
CHAPTER 2

Author- A JAVA-BASED SYSTEM
FOR XML DATA PROTECTION*

E. Bertino, M. Braun, S. Castano, E. Ferrari, M. Mesiti

Abstract Author- is a Java-based system for access control to XML documents.
Author- implements a discretionary access control model specifically
tailored to the characteristics of XML documents. In particular, our sys-
tem allows (i) a set-oriented and single-oriented document protection, by
supporting authorizations both at document type and document level;
(ii) a differentiated protection of document/document type contents by
supporting multi-granularity protection objects and positive/ negative
authorizations; (iii) a controlled propagation of authorizations among
protection objects, by enforcing multiple propagation options.

Keywords: XML, access control, authorization base, eXcelon, Java.

1. Introduction
Since the Web is becoming the main information dissemination means

for most organizations, an increasing number of applications at Internet
and Intranet level need access control mechanisms enforcing a selective
access to information retrieved/exchanged over the Web. XML [9] has
recently emerged as the most relevant standardization effort in the area
of markup languages, and it is increasingly used as the language for
information exchange over the Web. In this context, developing an ac-
cess control mechanism in terms of XML is an important step for Web
information security.

In this paper, we present Author- a Java-based system for discre-
tionary access control to XML documents. Author- takes into account
XML document characteristics, the presence of document types (called
Document Type Definitions (DTDs)), and the types of actions that can
be executed on XML documents (i.e., navigation and browsing), for im-
plementing an access control mechanism tailored to XML. In particular,

*This work has been partially supported by a grant from Microsoft Research.

16 DATA AND APPLICATIONS SECURITY

Author- has the following distinguishing features: both a set-oriented
and instance-oriented document protection, by supporting DTD-level as
well as document-level authorizations; differentiated protection of XML
document and DTD contents by supporting positive and negative autho-
rizations and fine grained protection objects, identified on the basis of
the graph structure of XML documents and DTDs; controlled propaga-
tion of authorizations among protection objects at different granularity
levels, by enforcing multiple propagation options stating how an autho-
rization defined on a document/DTD applies by default to protection
objects at a finer granularity level within the document/DTD.

Author- exploits authorizations stored in an XML authorization
base and their propagation options to evaluate access requests issued by
users and determines if they can be completely satisfied, partially satis-
fied, or not satisfied at all. In case of a partially satisfied request, only a
view of the requested document (s) is returned by Author- Author-
is implemented in Java on top of the eXcelon data server [4], which is
used to store both the sources to be protected and the XML autho-
rization base of the system. Architectural and implementation issues of
Author- are described, with particular attention to the authorization
base and the access control mechanism. An application of Author- to
the protection of a real XML source, derived from the Sigmod Record
Articles XML Database [7], is presented.

As far as we know, Author- is the first tool, we are aware of, support-
ing XML document protection. In fact, research work in this field has
concentrated more on the development of access control models for Web
documents [6]. XML documents have a richer structure than HTML
documents and can be coupled with DTDs describing their structures.
Such aspects require the definition and enforcement of more sophisti-
cated access control mechanisms for XML, than the ones devised for
HTML. An access control model for XML documents has been recently
proposed in [3]. Such model borrows some ideas from previous models for
object-oriented databases and does not actually take into account some
peculiarities of XML. For example, the case of documents not conform-
ing/partially conforming to a DTD is not considered, and no support is
provided to the Security Officer for protecting such documents.

The paper is organized as follows. Section 2 summarizes character-
istics of the Author- discretionary access control model and describes
the overall system architecture. Section 3 describes the structure of an
XML source and of the authorization base. Section 4 presents the access
control module of Author- Section 5 illustrates expected interactions
of the Security Officer with Author- for authorization management.

Author- a Java-Based System for XML Data Protection 17

Finally, Section 6 concludes the paper and outlines future research di-
rections.

2. Overview of Author-
In the following we first briefly review the access control model of

Author- [1]. Then, we present its overall architecture.

2.1. Author- access control model
Authorizations in the Author- model have the following format:

< users, protection-objs, priv, prop-opt, sign >

Component users denotes a (set of) user(s) to which the authoriza-
tion applies. Component protection-objs denotes the (portions of)
documents/DTDs (called protection objects) to which the authorization
applies. The priv component denotes the access modes that can be
exercised on the protection objects specified in the authorization. We
support two different kinds of privileges: browsing and authoring priv-
ileges. Browsing privileges allow users to read the information in an
element (read privilege) or to navigate through its links (navigate priv-
ilege). Authoring privileges allow users to modify (or delete) the content
of an element (write privilege) or to append new information in an el-
ement (append privilege). The prop-opt component allows one to
specify how authorizations specified at a given level propagate to lower
level elements. The following options are provided: i) CASCADE: the
authorization propagates to all the direct and indirect subelements of
the element(s) specified in the authorization; 2) FIRST_LEV: the autho-
rization propagates only to all the direct subelements of the element (s)
specified in the authorization; 3) NO_PROP: no authorization propaga-
tion occurs. Finally, the component specifies whether the
authorization is a permission or a prohibition

In addition to such “explicit” propagation, Author- supports a form
of “implicit” propagation according to which an authorization specified
on a certain protection object o “applies by default” to a set of protection
objects that have a relationship with o. In Author- the relationships
considered for propagation are the element-to-subelements, element-to-
attributes, element-to-links relationships, deriving from the graph struc-
ture of documents and DTDs, and the DTD-to-instances relationship,
holding between a DTD and the set of its valid instances. Note that, the
possibility of specifying both positive and negative authorizations allows
the Security Officer to always override these “by default” propagation
principles.

18 DATA AND APPLICATIONS SECURITY

The possibility of specifying both positive and negative authorizations
introduces potential conflicts among authorizations, in that a user may
have two authorizations for the same privilege on the same protection
object but with different signs. These conflicting authorizations can
be either explicit or derived through propagation. We do not consider
the simultaneous presence of conflicting authorizations as an inconsis-
tency; rather we define a conflict resolution policy which is based on the
notion of most specific authorization. The conflict resolution policy of
Author- is based on the following principles: authorizations specified
at the document level prevail over authorizations specified at the DTD
level; authorizations specified at a given level in the DTD/document
hierarchy prevail over authorizations specified at higher levels; when
conflicts are not solved by the previous rules, we consider as prevailing
negative authorizations.

2.2. Architecture of Author-
Author- is built on top of eXcelon [4], an XML data server for build-

ing Web applications. EXcelon manages an XMLstore where the XML
data can be indexed and manipulated using the Document Object Model
(DOM) [8], and queried using the XQL language [5]. Programmers can
extend eXcelon functionalities by writing Java server extensions. The
purpose of server extensions is to extend the eXcelon server with custom
modules to cover specific application requirements.

Figure 1 shows the general architecture of an eXcelon document server
enhanced with Author- Author- components of the architecture are:

XMLStore, which is organized in two components: XML source,
which stores XML documents and DTDs to be protected, and

-base, the authorization base storing authorizations.

-core, which is the main component of the architecture. It is
composed of two Java server extensions, -access and -admin.

-access is the server extension implementing access control over
the XML source based on authorizations contained in -base.

-admin is the server extension providing support functionalities
to the Security Officer for authorization management.

-core is part of the eXcelon data server and interacts with the ex-
ternal environment by means of an eXcelon client API. Users and the
Security Officer interact with -core by means of specific user applica-
tions, or through the Web, using an eXcelon explorer or a Web server
extension. Users submit access requests which are processed by the

-access component of -core, and receive back the (portion of) re-

Author- a Java-Based System for XML Data Protection 19

Figure 1: Architecture of an eXcelon document server enhanced with
Author-

quested data in the XML source they are authorized for. The Security
Officer interacts with the -admin component of -core, for performing
administrative operations on authorizations in the -base.

3. Structure of Author- XMLStore
In this section, we describe in more detail the structure of the XML-

Store, i.e., the XML source and the -base.

3.1. XML source
The XML source component of the XMLStore contains XML docu-

ments to be protected with their DTDs, if defined. In particular, the
source can contain well-formed or valid documents. A well-formed doc-
ument is a document that follows the grammar rules of XML [9], while,
valid documents have an associated DTD defining their structure.

To illustrate functionalities of Author- we have defined an XML
source derived from the Sigmod Record Articles XML Database [7], con-
taining sigmod record documents and associated DTDs. Figure 2(a)
shows a portion of an XML document in the XML source. For each
sigmod record issue, the document provides information about the num-
ber and volume, and about articles therein contained. Each article is
characterized by information about title, authors, abstract, initial page
and final page in the issue. Moreover, information about related articles

20 DATA AND APPLICATIONS SECURITY

Figure 2: (a) An example of SigmodRecord XML document and (b)
its corresponding graph representation

is provided in the document. Figure 2(b) shows a graph representation
of the XML document in Figure 2(a). This representation is compliant
with the Document Object Model (DOM) specification [8] adopted by
eXcelon to internally represent XML documents.

3.2. -base
The -base part of the XMLStore is an XML file (auth.xml) stor-

ing authorizations on the XML source contents. Authorizations in the
-base conform to the DTD presented in Figure 3.
According to the DTD of Figure 3, authorizations are organized into

an authorizations XML document with a subelement users, denot-
ing users, and a subelement auths, denoting access authorizations. The
users subelement contains a user subelement for each user to be au-
thorized to access the XML source. Each user element is identified
by the login of the corresponding user (attribute id) and contains the
password of the user (attribute passwd). The auths element contains
an authspec subelement for each authorization given to a certain user
on the XML source. Each authspec element is characterized by the
following attributes:

userid: it contains a reference to the user to which the authoriza-
tion refers;

Author- a Java-Based System for XML Data Protection 21
\

Figure 3: -base DTD

target: it stores the file name of the XML document/DTD to
which the authorization refers;

path: it stores a path within the target document correspond-
ing to the specific protection object(s) to which the authorization
applies, path is based on the following notation, compliant with
Xpath [10] and XQL language [5]:

where: first symbol ‘/’ denotes the root element; TRGelem denotes
the name of a target element; TRGattr denotes the name of a tar-
get attribute;1 {elem/} denote optional intermediate element(s)
(separated by ‘/’) in the path from the root element to the target
element/attribute in the considered file, and [expr] is an optional
condition on an element/attribute content to select specific docu-
ment portions in the considered XML source files.

perm: it stores the authorization privilege (i.e., READ, NAVIGATE,
APPEND, or WRITE);

type: it stores the authorization type (i.e., GRANT, or DENY);

prop: it stores the propagation option of the authorization (i.e.,
NO_PROP, ONE_LEVEL, or CASCADE).

Example 1 An example of -base is shown in Figure 4. According to
this authorization base, users Mary and Rose are authorized to read all
information about issues contained in the Sigmod Record document of the
XML source, except articles’ abstract. Additionally, Mary is authorized
to read all the information about the article identified by WB99.

1 Symbol @ denotes attribute names as in Xpath and XQL.

22 DATA AND APPLICATIONS SECURITY

Figure 4: An example of -base

4. The -access component of Author-
The -access component of Author- enforces access control on the

XML source.
Users request access to documents under two different modalities:

browsing and authoring. A user requests a browsing access when he/she
wants to access a document (and navigating its links), without modi-
fying it, whereas, requests an authoring access when a modification of
the document is required. Access can also be requested wrt a specific
portion(s) of a document. Thus, an access request r is represented as
a tuple where user is the user
requesting the access, target is the XML document to which the access
is requested, path is a path within the requested document (specified
through an XQL query [5]) which eventually selects specific portions of
the requested document, andacc_modality {browsing, authoring}
specifies whether a browsing or authoring access is requested.

Upon issuing an access request r, -access checks which authoriza-
tions (both positive and negative) user has on the target document.
Such authorizations can be either explicitly stored in the -base or im-
plicitly given by the propagation policies enforced by Author- model.
Based on such authorizations, user can receive a view of the requested
document that contains only those portions for which he/she has a cor-
responding positive authorization which is not overridden by a negative
conflicting authorization. In the case of totally authorized requests, the
view coincides with the whole document (or with all the requested por-
tions in the case the user does not require the access to the whole doc-
ument). When, no positive authorizations are found for the requested
document, or all of them are overwritten by negative authorizations, the
access is denied.

Author- a Java-Based System for XML Data Protection 23

Figure 5: The access control process

To enforce access control, Author- adopts the following strategy:
all the elements and/or attributes for which user does not have an ap-
propriate authorization are removed from the target document, before
evaluating the path contained in the access request. The path is then
evaluated against such pruned version and the result is returned to user.
This strategy allows us to define an access control mechanism indepen-
dent from any query language. This possibility is very important, be-
cause XQL is not yet a standard query language.

For lack of space we do not report here the access control algorithm
implementing the above strategies. A detailed description of the algo-
rithm can be found in [1].

Example 2 Suppose that Rose submits the access request

Figure 5 shows the access control process. Author- extracts the brows-
ing authorizations for Rose (from the -base reported in Figure 4) and
evaluates them against the file SigmodRecord.xml. The result of the
evaluation is a graph, where each node is labeled with symbol “–”, if a
negative authorization applies to the corresponding attribute/element, or
with symbol “+”, if a positive authorization applies to the correspond-
ing attribute/element. The view to be returned to Rose is obtained by
pruning from the graph nodes with a label different from “+”, and by ex-
tracting from the resulting graph the elements/attributes identified by the
path: /issue/articles/ article[@id=’ WB99’]. As a result, a view of
article WB99 is returned to Rose (shown on the right hand side of Fig-
ure 5) that does not contain the abstract element.

Figure 6 shows the graphical interface provided by Author- for ac-
cess request submission (the access request is the one of Example 2).

〈 Rose, SigmodRecord.xml,/issue/articles/article[@id =’ WB99’],browsing〉

24 DATA AND APPLICATIONS SECURITY

Figure 6: Access request submission in Author-

The left hand side of the figure shows how the user can submit his/her
request, whereas the right hand side shows the corresponding result.

5. The -admin component of Author-
The -admin component of Author- is designed to support adminis-

trative operations on authorizations under responsibility of the Security
Officer. In particular, -admin supports the Security Officer in defining
new authorizations to protect XML documents in the XML source.

Author- supports two kinds of policies for authorization specifi-
cation: a DTD-based policy, in which authorizations are specified at
the DTD level, and propagated within the DTD due to the element-
to-subelements and the element-to-attributes/links relationships as well
as to all XML documents that are valid instances of the DTD, due
to the DTD-to-instances relationship, and a document-based policy, in
which authorizations are specified at the document level, and apply
only to the considered document. In this case, authorization propa-
gation occurs only due to the element-to-subelements and the element-
to-attributes/links relationships within the considered document.

Based on these policies, authorization management for valid and well-
formed documents can be enforced by the Security Officer in Author-
as follows:

Valid document protection: the DTD-based policy is adopted,
in that valid documents are instances of some DTD in the source.

a Java-Based System for XML Data Protection 25

As a consequence, the Security Officer specifies authorizations at
the DTD level which apply by default to all its valid document
instances. Exceptions to the policy defined at the DTD level are
modeled by specific authorizations defined in the -base on the in-
volved document instances. For instance, if all information in a set
of valid documents have the same protection requirements, then
the Security Officer invokes the definition of authorizations at the
DTD level, with the CASCADE option. By contrast, when different
subelement(s) (respectively, attributes/links) of a DTD need differ-
ent authorization policies, it is convenient to guarantee a minimal
common protection on the whole DTD by defining an authorization
with the NO_PROP or FIRST_LEV propagation option. A number of
additional authorizations are then defined on the subelement(s)
(respectively, attribute(s)/link(s)) of the DTD with the most ap-
propriate privileges and sign to enforce the policy holding on the
specific subelement(s) (respectively, attribute(s)/link(s)).

Well-formed documents: different approaches are supported
by Author- According to a classification-based approach, the
Security Officer decides to adopt the DTD-based policy also for
well-formed documents. To this end, well-formed documents to be
protected are first classified against available DTDs in the source,
with the goal of finding the “best matching” DTD. If such a DTD is
found by the tool, protection of a well-formed document is enforced
by propagating authorizations defined for the selected DTD to the
document. This propagation can be total or partial, depending on
the level of conformance between the well-formed document and
the selected DTD (conformance vs. partial conformance). In case
of partial conformance, the Security Officer can manually define
additional authorizations on non-matching portions of the well-
formed document, if necessary. According to an instance-based
approach, the Security Officer defines from scratch authorizations
needed to implement the access control policy for the considered
well-formed document (document-based policy). The document-
based policy is also adopted when no conforming DTD is found
after the classification process, and also when exceptions for the
policy defined in the selected DTD have to be specified, when the
classification-based approach is taken.
The classification-based approach exploits the propagation prin-
ciple to limit the manual activity of the Security Officer in the
definition of the authorization policy for a well-formed document.
The classification-based approach relies on suitable mechanisms to

26 DATA AND APPLICATIONS SECURITY

automatically derive all required authorizations for all the involved
users. The Security Officer can interactively validate derived au-
thorizations to check their suitability to the well-formed document
to be protected.

6. Concluding Remarks
In this paper, we have presented Author- a Java-based system for

access control to XML sources. Author- supports positive and negative
authorizations for browsing and authoring privileges with a controlled
propagation. Core functionalities of access control and authorization
base management have been implemented as Java server extensions on
top of the eXcelon data server. Currently, we are setting up a com-
prehensive administration environment, by developing interactive tool
support for the Security Officer to guide the choice of the best policy to
be adopted for document protection, based on the results of document
classification process.

References
[1] E. Bertino, M. Brawn, S. Castano, B. Ferrari, and M. Mesiti. Author-

a Java-Based System for XML Data Protection. In pre-Proc. of 14th IFIP
WG11.3 Working Conference on Database and Application Security. Schoorl,
The Netherlands, August, 2000.

[2] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and Enforcing
Access Control Policies for XML Document Sources. World Wide Web Journal,
3(3), 2000.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Se-
curing XML Documents. In Proc. of EDBT, 2000.

[4] Object Design Inc. An XML Data Server for Building Enterprise Web Appli-
cations, 1998. http://www.odi.com/excelon.

[5] J.Robie.XQLTutorial,2000. http://www.ibiblio.org/xql/xql-tutorial.html.
[6] P. Samarati, E. Bertino, and S. Jajodia. An Authorization Model for a Dis-

tributed Hypertext System. IEEE TKDE, 8(4):555–562, 1996.
[7] Sigmod Record XML Database,http: //www.dia.uniroma3. it/Areneus/Sigmod/.
[8] W3C. Document Object Model 1, 1998. http://www.w3.org/DOM/.
[9] W3C. Extensible Markup Language 1.0, 1998. http://www.w3.org/TR/REC-xml.

[10] W3C. XML Path Language, 1.0, 1999. http://www.w3.org/TR/xpath.

