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This paper describes three real-time process algebras, ACSR, PACSR
and ACSR-VP. ACSR is a resource-bound real-time process that sup-
ports synchronous timed actions and asynchronous instantaneous events
as well as the notions of resource, priority, exception, and interrupt.
PACSR is a probabilistic extension of ACSR with resources that can
fail and associated failure probabilities. ACSR-VP extends ACSR with
value passing between processes and parameterized process definitions.
This paper also provides three simple real-time system examples to illus-
trate the expressive power and analysis technique of each process algebra.

Real-time process algebra, probablistic process algebra, value-passing
process algebra, schedulability analysis, real-time systems, resource-
bound process algebra.

INTRODUCTION

Reliability in real-time systems can be improved through the use of
formal methods for the specification and analysis of timed behaviors. Re-
cently, there has been a spate of progress in the development of real-time
formal methods. Much of this work falls into the traditional categories
of untimed systems such as temporal logics, assertional methods, net-


http://dx.doi.org/10.1007/978-0-306-47003-5_29

444

based models, automata theory and process algebras. In this paper, we
provide an overview of the family of resource-bound real-time process
algebras that we have developed.

Process algebras, such as CCS [12], CSP [7], Acceptance Trees [5] and
ACP [2], have been developed to describe and analyze communicating,
concurrently executing systems. They are based on the premises that
the two most essential notions in understanding complex dynamic sys-
tems are concurrency and communication [12]. The most salient aspect
of process algebras is that they support the modular specification and
verification of a system. This is due to the algebraic laws that form
a compositional proof system which enable the verification of a whole
system by reasoning about its parts. Process algebras are being used
widely in specifying and verifying concurrent systems.

Algebra of Communicating Shared Resource (ACSR) introduced by
Lee et. al. [10], is a timed process algebra which can be regarded as
an extension of CCS. The timing behavior of a real-time system de-
pends not only on delays due to process synchronization, but also on
the availability of shared resources. Most current real-time process alge-
bras adequately capture delays due to process synchronization; however,
they abstract out resource-specific details by assuming idealistic operat-
ing environments. On the other hand, scheduling and resource allocation
algorithms used for real-time systems ignore the effect of process syn-
chronization except for simple precedence relations between processes.
ACSR algebra provides a formal framework that combines the areas of
process algebra and real-time scheduling, and thus, can help us to rea-
son about systems that are sensitive to deadlines, process interaction
and resource availability.

ACSR supports the notions of resources, priorities, interrupt, timeout,
and process structure. The notion of real-time in ACSR is quantitative
and discrete, and is accommodated using the concept of timed actions.
Executing a timed action requires access to a set of resources and takes
one unit of time. Resources are serially reusable, and access to them is
governed by priorities. Similar to CCS, the execution of an event is in-
stantaneous and never consumes any resource. The notion of communi-
cation is modeled using events through the execution of complementary
events, which are then converted into an internal event. As with timed
actions, priorities are also used to arbitrate the choice of several events
that are possible at the same time. Although the concurrency model
of CCS-like process algebras is based on interleaving semantics, ACSR
includes interleaving semantics for events as well as lock-step parallelism
for timed actions.
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The computation model of ACSR is based on the view that a real-
time system consists of a set of communicating processes that use shared
resources for execution and synchronize with one another. The use of
shared resources is represented by timed actions and synchronization is
supported by instantaneous events. The execution of a timed action is
assumed to take one time unit and to consume a set of resources during
the same time unit. Idling of a process is treated as a special timed action
that consumes no resources. The execution of a timed action is subject to
availability of the resources used in the timed action. The contention for
resources is arbitrated according to the priorities of competing actions.
To ensure the uniform progression of time, processes execute timed ac-
tions synchronously. Unlike a timed action, the execution of an event
is instantaneous and never consumes any resource. Processes execute
events asynchronously except when two processes synchronize through
matching events. Priorities are used to direct the choice when several
events are possible at the same time.

We have extended ACSR into a family of process algebras, GCSR [1],
Dense-time ACSR [4], ACSR-VP [9], and PACSR [15]. GCSR is a graph-
ical version of ACSR which allows the visual representation of ACSR
processes. Dense-time ACSR is an extension of ACSR with dense time.
ACSR-VP extends ACSR with value-passing capability so that arbitrary
scheduling problems can be specified and analyzed. Probabilistic ACSR
allows the modeling of resource failure with probabilities.

The rest of the paper is organized as follows. Section 2 describes the
basic computation model of ACSR and explains its notions of events
and timed actions. Section 3 overviews the syntax and semantics of
ACSR and describes a simple scheduling example. Section 4 explains
PACSR and extends the same scheduling example with probabilistic re-
source failure. Section 5 describes ACSR-VP and shows how parametric
scheduling analysis can be done using basically the same schedule exam-
ple.

2. THE COMPUTATION MODEL

In our algebra there are two types of actions: those which consume
time, and those which are instantaneous. The time-consuming actions
represent one “tick” of a global clock. These actions may also represent
the consumption of resources, e.g., CPUs, devices, memory, batteries in
the system configuration. In contrast, the instantaneous actions provide
a synchronization mechanism between a set of concurrent processes.

Timed Actions. @ We consider a system to be composed of a finite set
of serially reusable resources, denoted by R. An action that consumes
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one “tick” of time is drawn from the domainI®(R x N'), with the restric-
tion that each resource be represented at most once. As an example,
the singleton action, {(», p)}, denotes the use of some resource r € R
running at the priority level p. The action @ represents idling for one
time unit, since no resuable resource is consumed.

We use Dr to denote the domain of timed actions, and we let 4, B, C
range over D . We define p(4) to be the set of resources used by the
action 4; e.g., p({(r1,p1),(r2,p2)}) = {r1,m2}. We also use 7, (4) to
denote the priority level of the use of resource »in action 4; e.g,
Ty ({(r1,p1), (r2, p2)}) = p1. By convention, if r is not inp(4), then
m-(4) = 0.

Instantaneous Events. We call instantaneous actions events, which
provide the basic synchronization in our process algebra. We assume a
set of channels L. An event is denoted by a pair (a,p), where a is the
label of the event, and p is its priority. Labels are drawn from the set
LULU{r},where for all ae L a? € Land a! € L. We say that a?
and a! are inverse labels. As in CCS, the special identity label, 1, arises
when two events with inverse labels are executed in parallel.

We use D to denote the domain of events, and let e, f and g range
over Dg. We use /(e) and m(e) to represent the label and priority, re-
spectively, of the event e. The entire domain of actions is D = Dr U Dg |
and we let o and 3 range over D.

The executions of a process are defined by a timed labelled transition
system (timed LTS). A timed LTS M is defined as (P, D, —), where (1)
P is a set of ACSR processes, ranged over by P,Q, (2) D is a set of
actions, and (3) — is a labeled transition relation such that P — s Q
if the process P may perform an instantaneous event or timed action o
and then behave as Q.

For example, a process P, may have the following behavior: P =
P, 22, P @3 o ... That is, P1 first executes o; and evolves into
P2, which executes o2, etc. It takes no time to execute an instantancous
event. A timed action however is executed for exactly one unit of time.

3. ACSR
The following grammar describes the syntax of ACSR processes.
P = NIL| (a,n).P| A:P|P+P|P|P|

PN, (P,P,P) | P\F |[P]; | P\ |b—> P|C.

The process NIL represents the inactive process. There are two pre-
fix operators, corresponding to the two types of actions. The process
(a, n). P executes the instantaneous event (a, n) and proceeds to P. The
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process A:P executes a resource-consuming action during the first time
unit and proceeds to P. The process P + Q represents a nondeterminis-
tic choice between the two summands. The process P||Q describes the
concurrent composition of P and Q: the component processes may pro-
ceed independently or interact with one another while executing events,
and they synchronize on timed actions.

The scope construct, PA,(Q, R, S), binds the process P by a temporal
scope and incorporates the notions of timeout and interrupts. We call ¢
the time bound, where t € N U{ }and require that P may execute for a
maximum of ¢ time units. The scope may be exited in one of three ways:
First, if P terminates successfully within 7 time-units by executing an
event labeled a! where a € L, then control is delegated to O, the success-
handler. Else, if P fails to terminate within time ¢ then control proceeds
to R. Finally, throughout execution of this process construct, P may be
interrupted by process S.

In P\F, where F c L, the scope of channels in F is restricted to
process P, and thus, components of P may use these labels to interact
with one another but not with P’s environment. The construct [P];,
I C R, produces a process that reserves the use of resources in [/ for itself,
extending every action A in P with resources in /— p(4) at priority 0.
P\ hides the identity of resources in / so that they are not visible on the
interface with the environment. That is, the operator P\\/ binds all free
occurrences of the resources of /in P. This binder gives rise to the sets
of free and bound resources of a process P. Process b — P represents the
conditional process: it performs as P if boolean expression b evaluates to
true and as NIL otherwise. Process constant C with process definition

f .
C def P allows standard recursion.

The Structured Transition System. The informal account of
behavior just given is made precise via a family of rules that define the
labeled transition relations on processes. The semantics is defined in two
steps. First, we develop the unconstrained transition system, where a
transition is denoted as P —>— P’. Within “—” no priority arbitration
is made between actions; rather, we subsequently refine “—” to define
our prioritized transition system, “— ..” The precise semantics rules are
omitted but can be found in [3].

The prioritized transition system is based on preemption, which incor-
porates our treatment of synchronization, resource-sharing, and priority.
The definition of preemption is straightforward. Let “<”", called the pre-
emption relation, be a transitive, irreflexive, binary relation on actions.
Then for two actions o and B, if oo <3, we can say that “o is preempted

E3]
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by B.” This means that in any real-time system, if there is a choice
between executing either o or B, B will always be executed.

There are three cases to consider [3]: The first case is for the two
timed actions, o and [, that compete for common resources. Here, the
preempted action o may use a superset of B’s resources. However,
uses all the resources at least at the same priority level as a. Thus, for
any resource r in p (o) — p(B), the priority of » in oo must be zero in order
that B may preempt o since m,. (B) is, by convention, 0 when 7 is not
in B. Also, [ uses at least one resource at a higher level. For instance,
{(1‘1,2), (7'2a0)} = {(7'1’7)} but {(rl’z)’ (7‘2, 1)} A {(T1a7)}'

The second case is for the two events with the same label. Here, an
event may be preempted by another event sharing the same label, but
with a higher priority. For example, (1,1) < (7,2), (a,2) < (a,5), and
(a,1) £ (b,2) ifa #b.

The third case is when an event and a timed action are compara-
ble under“<.” Here, if n > 0 in an event (T,n), we let the event
preempt any timed action. For instance, {(r1,2),(r2,5)} < (7,2), but
{(r1,2), (r2,5)} # (7,0).

We define the prioritized transition system “—g,
“>” to account for preemption.

LR

which simply refines
%

Definition 1 The labeled transition system “—r” is defined as follows:
P —245_ P ifand only if (1) P -+ P' is an unprioritized transition,
and (2) There is no unprioritized transition P —£->P"such that & < B

0

Analysis of Real-Time Systems in ACSR. Within the ACSR
formalism we can conduct two types of analysis for real-time schedul-
ing: validation and schedulability analysis. Validation shows that a
given specification correctly models the required real-time scheduling
discipline, such as Rate Monotonic and Earliest-Deadline-First. Schedu-
lability analysis determines whether or not a real-time system with a
particular scheduling discipline misses any of its deadlines. The valida-
tion and schedulability analysis of a real-time system can be carried out
using the equivalence of ACSR processes.

Equivalence between ACSR processes is based on the concept of bisim-
ulation [14] which compares the computation trees of two processes. Us-
ing the theory found in [12], it is straightforward to show that there
exists a largest such bisimulation over “—,,” which we denote as “~p.”
This relation is an equivalence relation, and is a congruence with respect
to ACSR’s operators [3].
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When comparing processes, we often find that because different objec-
tives were pursued in formulating the two process expressions (perhaps
simplicity of expressions for one, and efficiency for the other), the inter-
nal synchronization actions of the two processes are not identical. Conse-
quently, even though the two processes may display identical “external”
behavior (i.e., non-t event labels and timed action steps), there may be
T actions in one process that do not correspond directly with T actions
in the other. (Recall that synchronization replaces the complementary
event labels with a single T event.) For those situations where match-
ing of external behaviors is sufficient a weaker form of equivalence, weak
bisimulation [12], is used. It is straightforward to prove the existence
of a largest weak bisimulation =x over “—;” in a manner analogous
to the case for bisimulation. Weak bisimulation, =, is an equivalence
relation (though not a congruence) for ACSR that compares observable
behaviors of processes.

Example. Throughout the paper, we will use a simple example from
the area of schedulability analysis. The example describes a set of peri-
odic tasks scheduled according to the Rate Monotonic (RM) scheduling
policy. This policy assigns static priorities to the tasks in the inverse
proportion to their periods. As a syntactic convenience, we allow ACSR
processes to be parameterized by a set of index variables. Each in-
dex wvariable is given a fixed range of values. This restricted notion of
parameterization allows us to represent collections of similar processes
concisely. For example, the parameterized process

Pb=t<2—> (at,t).PH_l,t € {02}
is equivalent to the following three processes:
PO == (00,0).131, P1 = (al, 1).P2, P2 = NIL.

As shown in Section 5, the addition of parameterized process definition
in ACSR-VP allows us to get rid of this kind of parameterization.

The example is constructed as follows. We have two tasks, Task1 and
Task, . Task; has period p; and execution time e;. The deadline for each
task is equal to its period. Both tasks share the same processor, modeled
by the resource cpu. No other tasks use the processor.

Each Task; idles until it is awakened by the operating system by the
start ; event and starts competing for the processor. At each time unit,
the task may either get access to the processor or, if it is preempted by a
higher-priority task, it idles until the next time unit. Once the necessary
amount (i.e., e;) of execution time is accumulated, the task returns to
the initial state and waits for the next period.
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In order to detect missed deadlines, we also model the task dispatcher,
which initiates the tasks according to their periods. For each Task;, there
is a process Dispatch;, which sends the start; event to the respective task
every p; time units. If the task cannot accept the event - that is, if it
has not completed its execution - the dispatcher deadlocks.

The complete specification is shown below. In the specification of a
task, i is the task number and jis the accumulated execution time. We
assume that the tasks have distinct periods and are ordered by decreasing
periods, so we can use the task number as the priority for processor
access.

System af [( Dispatch | Dispatchy| Task,
| Task2)\{start., start2}](cpu)
Dispatch; o (start;!,7).D; 0 i ={1,2}
f
D,;’k ci__e: k < P — {} : Di,k+1
+ k= p; = Dispatch; i={1,2},k ={0,p;}
Task; (start;?,0).P;0 + {} : Task; i={1,2}
£
Py € j<e—({}:Py

+{(epw, )} 2 Bijjia)
+ j=-e; — Task; 1 =1{1,2},5 ={0,e;}

ACSR analysis techniques allow us to verify the schedulability of a
system of tasks for fixed values of parameters e; and pi. The correct-
ness criterion being that a resulting process does not deadlock can be
checked either by deciding the behavioral equivalence of the process to
the process that idles forever, or by performing reachability analysis on
the state space of the process to search for deadlock states. For ex-
ample, we considered two sets of tasks. The task set with parameters
e1 = 2, p1 = 5, eg = 1, pop = 2 does not exhibit any deadlock, while
the set et = 2, p1 = 3, eo = 1, po» = 2 has a deadlock and thus is not
schedulable.

4. PROBABILISTIC ACSR

PACSR (Probabilistic ACSR) extends the process algebra ACSR by
associating with each resource a probability. This probability captures
the rate at which the resource may fail. Since instantaneous events in
PACSR are identical to those of ACSR, we only discuss timed actions,
which now can account for resource failure.

Timed Actions. As in ACSR, we assume that a system contains a
finite set of serially reusable resources drawn from the set R We also
consider set R that contains, for each » € R, an element 7, representing
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the failed resource r. We write R for RUR. Actions are constructed as
in ACSR, but now can contain both normal and failed resources. So now
the action {(r, p)}, r € R, cannot happen if r has failed. On the other
hand, action {(7,¢q)} takes place with priority ¢ given that resource r
has failed. This construct is useful for specifying recovery from failures.

Resource Probabilities. In PACSR we associate each resource
with a probability at which the resource may fail. In particular, for
all » € R we denote by p(r) € [0, 1] the probability of resource » being
up, while p(7) = 1 — p (r) denotes the probability of r failing. Thus,
the behavior of a resource-consuming process has certain probabilistic
aspects to it which are reflected in the operational semantics of PACSR.
For example, consider the process {(cpu, 1)} : NIL, where resource cpu
has probability of failure 1/3, i.e., p(€pu) = 1/3. Then, with probability
2/3, resource cpu is available and thus the process may consume it and
become inactive, while with probability 1/3 the resource fails and the
process deadlocks.

Probabilistic Processes. The syntax of PACSR processes is the
same as that of ACSR. The only extension concerns the appearance of
failed resources in timed actions. Thus, it is possible on one hand to
assign failure probabilities to resources of existing ACSR specifications
and perform probabilistic analysis on them, and, on the other hand,
to ignore failure probabilities and apply non-probabilistic analysis of
PACSR specifications.

As with ACSR, the semantics of PACSR processes is given in two
steps. At the first level, a transition system captures the nondetermin-
istic and probabilistic behavior of processes, ignoring the presence of
priorities. Subsequently, this is refined via a second transition system
which takes action priorities into account.

The unprioritized semantics is based on the notion of a world, which
keeps information about the state of the resources of a process. Given
a set of resources Z C R, the set of possible worlds involving Zis given
byW(Z)={2'"CZUZ |z € Z iffT ¢ Z'}, that is, it contains all
possible combinations of the resources in Z being up or down. Given a
world W e W(Z), we can calculate the probability of W by multiplying
the probabilities of every resource in W.

Behavior of a given process P can be given only with respect to the
world P is in. A configuration is a pair of the form (P, W) e Proc x 2R
representing a PACSR process P in world W. The semantics is given in
terms of a labeled transition system whose states are configurations and
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whose transitions are either probabilistic or nondeterministic. We write
S for the set of configurations.

The intuition for the semantics is as follows: for a PACSR process
P, we begin with the configuration (P,$). As computation proceeds,
probabilistic transitions are performed to determine the status of re-
sources which are immediately relevant for execution but for which there
is no knowledge in the configuration’s world. Once the status of a re-
source is determined by some probabilistic transition, it cannot change
until the next timed action occurs. Once a timed action occurs, the
state of resources has to be determined anew, since in each time unit
resources can fail independently from any previous failures. Nondeter-
ministic transitions (which can be events or actions) may be performed
from configurations that contain all necessary knowledge regarding the
state of resources.

We partition the set S into probabilistic configurations S, and non-
deterministic configurations S,. A configuration (P, W) is included in
S, if every resource that can be used in a first step of P is included
in W. Transitions for a configuration (P, W) € S, are determined in
the same way as in ACSR for P, except that a transition labeled by an
action A4 can be taken if every resource r € R that appears in A4 is also
contained in W. The probabilistic transition relation takes probabilistic
configurations into non-deterministic configurations.

We illustrate the rules of the semantics with the following example.
Consider the process P= {(ri1,1),(r2, D} : P +(e?, 1).P,. The im-
mediately relevant resources of P are {ri,r2}. From the probabilis-
tic configuration (P, {r;}), where we know that »; is up, but have no

information about r», we have two probabilistic transitions that de-

termine the state of rp: (P {ri}) M (P, {r;, m}) and (P, {ri}) @

(P,{r1,72}). Both of these configurations are nondeterministic since we
have full information about the relevant resources. Further, (P, {r1,r2})

. . . .. 71 ? 71
has two nondeterministic transitions: (P, {r,r,}) {n —)—(-? )} (P, 0)
7,1 .
and (P, {r1,m2}) (f;}) (Pe,{r1,72}). The other configuration allows only
. —qy (€71 — . . .
one transition: (P, {r1,72}) (——>) (P2, {r1,72} , since r» is failed. Note
that a probabilistic transition always leads to a nondeterministic config-
uration. A nondeterministic transition may lead to either nondetermin-
istic configuration or a probabilistic one.

Probabilistic Analysis Techniques. We have defined a proba-
bilistic weak bisimulation [16], which allows us to compare observable
behaviors of PACSR processes similar to the case of ACSR. In addition,
probabilistic information embedded in the probabilistic transitions al-
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lows us to perform quantitative analysis of PACSR specifications. In
particular, we can compute the probability of reaching a given state or
a deadlocked state.

Example. We illustrate the utility of PACSR in the analysis of fault-
tolerance properties by slightly extending the example of Section 3. We
consider the same set of tasks running on a processor with an intermit-
tent fault. At any time unit, the processor may be running, in which
case the higher-priority task executes normally, or it may be down, in
which case none of the tasks execute. We modify the specification of a
task to add the alternative behavior where a task can perform an action
that contains the failed cpu resource and does not increase its execution
time.

System = [(Dispatch,|Dispatchy|Task
| Task2)\{start1, start2}]{cpu}
Dispatch; = (start;!,i).D;p 1={1,2}
n. . — L o m. v 1. D,
Dip = #<pi =ikl
+ k = p; = Dispatch, 1={1,2},k = {0,p;}
Task; = (start;?,0).P,o+ {}: Task; 1={1,2}

I

P j<ei—=({}: Py
+{(cpu, 1)} : Pijp1
+{(m" i)} : ‘F)iyj)
+ j=ei—> Task; i={1,2},j={0,ei}

We apply the probabilistic analysis to the task set we considered in
Section 3: ey =2, p1 =5, es =1, p, = 2. Even though the task set
is schedulable under perfect conditions, in the presence of failures the
tasks may still miss their deadlines. Given the probability of a processor
failure, we can compute the probability that a deadline is missed. The
following list of pairs show results of the experiments we ran. The first
element of each pair is the cpu failure probability and the second is the
probability of a missed deadline: {(0,0), (0.005, 0.025), (0.01, 0.050),
(0.02, 0.100), (0.05, 0.250), (0.075, 0.367), (0.1, 0.473), (0.15, 0.650),
(0.2, 0.780), (0.3, 0.926)}.

S. ACSR-VP

ACSR-VP (ACSR with Value Passing) extends the process algebra
ACSR described in Section 3 by allowing values to be communicated
along communication channels. In this section we present ACSR-VP
concentrating on its value-passing capabilities.

We assume a set of variables X ranged over by x, y and a set of values
V ranged over by v. Moreover, we assume a set Expr of expressions
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(which includes arithmetic expressions) and we let BExpr  Expr be
the subset containing boolean expressions. We let e and b range over
Expr and BExpr, respectively, and we write 2 for a tuple z,...z, of
syntactic entities.

As in ACSR, ACSR-VP also has two types of actions: instantaneous
events and timed actions. The notion of timed action is identical to that
of ACSR. However, instantaneous events are extended to provide value
passing in addition to synchronization. An event is denoted as a pair
(i, ep) representing execution of action i at priority e,, where i ranges
over the internal T, the input event c¢?x, and the output event cle.

The syntax of ACSR-VP processes is similar to that of ACSR except
for C (Z).

P == NIL| (a,n).P|A:P|P+P|P|P|
P A (P,P,P) | P\F | [P]1 | P\I | b— P | C(Z).

In the input-prefixed process (c?x, e).P the occurrences of variable x is
bound. We write fv(P) for the set of free variables of P. Each process

constant C has an associated definition C(Z) 4f p where fv(P) C & and
T are pairwise distinct. We note that in an input prefix (¢?x, e).P, e
should not contain the bound variable x, although x may occur in P.
An informal explanation of ACSR-VP constructs is similar to that
ACSR. The semantics of ACSR-VP process is also defined as a labeled
transition system, similarly to that of ACSR. It additionally makes use
of the following ideas: Process (cler,e2).P transmits the value obtained
by evaluating expression e; along channel ¢, with priority the value of
expression e2, and then behaves like P. Process (c?x, p).P receives a
value v from communication channel ¢ and then behaves like P[v/x],
that is, P with v substituted for variable x. In the concurrent compo-
sition (c¢?x, p1).P1||(c!v, p2).P>, the two components of the parallel com-
position may synchronize with each other on channel c resulting in the
transmission of value v and producing an event (t,p;+ p2).

Symbolic Transition System. Consider the simple ACSR-VP pro-

cess Pqéf (in?x, 1).(out!x, 1).NIL that receives a value along channel in
and then outputs it on channel out, and where x ranges over integers.
According to traditional methods for providing semantic models for con-
current processes using transition graphs, process P is infinite branch-
ing, as it can engage in the transition (in?n, 1) for every integer value
n. Thus, standard techniques for analysis and verification of finite state
systems cannot be applied to such processes. Several approaches, such
as symbolic transition graphs and transition graphs with assignment,
have been proposed to deal with this problem for various subclasses of
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value-passing processes [6, 11, 13, 8]. We now briefly explain how to
represent symbolic graphs with assignment for ACSR-VP processes. We
only give an overview of the model and we refer to [8] for a complete
discussion.

An SGA (Symbolic Graph with Assignment) is a rooted directed
graph where each node n has an associated finite set of free variables
fv(n) and each edge is labeled by a guarded action with assignment [11,
17]. Note that a node in SGA is an ACSR-VP term.

The notion of a substitution, which we also call assignment, is defined
as follows. A substitution is any function 0: X — Expr, such that 6(x) #
x for a finite number of x € X. Given a substitution 0, the support (or
domain) of 0 is the set of variables D(0) = {x|0(x) # x}. A substitution
whose support is empty is called the identity substitution, and is denoted
by Id. When |D(8)] = 1, we use [B(x)/x] for the substitution 6.

An SGA for ACSR-VP is a rooted directed graph where each node n
has an associated ACSR-VP term and each edge is labeled by a boolean
predicate, an action, and an assignment, (b, o, 0). Here we illustrate how
to construct an SGA by an example. A set of rules for generating an
SGA from an ACSR-VP term can be found in [8]. We use a transition

b . )

P Y23 P' to denote that given the truth of boolean expression b, P
can evolve to P’ by performing actions o and putting into effect the
assignment 6. Consider the following process.

Piz) ¥ (a?,1).P'(z+1,y)
P'(z,y) ¥ (y<2)— (alle+y),2).NIL
The SGA for this process is shown below. Note how the value x + 1
is assigned along the edge from P to P’

true, (a?y,1), x=x+1 /7 O\ y<2, (alx+y),2),1d
P(x) @ NIL

An informal interpretation of the above SGA is to view each process
node as a procedure with its respective formal parameters. An edge
coming into a node corresponds to a call to the procedure with the
actual parameters supplied by the assignment labeling the edge and
input events. If some of the variables are missing from the assignment,
they are taken to be the same as the variable of the same name in the
source node of the edge. After the process has been “called” in this
way, it evaluates the guards on the outgoing transitions, applies the
preemption relation to the enabled transitions and selects an one of the
remaining transitions non-deterministically for the next step.
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Symbolic Weak Bisimulation.  The bisimulation relation for sym-
bolic transition graphs is defined in terms of relations parametrized on
boolean expressions, of the form ~%, where p ~® ¢ if and only if, for
each interpretation satisfying boolean b, p and ¢ are bisimilar in the
traditional notion [8].

Let us compare the process P described above with the following
process R:

P(z) (a?y,1).P(z + 1,y)
P(z,y) ¥ (y<2) - (alfz+y),2).NIL
R(z") def (e, 1).R (z,y")

R (! 2 déf (of <N = (gl Lo 1)
1Y J \¥y =~ L S bl o L4 rxj

Lo \w

The prioritized SGA for R is a minor variation of the SGA for P.
Applying the symbolic bisimulation algorithm for processes P and R,
we obtain the following predicate equation system.

Xoo(z, ') = VaV2'X11(z, 2,z +1,2")
Xul(z2,z,2') = 2<23 2 <2Az+z=2"4+7+1
AN Z<292<2Ad+F+1=z+2

def

2).NIL

i¥

?

This equation system can easily be reduced to the equation Xy(x, x') =
x=x"+ 1, which allows us to conclude that P(x) and R(x’) are bisimilar
if and only if x =x"+ 1 holds. In general, if we restrict to the domain of
linear expressions, predicate equations obtained from the bisimulation
algorithm can be solved using constraint logic programming and integer
programming techniques [18].

Example. We revisit the example of Section 3 in order to conduct a
more sophisticated, compared to ACSR, analysis allowed by ACSR-VP.
With ACSR, the execution time and period of each task had to be fixed
in order for the analysis to be performed. The symbolic semantics of
ACSR-VP allows us to perform parametric analysis of processes. When
we treat parameters of tasks as free variables of the specification, the
scheduling problem can be restated in ACSR-VP as follows:

System(ey, e2,p1, p2) def [(Dispatch, (p1)| Dispatch,(pz)| Task1(e1)
| Taskz2(e2))\{start., startz}]{cpu}

Dispatch,(p) &f (start;i!,7).D; (0, p) i={1,2}
Dik,p) ¥ k<p—o{}:Dilk+1,p)
+ k= p — Dispatch,(p) i={1,2}
Taski(e) % (start;?,0).P:(0,e) + {} : Task:(e) i={1,2}
P(je) € j<e—({}:Pe)

+{(cpu,9)} : Pi(§ + 1,¢))
+ j=-¢e— Taski(e) i={1,2}
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We can now perform parametric analysis of System for some or all of
its parameters. Here we consider the process System (2,1, p1,p2) Omit-
ting the SGA for the example, we show the predicate equation system:

Xl(pl,pz) = X2(07 inlypz)
X2(jo1, 422, P1,p2) = X3(0, 0, j21, j22, p1, p2)
X3(j11, 41z, J21, J22, p1,p2) =
(F12 < p1) A (G21 < 1) A (Joz < p2) A Xa(du1, 512 + 1,21 + 1, jaz + 1, p1,p2)
+(G12 < p1) A (J11 < 2) A (J22 < p2) A Xa(Gu1 + 1,512 + 1, ja1, a2 + 1,p1,p2)
+{j12 < p1) A (J11 = 2) A (J22 < p2) A (Jo1 = 1) A Xa(j1, az + 1, j21, joo + 1,p1, p2)
+(J12 = p1) A (G = 2) A X3(0,0, jor, J22,p1, P2)
+(j22 = p2) A (41 = 1) A X3(j11, J12,0,0,p1,p2)

We have the additional condition p2 < p1, which comes from the
assumption made in Section 3 that processes are sorted by decreasing
execution time. When we solve the system of equations under this condi-
tion, the set of values for the parameters is given by the pairs of integers

(p1,p2) satisfying p; >3,p2 >1,p; > ps.

6. SUMMARY AND CURRENT WORK

We have presented three resource-bound real-time process algebras:
ACSR, PACSR and ACSR-VP. ACSR employees a synchronous seman-
tics for resource-consuming actions that take time and an asynchronous
semantics for events that are instantaneous. ACSR was developed to
handle schedulability analysis in a process-algebraic setting. PACSR
supports the notion of probabilistic resource failures, whereas ACSR-VP
extends ACSR with value-passing capability during communication and
parameterized process definition. To illustrate their features, we have
described and analyzed simple real-time systems using ACSR, PACSR,
and ACSR-VP.

As mentioned in the introduction section, there are two more for-
malisms in the family of resource-bound real-time process algebras. One
formalism is for visual specification of ACSR and the other is ACSR with
dense time. We are currently developing a resource-aware process alge-
bra to capture the notion of power consumption and resource constraints
of embedded systems.
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