
CHAPTER 26

ALGORITHMS AND EXPERIENCE IN INCREASING
THE INTELLIGIBILITY AND HYGIENE OF ACCESS
CONTROL IN LARGE ORGANIZATIONS

Marc Donner - Morgan Stanley
David Nochlin - Morgan Stanley
Dennis Shasha - New York University
Wendy Walasek - Morgan Stanley

Abstract: Security managers in large organizations must manage the access of tens
of thousands of employees on diverse data. Databases store the access control
information but the security officers use essentially manual techniques to
determine who has too much access and why. We call this task the Audit
Problem. The security research community has offered promising
frameworks such as role-based access control, but these still leave open the
problems of designing the roles and determining group memberships and of
demonstrating that there are substantial benefits to be reaped from making a
change.

In this paper, we propose a data-mining approach that includes an
algorithm that starts with a set of atomic permissions of the form (user, asset,
privilege) and derives a smaller but equivalent set (user group, asset group,
privilege group). The asset and privilege groups so identified constitute
promising roles. The users so identified constitute useful groups.

In this paper we report on actual experience with actual corporate access
control data. We built a production role-based access control authorization
service, storing the tables in a relational database and transmitting queries as
XML 'documents' over MQ message queues.

Our experiments show that the proposed algorithm can reduce the
number of permission assertions by a factor of between 10 and 100. With
such a reduction, the Audit Problem is brought from the absurd to the
plausible.

296 DATA AND APPLICATIONS SECURITY

1. THE PROBLEM

1.1 The players
In any complex environment, there are three sets of players in the access

control arena. On the one hand there are the business managers who are
constrained by fiduciary responsibility and by specific regulations to
establish an appropriate control regime for information. On the other hand
there are the software implementers and support staff for whom success is
measured by the rapid deployment of powerful software and by its stable
operation. Between the two is a collection of auditors, both internal and
external, whose role is to ensure that the implementations are at least
approximately compliant with the regulations.

These relationships are illustrated in this figure:

Figure 1.

1.1.1 Enterprise Managers [Policy]

To senior enterprise managers the imperatives of security are risk
management and regulatory compliance. How, at minimal cost, can they
maintain an acceptable risk profile and comply with the various laws, rules,
and regulations governing the enterprise? Enterprise managers know that
complexity breeds failure, and so they want clear simple statements of
principle. An ideal policy is a one or two page statement in English that

Algorithims and Experience in Intelligibility of Access Control 297

unambiguously lays out the goals and objectives and establishes clear
guidance to employees seeking decisions.

1.1.2 Software Developers and Integrators [Application 1 and
Application 2]

Developers and integrators are typically faced with demands for rapid
delivery of software and systems that provide the maximum in functionality
and performance at the lowest cost. Most software is produced or procured
for a specialized purpose and serves a subset of the organization that is, by
nature of being smaller, naturally more coherent. This reduces the
perceived need by both the enterprise line staff and the developers for
stringent security machinery.

1.1.3 Security Administrators [Security Administration]

Low in the organizational food chain and often neglected in planning
access control systems, the security administrators are the keys to the day-
to-day interpretation of the security policies and their effective reduction to
practice. They have to understand the policies, they need tools that they can
use effectively, and their needs must be reflected in the overall access
control architecture if it is to be effective. To illustrate this point, imagine a
house with excellent locks on every window and door, but installed so
inconveniently that to lock or unlock them requires that the homeowner
carry a ladder and a box of tools to each window and door. How likely is it
that the doors and windows will be locked or unlocked at the appropriate
times?

1.1.4 Auditors

Senior managers and a wide variety of external parties, from customers
to industry regulators, look to the auditors to reconcile the ideally clear and
simple statements of policy and the necessarily complex and messy
implementations that emerge from day-to-day activities. Auditors, in turn,
look for powerful analytical tools to help them reduce the complexity of the
world they discover so that they may answer the questions that are put to
them.

298 DATA AND APPLICATIONS SECURITY

1.1.5 Related Work

To quote from a report on this problem at NIST [1], "one of the most
challenging problems in managing large networked systems is the
complexity of security administration. Today, security administration is
costly and prone to error because administrators usually specify access
control lists for each user on the system individually. The principle of role
based access control (RBAC) is that security should be mapped to an
organization's structure. With Role-based Access Control, security is
managed at a level that corresponds closely to the organization's structure.
Each user is assigned one or more roles, and each role is assigned one or
more privileges that are permitted to users in that role."

The notion of authorization hierarchies using roles is certainly present in
the SQL databases [2].

In SQL, the owner of a resource can give certain operational rights (e.g.
insert, delete, and update) to certain users or groups of users (called roles)
on certain objects where an object can be a column, table, or entire database,
or even can be defined as a query. The syntax is:

Non-SQL approaches to the problem include the product from Computer
Associates called TopSecret. That system allows positive and negative
authorizations, permitting grouping of users into collections, wild cards in
object names, and a hierarchy of privileges NONE > ALL > WRITE >
READ where > means "takes precedence over". Assets and permissions are
grouped into profiles that are distributed to users. Finally, there is a notion
of single and variable length wild card characters, so that for example
AB*C matches ABXYTC.

Jajoida et alia [3] have proposed a framework for positive and negative
access control policies. The framework consists of languages and
techniques for making positive and negative access control policies
consistent.

The novelty of our work derives mainly from the fact that we must
actually solve this problem on large data. In a large bank that originates
significant electronic funds transfers people who have excessive
permissions could cause significant financial harm. Existing approaches

Algorithims and Experience in Intelligibility of Access Control 299

within our organization to reducing such risks are manual and consist of
interviewing people and managers about their needs. Our approach here is
to aid that work by increasing the intelligibility of the permissions people
have.

Why could we define no previous experimental study of access control
or algorithms to increase the intelligibility of security? Here's what Prof.
Jajodia observed in a personal communication: "There is no study because
the general feeling is that groups and roles are helpful. Everybody accepts
that." In a way, this paper is meant to show how much help such a
technique can provide.

2. A DATA MODEL

2.1 Glossary

300 DATA AND APPLICATIONS SECURITY

2.2 The Central Data Structure

Historically, access control databases have provided the capability to
assign specific individuals specific rights to specific assets. Some have
provided the ability to aggregate one or another of these atomic entities, but
in general little aggregation has been available. This has resulted in
administrative and analytic headaches as the number of assertions in the
access control databases have grown. At Morgan Stanley Dean Witter in

Figure 2 [User_UserGroup and (p,r) is in Priv_PrivGroup]

Algorithims and Experience in Intelligibility of Access Control 301

the Institutional Securities business we use a product named "Top
Secret," now from Computer Associates, which permits the grouping of
asset-privilege combinations. The operational database for our Top Secret
environment has nearly 500,000 assertions. The number is so large that we
cannot practically analyze it.

It was our hypothesis when we undertook this work that by providing
aggregation for each of the three entities, users, assets, and privileges, we
could reduce the number of assertions in the central fact table. As you will
see in the result section below, that is exactly what we found.

3. ALGORITHMS AND PROOFS
The data model introduced in section 2 is a framework for grouping

assets into asset groups, users into user groups, and privileges into privilege
groups. The algorithm of this section transforms a set of atomic
relationships into the most economical possible set of groupings.

3.1 Reduction Algorithm for Inferring Molecular Rules:

Input: A set of rules at the atomic level (asset, user, and privilege). This
is called PermissionsAtom.

Output: A set of rules at the molecular level (asset group, user group,
and privilege group). This is called PermissionsMolecule.

A description of the groupings
 • From asset to asset group (Asset_AssetGroup),
 • From user to user group (User_UserGroup), and
 • From privilege to privilege group (Priv_PrivGroup).

Correctness Conditions:
If (a, u, p) is in PermissionsAtom, then there exists a row (c, g, r) in

PermissionsMolecule such that (a,c) is in Asset_AssetGroup, (u,g) is in
User_UserGroup, and (p,r) is in Priv_PrivGroup.

3.1.1

If (c,g,r) is in PermissionsMolecule then for all a, u, p such that (a,c) is
in Asset_AssetGroup, (u,g) is in User_UserGroup, and (p,r) is in
Priv_PrivGroup, (a, u, p) is in PermissionsAtom.

302 DATA AND APPLICATIONS SECURITY

3.2 Atom to Molecule Reduction Algorithm:

We explain this algorithm along with the following running example.
We start with the following atomic table.

Note: We now present the reduction steps in a particular order. As we
show later, the order of reduction matters, so this ordering is only one
among several (six, to be precise). But all reductions use the same basic
construction.

3.2.1 Asset Reduction Step

For each distinct user-privilege pair (u, p), find the set of assets:
S(u,p) = { PermissionsAtom.asset |

PermissionsAtom.User = u and
PermissionsAtom.Privilege = p

}
For each such set, create a new name, e.g. assetgroup_u_p. Then create

a new table, denoted tab1, consisting of these asset groups and their unique
user-privilege pairs. Formally, tab1 has three columns (asset group, user,
and privilege), where user-privilege together form a key.

In set theoretic notation:
tab1 (asset group, user, priv) =
{ (S(u, p), u, p) |

u belongs to PermissionsAtom.user and
p belongs to PermissionsAtom.priv

}
In words: create triples consisting of each possible user u, privilege p,

and the associated set of assets, which will be grouped into a new asset

Algorithims and Experience in Intelligibility of Access Control 303

group name. In addition create an association between each created set of
assets and an asset group name.

In our running example, this would give the following (here, we keep the
original sets instead of replacing them by asset group names):

Thus, c2 is the name for {a1} whereas c1 is the name for {a1, a2}. So,
replacing the sets by their names, we would get another form for tab1:

3.2.2 Privilege Reduction Step

The next step consists of grouping the privileges into privilege groups.
The strategy is to perform groupings based on user and asset group to create
sets of privileges.

tab2(asset group, user, privilege group) =
{ (c, u, { tab1.priv |

tab 1.user = u and

304 DATA AND APPLICATIONS SECURITY

tab1.asset_group = c
}

) |
u belongs to tab1.user and
c belongs to tab1.asset_group

}

Again, the constraint is that no two rows in tab2 may have the same asset
group and user combination of values.

In our running example, this does not diminish the number of rows:

3.2.3 User Reduction Step

The next step consists of grouping users into groups. This is the final
step and creates the molecular level of grouping that we seek.

PermissionsMolecule(
asset group,
user group,
privilege group) =

{ (c, { tab2.user |

tab2.privilege_group = r and
tab2.asset_group = c

}, r) |
r belongs to tab2.privilege_group and
c belongs to tab2.asset_group

}
In our running example, this does not diminish the number of rows

either:

Algorithims and Experience in Intelligibility of Access Control 305

3.3 Observations:

3.3.1
The general step of reducing based on C given a table T(G1, G2, C) is to

form the set
T' ={ (g1, g2, { T.C |

T.G1 =g1 and
T.G2 = g2

}
) |

g1 belongs to T.G1 and
g2 belongs to T.G2

}
with the constraint that no two rows in T' have the same g1 and g2

values, in combination. (So, many rows may have g1 in the G1 column and
many may have g2 in the G2 column, but only one row will have g1 and
g2.)

3.3.2

The transformation satisfies the correctness conditions. We will show
this through the use of generalized tables in which there are sets as field
values.

3.3.3 Definitions:

The atomic permission table has a single user, a single asset, and a
single privilege in each row.

A partly molecular table has a set of users, a set of assets, and a set of
privileges in each row. Any of these sets can be singleton, so even the

306 DATA AND APPLICATIONS SECURITY

atomic permission table can be modeled as a partly molecular table in which
every field in every row is singleton. A partly molecular table is isomorphic
to the intermediate tables in our construction. Each such table has atoms in
each field, but some of those atoms represent sets, (e.g. an asset group
represents a set of assets). Partly molecular tables are non-first-normal form
representations of those sets.

The row expansion of row r in a partly molecular table is the cross
product of its sets.

The expansion of a partly molecular table is the union of its row
expansions.

A row one-column expansion of row r on column C is a set of rows of
size ||r.C||, each row having one value of r.C and the values contained r for
the remaining columns.

The one-column expansion of a partly molecular table is the union of
its row one-column expansions.

Then the one-column expansion based on column User would
give:

Algorithims and Experience in Intelligibility of Access Control 307

Observation:
Any ordering of one-column expansions that includes all columns will

yield the same set of rows as an expansion.
The operation unsetting removes the curly brackets when all sets are

singleton. In the example, unsetting yields the following table:

308 DATA AND APPLICATIONS SECURITY

The operation setting is the inverse of unsetting.
Suppose that Ta is an atomic table and P is a partly molecular table. We

say that P conserves Ta if Ta = the unsetting of the expansion of P. That is,
up to reordering Ta is the same as the unsetting of the expansion of P.

Lemma: If P1 is a partly molecular table that conserves Ta and P2 is a
reduction of P1, then P2 also conserves Ta.

Proof: Our strategy is to show that reduction is the inverse of expansion.
(We assume three columns, though the same argument will apply to any
number of columns greater than one.)

When doing a reduction from P1 to P2, we partition P1 by its grouping
columns, e.g. user and asset, and compute the set in its grouped column, e.g.
privilege, corresponding to each partition. Call the grouping columns G1
and G2 and the grouped column C. Without loss of generality, assume that
G1 and G2 are the first two columns. In P2, no two rows have the same G1
and G2 values. Further, no two sets of rows have the same G1 and G2

Algorithims and Experience in Intelligibility of Access Control 309

values in P1 so we can treat the reduction that produces a single row of P2
independently from the reduction for any other row of P2.

Consider the row having values g1 in G1 and g2 in G2 and the
corresponding rows in P1 having g1 and g2 as members. Let set c of items
from column C be all the items from column C in rows having (g1, g2) as
the entries in G1 and G2, respectively.

So, the row (g1, g2, c) in P2 is the reduction of the set of rows in P1
having g1 and g2 as their first two field values. A row one-column
expansion of (g1, g2, c) based on C results in ||c|| rows all having g1 and g2
as their first two field values and having a different element in c in the third
field of each row.

A one-column expansion based on C is the inverse of reduction based on
C. This implies that P1 is the expansion of P2 based on C. Hence, the
expansion of P2 has the same set of rows as the expansion of P1.

Therefore P2 conserves Ta because P1 conserves Ta.
Theorem: The molecular Permissions Table that results from the

Reduction Algorithm conserves the atomic Permissions Table.
Proof: By induction on the column reductions and from the lemma.
Recursion on this procedure does not help.
It never helps, i.e. reduces the size of the permissions molecule, to do

further grouping beyond the above construction. We explain why by
concrete example, but the reader will be able to generalize the example.

Suppose that it were useful to group, say, privilege groups into bigger
privilege groups. Then there would have to be two rows in
PermissionsMolecule with values (g, c, r) and (g, c, r') where privilege
groups r and r' are distinct but group g and asset group c are the same.

When privilege groups are created, they are created based on a partition
of user-asset group pairs. Users from such pairs later are put into groups.
Therefore, no two privilege groups can be associated with the same user and
asset group or the same user group and asset group.

3.3.4 Choosing different orderings of reduction may help.

Recall our running example:

310 DATA AND APPLICATIONS SECURITY

If we reduce asset first, we get the following groupings after the first
step:

None of the other reductions shrinks this set any further.
However, if we reduce user first, we get:

Now, if we reduce privilege next, we get:

This gives us three rather than four rows in the result.

4. QUANTITATIVE RESULTS

Reducing atomic relationships to molecular relationships seems to be a
plausible idea, but does it really help? We set out to answer this question
using several actual sets of authorization data in daily use within Morgan
Stanley Dean Witter. The numbers we cite are:

Algorithims and Experience in Intelligibility of Access Control 311

4.1.1 the initial size of the atomic permissions table,

4.1.2 the size, following execution of the algorithm, of the molecular
permissions table,

4.1.3 the sizes of each of the grouped entities: assets, userids, and
privileges,

4.1.4 the number of groups: asset groups, user groups, and
privilege groups

312 DATA AND APPLICATIONS SECURITY

4.2 Experiment 1:

528 rows in PermissionsAtom became 1 row in Permissions Molecule.
 • 1 asset grouped into 1 asset group
 • 12 users grouped into 1 user group
 • 44 privileges grouped into 1 privilege group

4.3 Experiment 2:

 • 2540 rows in PermissionsAtom became
 • 3 rows in PermissionsMolecule with
 • 3 assets grouped into 3 asset groups
 • 20 users grouped into 1 user group
 • 81 privileges grouped into 3 privilege groups

Algorithims and Experience in Intelligibility of Access Control 313

4.4 Experiment 3:

 • 78,747 rows in Permissions Atom became
 • 554 rows in PermissionsMolecule with
 • 1029 assets grouped into 505 asset groups
 • 998 users grouped into 235 user groups
 • 108 privileges grouped into 403 privilege groups

4.5 Experiment 4: Top Secret Configuration

 • 354,598 rows in Permissions Atom became
 • 25,542 rows in PermissionsMolecule with
 • 59,713 assets grouped into 24,485 asset groups
 • 21,643 users grouped into 23,680 user groups
 • 28 privileges grouped into 35 privilege groups

314 DATA AND APPLICATIONS SECURITY

5. FUTURE WORK
We began this article by highlighting the plight of the auditors who must

reconcile the representation of a security policy with regulations. We
suggested that presenting a human being with hundreds of thousands of
permission facts (354,598 in our case) was simply too unwieldy. Our
algorithm reduced this number of facts to 25,542, definitely a step in the
right direction but not yet a solution.

Achieving a solution requires "improving the hygiene" of the
authorization data, i.e. data cleaning to eliminate typos, reduce
inconsistencies and so on. An algorithm for data cleaning is an open
problem, but we think the following ideas are worth exploring:

Suppose that our grouping to the molecular level produces several sets of
users that are large and are mutually similar. The fact that they are not
identical might be an indication of inconsistent treatment of these users.
The same holds for assets and for privileges.

Sometimes we may be able to infer that permissions are missing.
Consider the following example of atomic permissions:

As it stands this can be reduced to one row:

Algorithims and Experience in Intelligibility of Access Control 315

Now, we notice that any break in that symmetry, for instance by
removing one row, will cause the groups to break up quite a lot. For
instance, if we remove the last row to give:

Then grouping will lead to more rows in the result:

In this case, we'd want to infer that we were missing:

Additional information can also help the cleaning process. We have
found the following heuristics to be useful for example when the
organizational structure is supposed to imply homogeneous privileges: Find
people whose permissions are inconsistent with most (say 80%) of their co-
members in the supposedly homogeneous group. Alternatively, find
permissions that most members of a group have and consider those to be a
core. Question any permission outside the core.

316 DATA AND APPLICATIONS SECURITY

Human judgement plays the critical role in managing security. Our hope
is to provide tools that help people manage this sometimes-overwhelming
task. This paper is one step in that direction.

6. REFERENCES

[1] "Role Based Access Control," D. Ferraiolo and R. Kuhn, NIST,
http://hissa.ncsl.nist.gov/rbac/

[2] "Guide to the SQL Standard," H. Darwen and C. J. Date, 1997, Addison-Wesley, ISBN
0201964260.

[3] "A Unified Framework For Enforcing Multiple Access Control Policies," S. Jajoida, P.
Samarati, V. S. Subrahmanian, and E. Bertino, Proceedings of ACM SIGMOD International
Conference on Management of Data, 1997, pp 474-485

