
TOWARDS A FORMAL FRAMEWORK
FOR INTEROPERABILITY TESTING*

César Viho, Sébastien Barbin and Lénaïck Tanguy
IRISA/IFSIC - Université de Rennes I, Campus de Beaulieu, 35042 Rennes, France
{ viho,Itanguy,sbarbin }@irisa.fr

Abstract

Keywords:

This paper shows how the existing concepts of conformance testing can
be used to define a formal framework for interoperability testing. First,
the different possible interoperability testing architectures are discussed.
Then, we define several interoperability relations based on the existing
relations defined for conformance testing. A comparison of these re-
lations is given, in terms of their power to detect non-interoperability.
Some guidelines are given to help in generating interoperability tests.
interoperability, test, architecture, relation, protocol, conformance

1. INTRODUCTION
In the context of distributed systems, there are basically two ap-

proaches to testing implementations to ensure that they will work ef-
fectively together. Conformance testing determines whether a single
implementation under test (IUT) conforms to its specification (general-
ly a standard) or not. In contrast, interoperability testing determines
the ability of two or more implementations to work together in a real
operational environment. As we can see, the purposes of these two kinds
of tests are not really the same. While conformance testing evaluates an
implementation in terms of its correspondence to a specific standard, in-
teroperability testing compares an implementation with other products.

The words "interoperability", "interwork", "interoperate" are often
used in the descriptions of computer systems. Different needs of inter-
operability testing can be identified. The most basic is to put together
two implementations built by different vendors and verify that they "in-
terwork” correctly. Another common situation is the so called “one
against N” interoperability testing in which there already exist N (N≥1)

*This work has been supported by the CELAR/TCOM Contract 9842.561 MTI
(Méhodologie de test d’interopéabilité), the European ITEA Project 99011 RTIPA, and
the CNRS/Programme Télécommunications 99N36/0029

http://dx.doi.org/10.1007/978-0-306-47003-5_29

54

systems working together. One may wonder if a new system S will inter-
operate with the N existing systems. In other words, the question here
is “will the N+1 systems still work together ?”. There exist many other
situations which require interoperability. Thus, it is difficult to give a
unique definition of this notion. Indeed, several definitions of interoper-
ability exist [1, 2, 3, 4]. However, the functional meaning is clear: the
components of the system under test (SUT) have to communicate with
each other correctly and provide the expected services.

A lot of work have been done in the area of conformance testing [5]
leading to a precise definition of conformance [6]. The so called confor-
mance/implementation relations in [7, 8] give formal characterizations
of conditions under which an IUT can be considered as conformant to
its specification. This allows the automatic generation of conformance
tests [9]. Unfortunately, such work is lacking for interoperability test-
ing [3]. There are several reasons for this situation. The first reason is
because conformance of implementations has been considered a prere-
quisite for achieving interoperability. Thus, a very important effort has
been concentrated on conformance testing. Another reason is that inter-
operability testing is considered a pragmatic and practical requirement,
as it relates to implementations; contrary to conformance testing where
the specification serves as reference.

The fact that both conformance and interoperability testing concerns
the same objects (specification, IUT, etc) is evident. Thus, most of the
concepts, methodologies and theory developed for conformance testing
can be adjusted for interoperability testing. This simple observation
suggests to adapt the existing formal conformance testing framework
for interoperability testing. Following this idea, the work presented in
this paper proposes a formal framework (architectures, interoperability
relations, tests generation) for interoperability testing.

This paper is structured as follows. Section 2 presents the different
classes of interoperability testing architectures. For each class, contexts
in which an architecture can be used are explained. We give an indi-
cation of how the existing architectures can be positioned in regard to
these classes. The model and notations used are described in Section 3.
Section 4 gives formal definitions of interoperability relations, that are
based on the existing relations defined for conformance testing. Each
interoperability relation specifies formally the conditions to be satisfied
by two implementations in order to be considered interoperable. These
relations are compared in terms of their power to detect non interoper-
ability. In Section 5, we give guidelines to generate interoperability tests
for the proposed architectures and relations. Conclusion and future work
are in Section 6.

55

2. INTEROPERABILITY ARCHITECTURES
Depending on how the implementations to be tested are interconnec-

ted, and depending on the degree to which we can observe their interac-
tion, different interoperability testing architectures can be used. Indeed,
a lot of architectures have been proposed [1, 2, 4, 10].

2.1. Definition of testing architectures

Figure 1. General architecture of interoperability testing

Let us consider the general architecture of figure 1 where the SUT is
composed of two IUTs (I U T1 and IUT 2). Each IUT is a black-box. The
Upper Interface U I i (resp. Lower Interface L I i) is the interface of
the I U Ti , through which it communicates with its upper (resp. lower)
layer. The expected services are furnished through UIi while LI i is used
by I U Ti to interact with the peer entities in the same layer.

Depending on the environment in which the interoperability testing
will be done, different levels of control and observation of the SUT are
possible. Thus, the Test System (TS) in charge of testing, via its PCOs
(points of control and observation), the interoperability of this SUT can
consist of some or all of these following elements. The Upper Tester i
UTi (resp. Lower Tester i resp.LTi) is part of TS in charge of the
control and/or the observation of UI i (resp. LI i), via the Upper PCO
UP i (resp. the Lower PCO L Pi). The Tester T i (composed by UTi
and/or L Ti) is the part of TS in charge of the control and/or observation
of IUT i .

The different possible compositions of both TS and SUT induce dif-
ferent kinds of interoperability testing architectures as described below.
The reader can see that they are easily extendible to the general case
where TS and/or SUT are composed by more than two components.

2.1.1 Unilateral interoperability testing architectures.
These architectures correspond to the situation in which the control
and/or observation of only one component (I U T1 or IUT 2) of the SUT

5 6

is possible. Thus, the decision of interoperability is based on these par-
tial observations done by only one tester T1 or T 2 . The tester T i may
contain only L Ti (resp. U Ti). This can happen if the upper (resp. low-
er) interface is embedded under an upper (resp. lower) layer protocol.
In this case, the architecture is called Unilateral Lower (resp. Upper)
Interoperability Testing Architecture. The Unilateral Total Interoper-
ability Testing Architecture corresponds to the case where the tester Ti
contains both U Ti and LT i . In this case, a test coordination procedure
(TCP) may exist between U Ti and L Ti .

These architectures are used when the other IUTs which compose the
SUT are embedded (i.e., all or part of their interfaces are not accessible)
or in a “one against N” interoperability testing context (see section 1).

2 . 1 . 2 Bilateral interoperability testing architectures.
In these architectures, each tester T i realizes separately the control and
observation of the corresponding IUTi , using a Unilateral Interoperabil-
ity Testing Architecture. Depending on the composition of the testers,
the terms Upper, Lower and Total apply also here.

This architecture is interesting in the unusual situations where the
designers of the IUTs require their own control and opinion of how their
respective IUT interact with the others. This happens for example when
a certain level of confidentiality is still required by each of the vendors [4].

2.1.3 Global interoperability testing architectures.
In these architectures, the control and observation are done globally
by the two testers T 1 and T 2 on both sides (IUT1 and I U T2) of the
SUT. They are called global because the decision of interoperability is
achieved according to a global view (simultaneously on both sides) of
the SUT. This is the main difference with the previous architectures, as
a test coordination procedure exists between the testers. In this sense,
it is the more complex architecture. Global upper, lower, and total
architectures are defined as for bilateral architectures.

2 .1 .4 Hybrid interoperability testing architectures.
Some situations of interoperability combine previously defined architec-
tures. All the architectures which are not strictly unilateral, bilateral
or global architectures are called hybrid architectures. As an exam-
ple, the architecture in which we have only the upper tester in tester T1
and upper and lower testers of the tester T2 , is typically a hybrid ar-
chitecture. This kind of architecture can be encountered in the “testing
against reference” context where one of the implementations serves as
the reference, the upper tester over the tested IUT is used as a responder.

57

2.2 Positioning the existing architectures
Many interoperability architectures and associated terminologies can

be found in the literature [1, 2, 4, 10]. In the following, we give elements
which help in understanding why there is so much confusion in the state
of the art of interoperability testing architectures. We show that each
of the existing architectures can be associated with one of the canonical
architectures described above.

Black-box versus grey-box testing
It is well-known that conformance testing is done in a black-box context.
But there is still a debate about considering interoperability testing as
black-box or grey-box testing [2]. The contested point comes from the
possibility for the interoperability testing architecture to observe or not
(and/or control) the interactions between the implementations which
compose the SUT. Our purpose is not to close the debate, but one can
see that “grey-box” architectures correspond to architectures which in-
clude lower testers. In contrast, the so called “black-box” architectures
are those which do not contain any lower tester.

Protocol versus service interoperability testing
The definition of interoperability can be “layer-oriented” [4, 11]. For
example in [4], they consider four levels of interoperability called respec-
tively protocol, service, application and user-perceived interoperability
architectures. It is easy to see that protocol interoperability architec-
tures correspond to a lower interoperability testing architecture, while
service (application or user perceived) interoperability architectures can
be definitely classified as upper interoperability testing architectures.

Active versus passive testing architectures
If the test system has the possibility to give stimuli (control) and/or to
corrupt events in the SUT, the corresponding testing architectures are
called active [1]. If not, they are called passive architectures [10, 11].
Thus, any possible architecture (including those proposed in this paper)
can be considered either as active or passive.

Monitor versus arbiter
In these architectures [10], a test component is placed between the imple-
mentations to control (monitor) or observe (arbiter) their communica-
tion. To be monitor or arbiter depends on the active/passive behavior of
the tester. Thus, any architecture proposed in this paper that contains
at least one lower tester can be used as monitor or arbiter. Arbiters are
used to identify faulty implementations [12].

58

3. MODELS AND NOTATIONS
In order to give formal definitions of the notion of interoperability,

we need a model which allows the formal description of all the elements
involved in the interoperability testing activity. As said before, most
of the terms and components in interoperability testing are similar to
those used in conformance testing. We choose the commonly used model
of the IOLTS (Input-Output Labeled Transition System) [13] to model
specifications as well as implementations.

3.1. IOLTS, definitions and notations
Definition 3.1 An IOLTS is a tuple M = where

• QM is the set of states of the system and is the initial state.
• Σ M denotes the set of observable (input and/or output) events on the

interaction points (with the environment) of the system. Thus, we have :
× AM where PM is the finite set of interaction points

(ports) through which the system communicates with its environment
(lower or upper layer, or other systems), "’?" and "!" respectively denote
a input and an output of message, AM is the alphabet of input-output
messages exchanged by the system through its ports.

× Q M is the transition relation, where τ ∉ AM

denotes an internal event. We note

Figure 2. A specification S and possible implementations I1 , I ’
1 , I2 , I '

2, I "
2

∑M can be decomposed as follow: ∑M = where (resp.
is the set of messages exchanged on the upper (resp. lower) interface.

∑M can be also decomposed in order to distinguish input messages from
output messages. where (resp.) is the finite set
of input (resp. output) messages.

In the following we denote the set of all input/output labeled transi-
tion systems by IOLTS. Let us consider an IOLTS M ∈ IOLTS, and
let α ∈ ∑M with

59

out (q) =∆ q' and is the set of outputs from q.
• q after is the set of states which can be

reached from q by the sequence of actions σ. By extension, all the states
reached from the initial state of the IOLTS M is (q M after σ) and will be
noted by (M after σ). In the same way, Out(M, σ

0
) =∆ out (M after σ).

Traces(q) is the set of possible
observable traces from q. And, Traces (M) =∆ Traces(qM) .0

In interoperability testing, we usually need to observe some specific
events among all the possible traces of a SUT. These traces, reduced to
the expected messages, can be obtained by a projection of those traces
on a set representing criteria used to select the expected events.

Definition 3.2 Let us consider an IOLTS M, a trace σ ∈ (∑M)*, α ∈
∑M , and a set X. The projection of σ on X is noted by σ /X and is
defined by: and (α.σ) /X =

For example, consider a trace t h e n
 Notice that

σ / X ∈ (∑M)* but we do not have necessarily σ /X ∈ Traces (M).

Definition 3.3 Let us consider an IOLTS M, a trace σ ∈ (∑M)* and a
set X, then Out X (M , σ) = ∆ Out (M , σ) ∩ X is the set of outputs from
(M after σ), reduced to the outputs that belong to X.

3.2. Synchronous and asynchronous interaction
Definition 3.4 (Synchronous composition ||S) The synchronous
composition of two IOLTS M1 and M 2 is noted

where and the
transition relation is obtained as follow,

(1)

(2)

•

•

60

The interaction between components of a distributed system is done
through an environment. This interaction can be either synchronous,
or asynchronous. As in [13], we will suppose that the (synchronous or
asynchronous) environment can be modeled by an IOLTS ε. Thus, the
interaction of an IOLTS S
ment ε is obtained by the synchronous composition S

i with another IOLTS S j through an environ-
i ||sε|| sS j . This will

be noted by S i ||S j and corresponds to the reachability graph in [l, 2].

4. INTEROPERABILITY RELATIONS
In this section, we give a formal definition of the notion of interope-

rability based on the model of IOLTS introduced in section 3.1. To a
certain extent, testing the interoperability between two implementations
consists of a kind of conformance testing of their interaction with the ex-
pected behavior or service. Thus, it becomes natural to study how these
conformance relations [7, 8] can be adapted to obtain interoperability re-
lations. We will consider the most commonly used ioconf conformance
relation [9, 13]. It states that an implementation I is conformant to its
specification S if after a trace of S, outputs of I are foreseen in S.
Definition 4.1 I ioconf S = ∆ ∀σ ∈ Traces (S), O u t (I, σ) ⊆ Out (S, σ)

4.1. The notion of interoperability relation
An interoperability relation formally specifies conditions to be satis-

fied by two implementations in order to be considered interoperable.

Definition 4.2 An interoperability relation is a relation R between two
implementations I 1 and I 2 : R (I1, I 2) means that I 1 interoperates with I2 .

Interoperability relations are not transitive: the fact that an implemen-
tation I 1 interoperates with I 2 and that I 2 interoperates with I 3, does
not allow one to draw a conclusion regarding interoperability between
I 1 and I 3. The main difference between an interoperability relation
and a conformance relation is that: a conformance relation connects an
implementation with its specification while an interoperability relation
concerns implementations. More precisely, two implementations can in-
teroperate even though their interaction does not correspond to anything
allowed in their respective specification. Thus, an interoperability rela-
tion can take into account or not the specifications on which the imple-
mentations are based. This leads to two main classes of interoperability
relations called in the following “Specification-less” interoperability
relations and "Specification-based” interoperability relations.

As the “Specification-less” interoperability relations do not use any
specification, it is impossible to generate a priori tests based on these

61

relations. Verifying these relations can be done preliminary to other tests
using specification-based relations. This can explain why it is called
interconnectivity testing in [4]. As a consequence, we will no longer
discuss these relations in the sequel.

4.2. Specification-based relations
Specification-based interoperability relations are relations which refers

to the specification of at least one component of the SUT.

4.2.1 Specification-based lower interoperability relations.
In this section, we focus on the lower layer interfaces of the implementa-
tions. We consider the different possible situations and we propose the
associated interoperability relations which can be used.

The relation R 1 considers the situation where we have the specifi-
cation of only one of the two implementations. Let us consider that
S1 is the specification used to develop the implementation I1 . Now,
let us consider that only the lower interface of I1 is accessible. Dur-
ing the interaction between I 1 and I 2 , the least we can expect from
the implementation I 1 is to behave as foreseen in its specification S1 .
This is described in the relation R 1. It considers the traces observed
(Traces (I1⏐⏐ I 2)) during the interaction between I1 and I 2. It states that,
after any corresponding trace in the specification S1 of the unilaterally
considered implementation (here I1), all the outputs (sent to the other
IUT on the lower layer) are allowed in S 1.

Definition 4.3 (Unilateral Lower Interoperability Relation R1)

Remarks:
• In figure 2, R 1(I1 , I2") but ¬ R 1(I" ,I2 1).
• Notice also that there is a subtle difference with the ioconf relation:
R 1 (I x , I y) does not mean necessarily that I x ioconf S x.

The relation R 1 can be applied independently for I2 (based on the
specification S 2). When we have both R 1 (I1 , I2) and R 1 (I2 , I 1), this
corresponds to the interoperability relation R2 defined below.

Definition 4.4 (Bilateral Lower Interoperability Relation R2)

In figure 2, R2 (I1 , I2) but ¬ R 2 (I1, I 2
"). In the two relations R1 and R 2,

only lower layer outputs of each IUT are considered. Typically, we can
have R2 (I 1 , I 2), whatever happens in their interaction with upper layers.

62

behavior of the interactions between respectively the two specification-

In figure 2, R 3 (I1, I2) but ¬ R 3(I1, I"2). R 3 is a kind of reduced confor-

The next relation R 3 is called global because it is based on the global

s (S1⏐⏐S2) and the two implementations (I1⏐⏐ I2). The relation R 3 states
that: after a trace included in the composition of the specifications S1⏐⏐S2
and observed in the interaction between the two implementations, all
outputs observed on the lower layer are allowed in S1⏐⏐S2.
Definition 4.5 (Global Lower Interoperability Relation R3)
R3 (I1 , I2) = ∆

mance relation in the sense that only a subset of outputs is considered.

4.2.2 Specification-based upper interoperability relations.
The following three relations are similar to the previous ones. The

difference is that only observations on the upper (instead of lower) layer
are used. Consequently, similar explanations and remarks apply for the
three relations which are enumerated below.
◊ The Unilateral Upper Interoperability relation R 4 can be de-
fined as follows:

◊ For the Bilateral Upper Interoperability relation R 5, we have:

◊ Finally, the Global Upper Interoperability relation R 6 is de-
fined by:
Out SΣ 1|| S2 (S1 ⏐⏐S2 , σ) .

U
On the example of figure 2, we have:

4.2.3 Specification-based total interoperability relations.
The following relations are qualified total because the decision of in-
teroperability uses observations on both upper and lower layers. These
observations can be done locally/unilaterally, bilaterally or globally. As
in the two sections above, we obtain the three following relations.
◊ The Unilateral Total Interoperability relation R7 i s d e f i n e d a s
follows:

◊ It is easy to obtain the Bilateral Total Interoperabil ity rela-
tion R 8 . It is defined by: R 8(I 1 , I2) = ∆ R7 (I1 , I 2) Λ R 7(I 2, I1).
◊ The definition of the Global Total Interoperability relation R 9 is

63

also straightforward.

Remarks:
� In figure 2, we have but ¬

� One can notice that

� R9 (Ix , Iy) corresponds to I x ⎮⎮Iy ioconf S x Sy . We will discuss this
point later in Section 5.

4.3. Comparison of interoperability relations
According to the rigor required for interoperability testing, we need

to know which interoperability relation to use. In this section, we give
a comparison between the specification-based interoperability relations
defined in Sections 4.2.1, 4.2.2 and 4.2.3, in terms of their power of non-
interoperability detection. Let us call the set of these relations SBIR,
then the formalization of the comparison of the relations leads to the
well-known theory of testing equivalence [6, 13] and the related preorder
expressed here by a relation R ⊆ SBIR × S B I R .

Definition 4.6 ∀ R x , R y ∈ SBIR,

So, R x R R y means that interoperability tests based on R x detect
more non-interoperable implementations than Ry . By extension, the
testing equivalence between two relations will be denoted by R . We
note R x R Ry to say that R x and R y are not comparable. It is repre-
sented by “-” in the Figure 3 which synthesizes all the comparison of the
specification-based interoperability relations. Proofs are given below.

Figure 3. Comparison of specification-based interoperability relations

4.3.1 Some proofs. The decision of interoperability relies on
observations done on the available interfaces. So the set of interfaces
can be used to compare interoperability relations. “Lower-oriented” and

⎮⎮

≅

64

“upper-oriented” relations are not comparable because their sets of in-
terfaces are not comparable. Total interoperability relations are stronger
than the corresponding upper or lower interoperability relations because
their set of observations is greater. Bilateral and Global relations are
stronger than their corresponding unilateral relations. Most of the proofs
are based on these remarks. Nevertheless, we have observed that com-
plete formal proofs of R2 ≅ R R 3 , R 5 ≅ R R6 , and R8 ≅ R R 9 need some
intermediate lemmas and propositions. We give them in the following.

Lemma 4.1 Let

Proof: Let (q1, q 2) ∈ ((M1 ||M 2) after σ) and a ∈ Out (M1 ||M2 , σ). Rules
of definition 3.4 apply for (q1 , q2). Thus, we have either a ∈ Σ M 1 or a ∈
Σ M2 which means that a In the
other sense, it is easy to see that
Out (M1 || M 2 , σ). Thus, we have
Out (M 2, σ / ΣM 2). ◊
Lemma 4.2 Let M 1 , M2 ∈ IOLTS, and σ ∈ Traces (M1 || M2),

Proof: Using the definition 3.4 of the composition ||, we have
Now,

let a ∈ , then σ a ∈ Traces (M 1 | |M 2). Thus,

a ∈ and

Proposition 4.1 R 2 R R3 .

Proof: Let I 1, I 2 , S 1 , S 2 ∈ I O L T S such that R 2 (I1, I2). Let σ ∈
Traces(S 1| |S2) such that σ ∈ Traces(I 1| |I 2). Let us consider σ1 =
σ / ΣI1 and σ2 = σ /Σ I 2, we can notice that σ 1 ∈ Traces (S1) and σ 2 ∈
Traces (S2). Using the definition of R2 (I1, I2), we have Out

 and O u t . Thus, with
the definition 3.3, and the classical properties of and , we have :

Using the definition of σ1 and σ 2, we have :

(lemma 4.1)

Thus , ∀σ ∈ Traces (S1 ||S2) ,
(lemma 4.2)

which proves: R 2 R R3 . ◊

65

Proposition 4.2 R 3 R R 2 .

Proof: Let I 1, I 2 , S 1 , S 2 ∈ IOLTS such that R 3 (I1, I 2) and let us
prove that it implies R1(I 1, I 2). As R 1 (I1, I 2) does not refer to the spec-
ification of I2 , we can consider that S 2 = I 2. Let σ 1 ∈ Traces (S1),
and σ ∈ Traces(I1 ||I2) ,σ / Σ I1 = σ 1 . As σ 1 ∈ Traces (S1) and S 2 =
I 2 , we have σ ∈ Traces (S1 || S2). Using the fact that R 3(I1, I2) gives

We want to prove that

As and and considering only the
outputs of I 1, we have: Us-
ing the definition 3.3, lemmas 4.1 and 4.2 gives the following equa-
tions

Thus,
So, ∀σ 1 ∈ Traces (S1), ∀ σ ∈ Traces(I1|| I 2), σ / ΣI 1 = σ1,

Using the fact that R3 is symmetrical, we have R 3 (I 1, I2) ⇒ R 1(I 2 , I 1).
Thus,

Theorem 4.1 R 3 R≅ R 2 , R 6 R≅ R 5 , and R 9 R≅ R 8

Proof: The first proof is achieved with the proposition 4.1 and the
proposition 4.2. The two other proofs are achieved with similar lemmas
adapted to upper and total contexts. This means that the global and
bilateral interoperability relations are equivalent. ◊

5. INTEROPERABILITY TESTS
GENERATION

Several methods have been proposed to generate interoperability tests
[2, 14, 15, 16]. Now that we have identified the interoperability archi-
tectures and we have defined possible interoperability relations, we give
in this section some guidelines to derive interoperability tests.

How to choose interoperability relations?
Depending on several parameters (accessibility of interfaces of the im-
plementations, problems of confidentiality, etc), different architectures
can be used for interoperability testing. In Section 2.1, we have iden-
tified the four possible classes of interoperability testing architectures.
An architecture determines the possible interoperability relations which
can be used. As proved in Section 4.3, the power of the generated tests
depends on the chosen relation. In the following, we give elements which
help in choosing appropriate interoperability relations.

For unilateral testing architectures, the choice of interoperability
relations depends on available interfaces (upper, lower or both).

66

As bilateral and global interoperability relations are equivalent (see
theorem 4.1), it can be more interesting to use a bilateral interoperabili-
ty relation in a global testing architecture. Indeed, this choice avoids the
often difficult and error-prone task of designing test coordination proce-
dures which are required when using global interoperability relations.

Hybrid architectures can be tested by generalizing interoperability
relations to hybrid cases, or by using a combination of existing relations.
For example, architectures where one lower interface is unavailable can
be tested using either a combination of R4 (unilateral upper) relation
and R 7 (unilateral total) relation, or a combination of R6 and R1 (global
upper and unilateral lower) relations.
Can conformance tests be used for interoperability?
There is still considerable debate about the value of conformance testing
as a means of achieving interoperability [1, 16]. Let us consider the
ioconf relation. Proposition 5.1 suggests that an implementation tested
with conformance relation ioconf does not need to be tested again when
the R 7 interoperability relation is used.
Proposition 5.1 Let I1, I2 ∈ IOLTS, I1 ioconf S 1 ⇒ R 7 (I1 , I 2)
Proof: Let us consider I1, I2 ∈ IOLTS and S 1 ∈ IOLTS the specifi-
cation on which I1 is based. I 1 ioconf S 1 implies ∀σ1 ∈ Traces (S1) ,

Let us consider a trace σ ∈ Traces
such that σ/Σ I 1 = σ1. Using lemma 4.1 and properties of the projec-
tion, we have Thus, as Out(I 1 , σ1) ⊆
Out (S1 , σ1), we have I1 ioconf

The problem is that conformance testing is not exhaustive. Thus, the
result of Proposition 5.1 is “theoretical”. On the other hand, proposi-
tion 5.2 says that an implementation can be considered R7-interoperable
with another one without being conformant to its specification.

Proposition 5.2 Let I1 , I2 ∈ I O L T S , ioconf S1

Proof: It is based on the fact that : Traces ⊆ Traces (I1) .
Thus, it can exist a trace σ '1 ∈ Traces (I1) \ Traces , such
that R 7 (I 1, I2) but not I 1 ioconf S 1. ◊

We have similar results for other interoperability relations. Given
the complexity of standards and the limits on exhaustive conformance
testing, interoperability testing is seen to be a practical requirement. In
particular, it is used to uncover incompatibilities (such as incompatible
options, coding, etc) even when both implementations have successful-
ly undergone (whatever rigorous) conformance tests. It is a matter of
increasing the confidence in the real interoperability between implemen-
tations.

67

How to generate interoperability tests
Interoperability relations defined in Section 4.2 can be written in the
shape of “parameterized” conformance relations. Indeed, interoperabi-
lity relations consider the interaction between implementations, rather
than a separately considered implementation in conformance relations.
Thus, parameters to be introduced in conformance relations (like io-
conf) in order to obtain interoperability relations are implementations
(resp. specifications) with which the considered implementation (resp.
specification) has to interact and the available interfaces. Thus, one may
wonder if existing automatic test generation tools like TGV [9] can be
used and/or adapted for automatically generating interoperability tests.
The general answer to this question needs some further

Theorems 4.1 which prove that bilateral and global interoperability
relations are equivalent hints that we may avoid the construction of the
composition of the specifications. It is well-known that this construction
(even if it is done on-the-fly like in TGV) is a bottleneck for most of the
existing tools. This is our current work and first results are promising.

6. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a formal framework (architectures,

interoperability relations, test generation techniques) for interoperabi-
lity testing. We show that the existing concepts of conformance testing
can be used to give a formal definition of the notion of interoperabi-
lity. Different interoperability testing architectures are proposed and
discussed. We have defined several interoperability relations based on
the existing implementation relations defined for conformance testing.
A comparison of these relations is given, in terms of their power to de-
tect non-interoperability. This comparison suggests that the generation
of interoperability tests do not necessarily need to build the whole in-
teraction between the specifications of the implementations. This paper
ends with some guidelines to help in generating interoperability tests.

As future work, we will focus on quiescence management in the in-
teroperability relations. Based on the defined interoperability relations
and the results of their comparison presented in this paper, we will in-
vestigate more deeply the different methods and associated algorithms
in order to automatically and efficiently generate interoperability tests.

REFERENCES

[1] O. Rafiq and R. Castanet. From conformance testing to interoperability testing.
In Protocol Test Systems, volume III, pages 371–385, North-Holland, 1991. IFIP,
Elsevier sciences publishers B. V.

68

[2] R. Castanet and O. Koné. Deriving coordinated testers for interoperability. In
O. Rafiq, editor, Protocol Test Systems, volume VI C-19, pages 331–345, Pau-
France, 1994. IFIP, Elsevier Science B.V.

[3] T. Walter and B. Plattner. Conformance and interoperability a critical assess-
ment. Technical Report 9, Computer engineering and networks laboratory (TIK),
Swiss federal institute of technology Zurich, 1994.

[4] J.P. Baconnet, C. Betteridge, G. Bonnes, F. Van den Berghe, and T. Hopkinson.
Scoping further EWOS activity for interoperability testing. Technical Report
EGCT/96/130 R1, EWOS, 1996.

[5] ISO. Information Technology - Open Systems Interconnection Conformance Test-
ing Methodology and Framework - Parts 1-7. International Standard ISO/IEC
9646/1-7, 1992.

[6] E. Brinksma, R. Alderden, J. Langerak, R. Van de Lagemaat, and J. Tretmans.
A Formal Approach to Conformance Testing. In J. De Meer, L. Mackert, and
W. Effelsberg, editors, Second International Workshop on Protocol Test Systems,
pages 349–363, North Holland, 1990.

[7] M. Phalippou. Relations d’implantations et Hypothèses de test sur les automates
à entres et sorties. PhD thesis, Université de Bordeaux, France, 1994.

[8] J. Tretmans. A formal approach to conformance testing. PhD thesis, University
of Twente, Enschede, The Netherlands, 1992.

[9] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic
generation of test suites for protocols with verification technology. Science of
Computer Programming - Special Issue on Industrial Relevant Applications of
Formal Analysis Techniques, 1997.

[10] T. Walter, I. Schieferdecker, and J. Grabowski. Test architectures for distributed
systems : state of the art and beyond. In Petrenko and Yevtushenko, editors,
Testing of Communicating Systems, vol. 11, pages 149–174. IFIP, Kap, 1998.

[11] J. Gadre, C. Rohrer, C. Summers, and S. Symington. A COS study of OSI
interoperability. Computer standards and interfaces, 9(3):217–237, 1990.

[12] G. Bochmann, R. Dssouli, and J. Zhao. Trace analysis for conformance and
arbitration testing. IEEE Trans. on Software Eng., 15(11):1347–1356, 1989.

[13] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On Asychronous Testing. In
G. Von Bochman, R. Dssouli, and A. Das, editors, Fifth International Workshop
on Protocol Test Systems, pages 1–13, North Holland, 1993. IFIP Transactions.

[14] N. Arakawa, M. Phalippou, N. Risser, and T. Soneoka. Combination of confor-
mance and interoperability testing. FORTE’92, V(C-10):397–412, 1992.

[15] S. Kang and M. Kim. Test sequence generation for adaptive interoperability
testing. In A. Cavally and S. Budkowski, editors, 8th International Workshop on
Protocol Test Systems, pages 193–206, Evry, France, 1995. IFIP.

[16] K. Myungchul, K. Gyuhyeong, and D.C. Yoon. Interoperability testing method-
ology and guidelines. In Digital Audio- Visual Council, system integration TC,
volume DAVIC/TC/SYS/96/06/006, New York, 1996.

Acknowledgments
Authors wish to thank their colleagues D. Clarke for carefully reading this paper, and
C. Jard & T. Jéron for their constructive remarks.

	TOWARDS A FORMAL FRAMEWORK FOR INTEROPERABILITY TESTING*
	1. INTRODUCTION
	2. INTEROPERABILITY ARCHITECTURES
	2.1. Definition of testing architectures
	2.2 Positioning the existing architectures

	3. MODELS AND NOTATIONS
	3.1. IOLTS, definitions and notations
	3.2. Synchronous and asynchronous interaction

	4. INTEROPERABILITY RELATIONS
	4.1. The notion of interoperability relation
	4.2. Specification-based relations
	4.3. Comparison of interoperability relations

	5. INTEROPERABILITY TESTSGENERATION
	6. CONCLUSION AND FUTURE WORK
	REFERENCES

