CHAPTER 20

LANGUAGE EXTENSIONS FOR
PROGRAMMABLE SECURITY

J. Hale, R. Chandia, C. Campbell, M. Papa and S. Shenoi

Abstract  Software developers rely on sophisticated programming language pro-
tection models and APIs to manifest security policies for Internet ap-
plications. These tools do not provide suitable expressiveness for fine-
grained, configurable policies. Nor do they ensure the consistency of a
given policy implementation. Programmable security provides syntactic
and semantic constructs in programming languages for systematically
embedding security functionality within applications. Furthermore, it
facilitates compile-time and run-time security-checking (analogous to
type-checking). This paper introduces a methodology for programmable
security by language extension, as well as a prototype model and imple-
mentation of JPAC, a programmable access control extension to Java.
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1. INTRODUCTION

Internet computing is a catalyst for the development of new program-
ming language protection models and security APIs. Developers rely
on protection models to check code integrity and guard memory bound-
aries at compile-time and run-time [4, 9]. Developers use security APIs
to manifest security policies tailored to their applications. Together, pro-
tection models and security APIs comprise the state of the art for safe-
guarding applications running in open environments. However, these
tools do not ensure that a security policy articulated with an API is
consistent or viable. Moreover, very little is available to programmat-
ically link elements in a protection model with a security APL. As a
result, security APIs are commonly used in an ad hoc fashion yielding
unpredictable security policies.

Programmable security provides syntactic and semantic constructs in
programming languages for systematically embedding security function-
ality within applications [12]. Developers use special syntax to express
security policies within code in the same way that types are used to ex-
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press constraints on variable behavior. This approach facilitates compile-
time and run-time security-checking (analogous to type-checking) to ver-
ify that no potential security policy violations occur within a program.
This paper introduces a methodology for extending programming lan-
guages with programmable security services. The methodology is first
described, followed by the authorization model adopted for programmable
access control. Finally, the design and prototype implementation of our
programmable access control solution in Java is presented.

2. PROGRAMMABLE SECURITY

Programmable security links security services to programming lan-
guage syntax extensions to facilitate the expression and systematic im-
plementation of security policies in applications. Developers use pro-
grammable security expressions to specify authorization policies for prin-
cipals and data elements, authentication protocols for proxies, audit
procedures for program modules, and secure communication channels
for distributed systems.

The implementation of native programmable security services in new
languages offers language architects greater freedom, allowing them to
escape the “golden handcuffs” of compatibility. However, extending pop-
ular languages has the advantage of immediate relevance to a large au-
dience of developers.

Extended
Source Code

Compiler

- Semantics _ ' o I

...................

Figure 1. Programmable security methodology.

Figure 1 illustrates an extensional methodology for implementing pro-
grammable security. This approach introduces two elements to a pro-
gramming system; a preprocessor (a similar preprocessing approach has
been taken to add genericity to the Java language [3]) and a security
service library. The preprocessor employs a parser designed with an
augmented grammar to accept expressions in the extended language.
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The augmented grammar adds production rules and keywords to the
original grammar, binding security services to the programming system.
The preprocessor actually plays two roles; (i) checking for security viola-
tions within the extended source code and (i1) translating the extended
source code into native source code.

The preprocessor relies on the security service library API to derive
native source code implementing the specified security functionality. The
resulting source code is passed to a native compiler to produce an ex-
ecutable. The security service library can be linked at compile-time or
run-time to perform security violation checks during execution.

3. AUTHORIZATION MODEL

Our programmable access control solution relies on a simplified version
of the ticket-based authorization model originally described in [12, 13,
14] and refined in [6]. We adopt the ticket-based scheme because it
permits policy expression in a variety of authorization models and a
straightforward implementation in message passing systems.

Messages requesting access to remote resources are between nodes in
an object hierarchy (where any object can also play the role of a sub-
ject). Tickets embedded in messages as unforgeable tokens are analogous
to capabilities [7, 8, 16, 17], conveying privileges of message originators.
Message passing only occurs directly between two adjacent object nodes,
as formally specified with the following rule:

(1) Adj s 01 0, = Parent s 0) 0o V Parent s o3 0;.

Adj s oy o2 is true whenever objects op and og are adjacent in a
hierarchical object structure at a given state s. Parent s 01 0g 1s true
when, in state s, o is the parent of og.

Conceptually, tickets represent keys held by subjects that match locks
held by objects. Keys are checked for matching object locks to authorize
access requests.

Key s o1 tis true when o3 has a key named 7 in state s. Lock s 0y ogt
is true when 01 has a lock named 7 on object oq in state s. (The hierarchy
described below mandates that oy and og be adjacentfor o; to hold such
a lock.) We can define key/lock matching by an object o as

(2) Matchsorop03 = 3t. Keysoyt A Lock s oz 03 t.

This predicate defines when a message has permission to access oz on
behalf of 07 in 62. Every message must be authorized for delegation at
every inteverning object in the hierarchy. The access request itself is
checked only at the destination object.
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Another predicate represents the goal of a message. Access s 0y 02,
specifies that o1 can access og from its point of origin in state s. Now we
can complete the formalization by creating an inductive definition for
access between nodes in a hierarchy with the addition of two rules:

(3)  Access s 01 01 = true

and

(4)  Access s 01 03 A Match s 0, 03 03 = Access s o1 o3.

Rule 3 indicates that objects always have access to themselves, and
forms a base case for inductive access checking. Rule 4 provides the
inductive step, stating that if o; can access o2, and if o; holds a key
matching a lock in og for o3, then o; can access o3.

4. PACKAGE-BASED ACCESS CONTROL

This section presents a programmable package-based protection scheme
for Java. The system (JPAC) uses syntax extensions to provide develop-
ers with discretionary and fine-grained access control for Java applica-
tions. Note that JPAC extends, not replaces, the existing Java security
architecture. Developers can use JPAC to confine access to program
elements based on the package identity of requesting elements.

Figure 2 presents the JPAC syntax extensions used to express package-
based protection. Extensions are based on the syntax described in The
Java Language Specification documents [2, 21, 22, 23]. The EBNF pro-
ductions in Figure 2 change the way a compilation unit is named by
making PackageDeclaration mandatory and adding a Properties pro-
duction to it. Unnamed compilation units are specified by declaring a
nameless package.

Three examples of legal compilation units can be found at the bot-
tom of Figure 2. A package faculty specifies that its elements can be
accessed by a package named admin. Associating the keyword guarded
with the student package specifies that its elements can be accessed
by any other package using our ticket-based protection scheme. The
package other, using the keyword unsecured, specifies that any pack-
age can access its elements, even those that are not compiled under our
architecture (useful for interfacing with APIs or other external code).

Synchronization clauses or exceptions are not controlled in our de-
sign. Public, private, protected and package-level protection modes are
enforced as usual, with package-based protection specifications impart-
ing additional authorization constraints.
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CompilationUnit:
PackageDeclaration [ ImportDeclarations ) [ TypeDeclarations )
PackageDeclaration:
package [ PackageName ] Properties
Properties:
protection { [ Property | }
Property:
PackageName ; ( PackageName )*
guarded ;
unsecured ;
package faculty package student package other
protection { protection { protection {
admin; } guarded; } unsecured; }

class MyClass {
.}

class MyClass {
v o}

class MyClass {
)

Figure 2. Extended syntax.

The JPAC semantics are derived from the ticket-based authorization
scheme and object hierarchy described earlier. Every JPAC system con-
sists of a root object, and within it a collection of objects mapped to
JPAC-protected packages — each associated with its own message han-
dler. Classes and instances are regarded as components of their enclosing
packages and use their package’s message handler to pass messages con-
veying access requests/replies across package boundaries.

A unique token is defined for each protected package. A lock/key
pair is generated from the token for each of the packages listed in the
protection declaration clause. The lock is held in the protected package’s
access control list, while keys are delivered to the packages for whom
access is granted. A special token representing “‘everyone” is defined to
build a key for distribution to all objects in the JPAC system. Packages
with guarded protection status hold the “everyone” lock, enabling access
by all JPAC objects, but not by external Java code.

JPAC program elements are organized into an object hierarchy. A
root object resides at the top of the hierarchy, below it are objects mod-
eling packages, classes and instances. Access requests are carried by
messages that flow from the message handler of the package represent-
ing the request source to the message handler of the destination package.

Our prototype implements package protection with filter operations
performed by message handlers. Messages contain fields identifying the
source, the destination and the keys of their originator. Each time a
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Figure 3. JPAC class hierarchy.

message 1is received by a message handler it verifies keys contained in
the message against locks held in a package access control list.

5. JPAC IMPLEMENTATION

JPAC integrates a set of classes to model a message passing hierarchy
for program elements, a preprocessor for extended source code transla-
tion, and a run-time ticket management software architecture. The class
hierarchy comprising the security service library is shown in Figure 3.

S.1. OBJECT HIERARCHY

The JPAC implementation adds a MessageHandler class and a class
for each package to dispatch access control in an object hierarchy. In-
stances of MessageHandler are associated with each of the newly cre-
ated package classes. Package classes hold package-specific data, guiding
MessageHandler initialization. All package classes inherit their behavior
from the JPACPackage abstract class.

Figure 4 shows the source code for a JPAC class Learn, including a
protection clause restricting access to the faculty package. Resulting
package classes are named as “Package X”, where “X” is a flattened
version of the package name. This simple naming convention for package
classes helps avoid name clashes in JPAC.

5.2. PREPROCESSING

The preprocessor performs various transformations on program ele-
ments in extended source code to authenticate calling subjects, effect
secure method dispatch and respect all forms of variable access. Vari-
able and method access is validated with a certificate placed in an extra
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Learn.jpac:

package student protection {
faculty;
}

public class Learn extends tools.BBSClient {
public int addMsg(String msg) {
super .addMsg (msg) ;
return noOfMsgs++;
i
protected int version = 1.0;
// the method public int getNoCfMsgs() and the field
// public int noOfMsgs are inherited from class tools.BBSClient

Figure 4. Package-based Java protection code.

parameter generated by the preprocessor. Finally, the preprocessor must
successfully integrate Java interfaces and unsecured packages with JPAC
systems.

521 Methods. JPAC method calls are transformed to include
an authenticating certificate placed in the extra parameter generated by
the preprocessor. The method checkOut () in the MessageHandler of
the current package class checks if a message can reach the destination,
and returns a certificate for the callee method.

Extending Java’s protection model to permit discretionary access con-
trol provides a unique set of challenges to the preprocessor. For example,
protected classes may invoke unsafe methods in inherited classes. Pro-
tected classes in JPAC inherit from the JPACObject class, which provides
safe replacements for methods in java.lang. Object. If a method from
Object is used, a JPACAccesDeniedException exception is thrown.

Inheritance and dynamic linking in Java also produce an interesting
problem. Any call destined for a class in some package can arrive, due
to inheritance, to another class in a different package. If this is allowed,
legitimate calls could be denied just because inheritance was used. The
JPAC solution is to produce proxy methods in the inheriting class that
forward calls to the parent class.

Another complication results from the fact that all constructors call
their parent’s default constructor. When a call to the parent’s construc-
tor is missing in a JPAC constructor, one is placed with a fresh certificate
in the first statement of the constructor body.

5.2.2 Variables.  Direct variable reads and writes are emulated
with accessor methods, which authorize access by validating certificates
in the same way as JPAC methods. These accessor methods inherit
protection levels from their variables. Furthermore, if a variable is static
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then the accessor method is made static as well. Variables in the JPAC
code are then set to private-level protection in the transformed Java
code, preventing unauthorized access.

JPAC accessor method names are chosen to reflect not only the name
of the variable, but also the class (or interface) that contains it. When
variable accesses are found in JPAC code, the preprocessor determines
the type where the variable is stored and generates the appropriate call
as needed.

5.2.3 Interfaces and Unprotected Packages.  JPAC inter-
faces are translated similar to classes, except that interface variables are
implicitly static, public and final, making them impossible to “priva-
tize.” JPAC moves interface variables into specially constructed classes
making it possible to change their access level to private and to add ac-
cessor methods. Wherever a JPAC interface variable is referenced, a call
to the appropriate accessor method is substituted. Naming of interface
variables and accessor methods is performed in the same way as for class
variables.

Classes and interfaces in unsecured packages are considered unpro-
tected by the JPAC system extensions. Unsecured classes and interfaces
are useful in that they can directly subclass Object (the core Java system
class) and other unprotected classes. Classes and instances in unsecured
packages do not adopt the additional certificate parameter for meth-
ods or accessor methods for variables. The only modifications are the
transformation of calls to methods and variables in classes belonging to
protected packages and the addition of a package class.

5.3. TICKET MANAGEMENT

The ticket management software architecture in Figure 5 serves as
an execution model for the ticket-based access control scheme described
earlier. The architecture supports message passing in a hierarchy of
handlers to validate inter-package access.

5.3.1 Keys, Locks and Rings. Key and lock objects provide a
basis for constraining access, while messages encapsulate authorization
requests. Tokens, which model keys and locks, are characterized by an
abstract class (Token) containing a unique identifier and an abstract
method to match keys and locks. A simple protocol ensures that a
lock and its matching key are created simultaneously to guarantee their
authenticity.

The match() method checks keys and locks by computing an en-
crypted key value and comparing it to the value of the lock.
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Java files: JPACCore code
o package student package edu.utulsa.mcs.|pacengine

package student
Learn Package_student MessageHandler
Message

Test

Preprocessor
+ MsgH1
Board Test Board .@ Msg1
| A ---= B Ainstance of B f -

Figure 5. Software architecture.

Access control lists maintained within each package class store locks
and keys. The access control list class (ACL ) provides methods to add and
remove keys from a key ring. Instances of the KeyRing class are passed
between message handlers to facilitate inter-package access by presenting
keys to match with locks in destination package access control lists.

To access a variable or method in another package, the key ring is
passed as a parameter to the match () method of the destination ACL.
The match () method passes each lock to a method of the key ring which
checks every key for a match. If a key fits, the key ring returns a copy
of the key to the ACL for verification, and access is granted. When a
foreign package attempts to gain access to a local package, the local
package receives a copy of the foreign key registry.

5.3.2 Message Handlers.  The centerpiece of the software ar-
chitecture is the message handler, which effects message passing between
objects. Messages are used only for authorization and consist of a key
ring, a source and destination identifier, and a certificate. Key rings
that accompany messages embody the rights of the message originator.
Messages are passed between objects via resident message handlers, au-
thorized at each stop, until they reach their final destination.

Static methods in the MessageHandler model behavior for the root
JPAC domain. A static code block creates a new message handler for
each package class. The MessageHandler constructor obtains a reference
to program units above it in the hierarchy. If such a reference is to a unit
that has not yet been instantiated, that unit’s static code will execute,
creating its parent object. The result of this domino effect is that when
any package is first accessed, message handlers for it and every other
package above it in the hierarchy are initialized.
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6. COMPARISONS WITH OTHER WORK

Object-oriented programming languages employ protection schemes
based on classes, variables and methods. Java 1.0 provides packages to
group program units (classes and interfaces), creating access boundaries
[2, 4]. Java 1.2 lets developers define protection domains to specify sets
of classes sharing identical permissions [10, 11]. The added functionality
is given in an API. Wallach et al. propose extensions to the Java security
model that employ capabilities and namespace management techniques
[26]. Java capabilities are implemented based on the fact that refer-
ences to objects cannot be fabricated due to Java’s type safety features.
The disadvantage of these approaches is that no significant compile-time
security checking can be performed.

Early work in [5] describes a compile-time mechanism to certify that
programs do not violate information flow policies, while [1] provides a
flow logic to verify that programs satisfy confinement properties. Static
analysis of security properties has re-emerged as a promising line of
research because it eliminates much of the need for costly runtime checks.
It also prevents information leakage that can occur at runtime.

In [25], Volpano et al. recast the information flow analysis model in
[5] within a type system to establish its soundness. This work led to a
sound type system for information flow in a multi-threaded language [20].
JPAC differs in that it promotes a foundational authorization model as
a common substrate for various access control schemes to support the
static analysis of secure program interoperability.

Van Doorn et al., extend Modula-3 network objects with security
features in [24]. Secure network objects (SNOs) bind programming lan-
guages into service for integrating security into objects and methods.
SNOs promote subtyping for specifying security properties of objects.

Myers and Liskov describe a decentralized information flow control
model in [19]. Security label annotations can be inferred and type-
checked by a special compiler to verify program information flow prop-
erties. Myers implemented these ideas in JFlow, a variant of Java that
integrates statically checked information flow annotations with advanced
programming language features such as objects, subclassing and excep-
tions [18].

The SLam calculus is a typed A-calculus that tracks relevant security
information of programming elements [15]. A compiler that executes
static checks enforces the type system rules to guarantee program secu-
rity. Types in SLam are monomorphic and static, but the system has
been shown to be extensible to concurrent and imperative programming.
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7. CONCLUSIONS

Programmable security allows developers to express verifiable protec-
tion policies with special syntax. Preprocessors can be used to extend ex-
isting programming languages with syntactic constructs tied to security
service libraries, yielding a programmable solution that is interoperable
with systems developed in the original language. Our programmable ac-
cess control prototype, JPAC, extends the Java programming language
with syntax for expressing package-level discretionary policies. JPAC
classes and interfaces can be seamlessly integrated within native Java
applications, allowing developers to customize protection policies for se-
lected software components. In addition, the semantic foundation of the
JPAC architecture permits the design and implementation of more fine-
grained authorization models for class-based and instance-based protec-
tion.
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