by S-. The set of a posteriori observations is
denoted by O+ and the set a posteriori observable states is denoted by S+. Formally,
observables are mappings between the event set and the set of states. We omit a
detailed formal introduction and we refer to [11]. For the two sets of states, we
introduce the concept of profiles. Profiles are sets of states. We requite that the set of
a priori profiles, and the set of a posteriori profiles are atomic lattices (whose order
structure is defined by set inclusion). As usual, a subset of disjunct profiles is called
a partitioning (with respect to a given lattice of profiles). Partitionings define new
observables, when the original observables are composed with a mapping
representing the set inclusion of the original states into the new states. In the
following, we shall assume that the lattices of profiles consists of a (finite) sequence
of refined partitionings.

Definition 1: We define knowledge as the quintuple (E, O-, O+, T, P), where E

denotes the set of classified observations or observed, classified events, O- and O+
denote the observables, and T and P denote lattices of profiles.

6! where automatic generation is based on available classification



Reinhard Riedl 541
3.2 Graph representations

Knowledge as defined above can be represented as a VH-graph ([7]). We shall
not bother the reader with explicit definitions, but rather we shall explain the
concept to be applied. We may represent states as nodes in a bipartite base-graph,
and we may represent events as edges. VH-graphs have in addtion a hierachical, i.e.
tree-like, structure, where the nodes of the base-graph are embedded into the
hierachy. Cuts are non-comparable sets of elements of the hierachy, and views
corresponding to a cut collapse all structure of the base-graph “below” the cut. Thus,
parts of the base-graph may be aggregated, while other parts may be shown in full
detail. That is, we may zoom into the system at critical parts and still work with a
moderately complex view, when we aggregate other parts.

Due to our assumptions above, the union of the both lattices of profiles provides
us with an appropriate hierachy, and thus we can create hierachical views of the
knowledge quintuple defined above. Please note that if we allow various edges
between the same pair of nodes, the VH-graphs are in one-to-one correspondence
with the knowledge qintuples. Further, we can merge two knowledge quintuples
represented as bipartite graphs, by applying the construction principle for the
composition of relations. This results in a representation for the composed
knowledge as a new bipartite graph, whose nodes consist of the a priori states of the
first quintuple and of the a posteriori states of the second quintuple, while for each
pair of edges ((u,v), (x,y)), v=X, (u,v) an event in the first quintuple, and (x,y) and
event in the second qintuple,there is an edge (u, y) in the new bipartite graph.

The graph representation reveals that our approach to formal knowledge
representations is in the spirit of rule-based systems. This defines some constraints
on its applicability, but on the other hand it links event monitoring directly with an
autmated generation of rule sets, which reflects what is actually happening in a
client/server system. The main advantage of graph representations is that they allow
a visualisation of rules, where hierachical views provide an opportunity to focus
attention on selected parts of the system and to aggregate others.

We conclude with

Definition 2: Given a knowledge quintuple (E, O-, O+, T, P), the affiliated
hierachical knowledge is the union of all knowledge quintuples, which can be
constructed from it by applying the technique of generating views.

By abuse of terminology, hierachical knoewledge is a set homomorphic images
of the original knowledge, whose size is determined by the profile latices.

3.3 Matrix representations
Assume again that we have given a knowledge quintuple (E, O-, O+, T, P) as

above. We now introduce the footprint matrix representation and the reference
matrix representation of knowledge according to the following scheme
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— lines correspond to states of a priori observables
— columns correspond to states of a posteriori observables
— entries correspond to events, where integer counting leads to reference matrices
and Boolean counting leads to footprint matrices
— there is no semantic meaning in the enumeration of lines and columns
— states may be replaced by sets of states, namely profiles
Again we omit details. The scheme sketched enables us to provide matrix
representation for knowledge quintuples, as well as for the affiliated hierachical
knowledge. Note that forming a homomorphic image is done by addition of lines
and/or columns, and that the combination of knowledge corresponds to matrix
multiplication.
If we reverse the order of relations and if we normalize entries such that we get a
probabbility matrix, then we obtain the inference values for an inference network
model consisting of two layers. Again, combination is done by matrix

multiplication.
34 Some Remarks

In many application scenarios, one type of view is exactly what one is interested
in. However, if we are interested in the internal structure of a set of observations it is
exactly the diversity of view, which enables us to ‘measure’ this structure [9].

There is some duality between a priori observables and a posteriori observables.
They are essentially a view position. Exchanging them changes corresponds to a
matrix transposition. Ignoring normalization issues, the change of view corresponds
to the change between reference matrices and inference matrices.

Our framework essentially stems from the modeling of decision problems with
decision tasks, a priori observables, and a posteriori observables. Decisions are made
upon the observation of a priori observables and the quality of the decisions is a
function of the a posteriori observables. Therefore, it is critical for good solutions to
understand the correlation of a priori and a posteriori observables. (Cf. [10]). There
are various different interpretations possible. Our basic understanding is, that any
matrix entry specifies something like a rule linking the a priori state and the
posteriori state. This rule may be understood as an inference rule, or some
conditional probability.

4. IMPLEMENTATION TECHNIQUE

Next, we discuss basic formal techniques for the implementation of knowledge
generators relying on our model framework.
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4.1 Generation of hierarchies

Hierarchies of a priori profiles arise from the clustering of natural partitionings.
Above we have defined a machinery to represent knowledge with respect to such
hierarchies. However, which hierarchies are we to choose?

This depends on the problem context, of course. The general strategy will be to
find satisfactory solutions for the following problem: Find a hierarchy of profiles
such that each a priori profile is as homogeneous as possible with respect to the
posteriori observables of their class members (because otherwise the inference rule
associated had little relevance), that any two a priori profiles are as distinct as
possible with respect to their a posteriori observables (because otherwise the
associated inference rules would have little meaning), and that all profiles are neither
too small (as then they would lack statistical relevance) nor too large (because we
are interested knowledge as fine-grained as possible). Note that analogously, we can
also ask for a posteriori profiles fulfilling the same requirements for a priori
observables.

There are various different possibilities to formalize these requirements, and
there are various methods to obtain the desired hierarchies: classical clustering
algorithms based on a distance function on the set of a posteriori observables (in
case of a priori profiles) or on the set of a priori observables (in case of a posteriori
profiles), neural network clustering, algorithms choosing a configuration whose
matrix representation is as close as possible to a block diagonal matrix, or which
optimizes some independent reference model (cf [2]), and some further more. A
discussion of these issues is beyond the scope of this paper.

4.2 Meta-observations

Meta-observations concern the event system as a whole. We use them to judge
on the relevance of observations. There are various possibilities for analyzing
observations
— the intrinsic algebraic structure as it is addressed by the optimization problems

indicated above
— the intrinsic algebraic structure as it is represented by semigroup role structure

(cf[9D)

— the comparison with natural languages measuring the Heaps and the Zipf

exponent (cp [11]).

— One example of the last is the footprint growth function, which stems from

Heap’s law:

Definition 3: The relevance of the observations are described by the growth of
the footprint of the (ordered) events with respect to the a priori and a posteriori
observables.
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Heaps observed that in natural language texts this functions grows like a
polynomial with exponent one half, i.e. similar as the supremum function of one-

dimensional Brownian motion.

4.3 Architecture

Finally we depict the architecture for knowledge mining, where the model

machinery discussed is situated in.
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The architecture consists of four levels: the system, where measures are taken
(called event system above), the layer with monitoring and primary categorization
tools feeding our model framework with data, the implementation of our model
framework, which makes use of automatic and expert categorization, and the layer
with tools for interpretation and application of the hierarchical views and the



Reinhard Riedl 545

couplings of different knowledge representations. There, the meta-observation tools
are situated as well, since they are needed for the relevance ranking of knowledge
representations.

4.4 Applications

There is a wide range of applications for our machinery in e-business:

— customer profiling in market research

— psychological analyses of user behaviour in virtual venues or communities

— design of information agents supporting users of large Intranets, design of e-
brokers for customer-supplier matching in virtual markets, or personalied
guidance of users through administration processes in e-government

— optimization of native code generators in Bytecode compilation

— optimization of load distribution in high performance transaction processing

— sociological analyses of information societies

In all these cases, we can monitor natural events, such as client requests, data
object accesses, etc. and hierachical knowledge representation plays an important
role for the design and the implementation of applications. Typically, a priori
profiles describe the identity of an active person or object, while a posteriori profiles
desribe what is really done, or which ressources are really requested. Indeed,
applications im e-business with monitoring of client requests range from psychology
and sociology to performance management.

We have performed meta-observations for various different scenarios, such as
DB/DC transaction processing, accesses to web-pages in web-sites, and requests for
search-engines. This revealed that Heaps and Zipf’s Law are more or less valid in all
scenarios, but the coefficients depend on the actual scenario. In some scenarios they
clearly reflect the dynamics of the system, while in other scenarios they may also
represent static patterns of access distributions.

5. CONCLUSIONS

We have presented a formal machinery for knowledge engineering. Due to its
genericity it applies to a wide range of knowledge mining scenarios in distributed
computing and distributed information systems. Part of this machinery has been
implemented in joint research projects with industry. While the workflow for
knowledge extraction is well understood in parts, so far little is understood of the
internal structure of event systems.
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