
13

ON SECURELY SCHEDULING A MEETING

Thomas Herlea, Joris Claessens, Bart Preneel
COmputer Security and Industrial Cryptography (COSIC)

Dept. of Electrical Engineering – ESAT

Katholieke Universiteit Leuven

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.ac.be

http:/www.esat.kuleuven.ac.be/cosic/

Gregory Neven, Frank Piessens, Bart De Decker
Dept. of Computer Science

Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@cs.kuleuven.ac.be

http://www.cs.kuleuven.ac.be/cwis/research/distrinet/

Abstract

Keywords:

When people want to schedule a meeting, their agendas must be compared to
find a time suitable for all participants. At the same time, people want to keep
their agendas private. This paper presents several approaches which intend to
solve this contradiction. A custom-made protocol for secure meeting scheduling
and a protocol based on secure distributed computing are discussed. The security
properties and complexity of these protocols are compared. A trade-off between
trust and bandwidth requirements is shown to be possible by implementing the
protocols using mobile agents.

mobile agents, secure distributed computation, meeting scheduling

1. INTRODUCTION

When negotiating meetings, the participants look up, communicate and pro-
cess information about each other’s agendas trying to find a moment when
they are all free to attend the meeting. Due to the private nature of a person’s
schedule, as little as possible should be revealed to any other party during that

http://dx.doi.org/10.1007/978-0-306-46998-5_33

184 Part Five Secure Workflow Environment

negotiation. Ideally, only the result of the negotiation should be known to the
participants (and to the participants only), and any other information about the
users’ agendas should remain secret.

An easy solution for scheduling a meeting is to broadcast the schedules to all
participants, but this totally neglects the privacy of the participants’ agendas.
Another solution is to send all schedules to a trusted third party, but finding
one such single third party trusted by every participant, will be very difficult in
practice.

Some existing meeting scheduling applications, like for example “Yahoo!
Calendar”, define access levels for viewing and modifying agenda entries, and
define user groups to which these access levels are assigned. This is only
necessary because the comparison between schedules must be done by the users
themselves. Our approaches eliminate the need for managing access control,
as they are not based on users directly accessing each other’s agenda.

This paper presents more secure solutions. Their goal is for participants to
be able to negotiate a meeting whereby parties have no direct access to each
other’s agenda, whereby parties do not rely on another party for telling the final
result, and whereby no information about the agendas is revealed, but the final
result, i.e., the particular time the meeting can be scheduled, or the fact that the
meeting cannot be scheduled.

This paper builds on the work done in [6] and [3] and shows the trade-offs
that can be made in security, level of trust, and efficiency, when choosing a
particular negotiation protocol and a specific implementation approach.

The paper is organized as follows. Section 2 presents a custom-made ne-
gotiation protocol. Section 3 presents an alternative approach based on secure
distributed computing. Both approaches are analyzed from a security and com-
plexity point of view. Section 4 discusses the use of mobile agents for secure
meeting scheduling, and presents the “agenTa” prototype implementation. We
conclude in Sect. 5.

2. USING A CUSTOM-MADE NEGOTIATION
PROTOCOL

2.1. DATA REPRESENTATION

There exists a representation which reduces the problem of deciding if the
meeting can be scheduled at a certain moment to a logical AND operation.

As shown in Fig. 1, an agenda will be represented as a bit string in the
following way: for each time slot in the schedule, there is one bit indicating
whether the negotiator can (1) or cannot (0) attend a meeting of the specified
length which would start at that time. The finer the granularity and the longer
the negotiation window, the more bits there will be in the representation.

On Securely Scheduling a Meeting 185

Figure 1 Conversion from agenda to representation

2.2. SCHEDULING MODEL

In our model, a meeting scheduling starts with an invitation phase. The ini-
tiator broadcasts to the invitees a set of negotiation parameters such as meeting
length, negotiation window (limited time span in which to attempt the meet-
ing scheduling) and a complete list of invitees. Each invitee broadcasts to all
others a reply indicating whether it will accept or decline the negotiation invi-
tation. Because broadcasts are used, no invitee can be mislead as to the set of
negotiators it will encounter in the second phase.

In the second phase, called negotiation, the negotiators try the time slots one
by one and attempt to schedule the meeting. For each time slot the negotia-
tion takes place according to the protocol outlined below. If the meeting was
successfully scheduled the negotiators move on to the third phase, otherwise
the next time slot is tried. After independently arriving to a result concerning a
certain time slot, each participant broadcasts the result to the others and checks
whether all results coincide. This allows for detection of partial failures and
attacks which try to mislead a subset of the negotiators.

In the third phase either the common result is presented to the users, or the
users are informed that no meeting can take place. If there is a common result,
users might confirm their commitment to the scheduled time on a separate
channel (e-mail, telephone), independently of the scheduling process.

2.3. SCHEDULING A MEETING
For the purpose of this subsection we will refer to the representation of an

agenda according to the description in the previous subsection as “schedule.”
Instead of comparing schedules, the negotiation should be based on com-

paring protected forms of the schedules. The schedules are protected in a way
which still allows scheduling to be performed by broadcasting the protected

186 Part Five Secure Workflow Environment

forms to all negotiators and letting them process the data without fear of the
unprotected form to be revealed.

The binary XOR operation between the schedule and a mask is a trans-
formation which still allows scheduling to be performed in the sense that the
(in)equality of two or more bits is preserved when they are all XORed with the
same mask.

If all negotiators know the mask, they are able to retrieve the original sched-
ules easily, by unmasking the broadcasted data. The solution is to let the mask
be a shared secret, that is, all negotiators will contribute when building it, but
it will not be revealed to any of them.

The negotiation protocol then goes as follows:

1 In step one of the negotiation protocol, each negotiator chooses a random
mask, and XORs it with its schedule. This random mask is actually a
partial mask. The shared secret will be the XOR of all partial masks, and
is called global mask. Even if only one negotiator keeps its partial mask
secret, the others cannot find the global mask solely using their partial
masks.

2 In step two of the protocol, all schedules visit all negotiators exactly one
time. At each visit they are masked with the partial mask of that particular
negotiator. In the end, all original schedules are thus masked with the
global mask, without the need for the negotiators to disclose their partial
mask. Since the schedule is first masked with its owner’s partial mask it
remains secret during its visits.

A negotiator must be unable to identify a protected schedule as represent-
ing its own schedule: otherwise performing XOR between the original
and the protected schedule reveals the global mask, allowing the nego-
tiator to retrieve all original schedules. Therefore during the trip to all
negotiators, the schedule must be forwarded randomly between the ne-
gotiators in order to make it impossible to trace. The schedule must have
attached a list of negotiators it hasn’t visited yet, decremented at each
forwarding, in order to prevent multiple maskings with the same partial
mask.

Note that for countering attempts to trace a schedule by attackers who
have a global view on the network, all communications should be en-
crypted.

3 In step three, all protected schedules are broadcasted. Each negotiator
looks independently for a time slot when all protected schedules have the
same value. That implies that the original schedules are identical, too, for
that time slot but does not provide any clue whether the negotiators are
free or busy for that time slot. The clue is provided by each negotiator’s

On Securely Scheduling a Meeting 187

schedule for that time slot. If the negotiator is free then, it means all
negotiators are free then and the meeting can be scheduled. For time
slots when some are busy and some are free, it is not possible to figure
out who are the busy ones and who are the free ones.

Note that our scheduling protocol does not specify any form of negotiator
authentication. This is however needed for linking the protocol messages to
their originators. Depending on the meeting application, the desired form of
authentication can be added to the protocol.

Figure 2 shows the negotiation protocol as performed by three parties. For
easy understanding of the protocol the schedules in the simulation are follow-
ing the same route and the maskings appear to be performed simultaneously
by the three negotiators. In reality the process is asynchronous (some negotia-
tors may be idle while others are masking) and routing is random (in the end
some negotiators may have nothing to broadcast while others may broadcast
several protected schedules). Another difference is that in reality only one bit is
processed at a time (otherwise an attack is possible, see following section). If
the meeting can be scheduled in the corresponding time slot the protocol stops,
otherwise the next time slot is processed.

2.4. SECURITY ANALYSIS

Our custom-made protocol does not require one single entity to be trusted.
It however does not completely protect the privacy of the participants’ agenda,
as attacks by both passive and active adversaries are possible.

Bad slots. There may be time slots for which all users are busy and therefore
all protected slots will be equal. By checking against the original schedule each
negotiator will avoid scheduling a meeting in that slot but it will also know
everybody else’s schedule for that slot (i.e., everybody is busy). Because they
constitute an infringement on all users’ privacy we call these slots bad slots.

Entropy attack. The reason for performing the negotiation one slot at a
time is to prevent the following attack. If the negotiation is done on sequences of
slots, when all the broadcasted masked schedules are received, it still is possible
for a party to recognize its original schedule. It can be done by testing all the
masks which transform the original schedule into one of the protected forms.
The correct global mask can be recognized by the fact that by unmasking the
other protected schedules with it, bit strings are obtained which have the entropy
expected from a schedule.

Negotiating one bit at a time, with fresh partial masks for each bit and stop-
ping when a meeting is scheduled counters this attack because each mask bit
and schedule bit have maximal entropy.

188 Part Five Secure Workflow Environment

Figure 2 Simulation for three negotiators

Number of parties. When only two parties are negotiating, each can de-
duce the schedule of the other based on their own schedule and the comparison
between the protected forms of the schedules. Besides that, the global mask
is straightforward to find because the original schedule can be linked to its
protected form. Also when only three or four parties are negotiating it is some-
times possible to find out the global mask by tracing back schedules. For five
or more participants the ability to trace a schedule along its route decreases as
the number of participants increases.

Dummy negotiators could be introduced to artificially increase the number
of parties, and thus to alleviate this problem. In a broadcasting communication
environment encrypted dummy messages could also be sent to make the real
schedules untraceable.

Rogue negotiators. Active adversaries could attack the protocol in various
ways.

On Securely Scheduling a Meeting 189

A simple denial of service attack can be mounted by negotiating based on
a fully busy schedule instead of declining the invitation. Since the protocol
relies on the negotiators consistently using their partial mask, the protocol has
unpredictable outcomes if a negotiator randomly changes its partial mask during
the negotiation of a time slot.

Goal-oriented misbehavior is also possible. A negotiator can wait to be the
last to broadcast the protected schedule(s) it has. This way it is able to detect first
when a meeting could take place. In that case it can broadcast a false protected
form, preventing the meeting from being scheduled. It knows everybody else’s
schedule for that time slot, while the others do not.

2.5. COMPLEXITY

For analyzing the complexity of the scheduling we count the messages that
are sent between the negotiators. In a distributed environment it is expected
that sending messages will be much more resource consuming than masking
or a comparison between bits. Since much of the processing is done in paral-
lel, bandwidth is more important. Remember that the negotiation protocol is
performed bit by bit.

Note that for n negotiators a broadcast is of complexity n – 1. When an
all-to-all broadcast is needed it has complexity n(n – 1).

The scheduling starts with a simple broadcast of the invitation. C1 = n – 1.
All negotiators (except for the initiator) must announce their position towards
the invitation. These broadcasts adds complexity C2 = (n – 1) (n – 1). For
getting masked, one bit must visit all negotiators and then be broadcasted:
2(n – 1). This happens to each negotiator’s bit in a round: C3 = 2n (n – 1).
If the number of bits in a schedule is l, after at most l rounds the protocol will
end. In the check phase of the scheduling, all negotiators broadcast their result
or the fact that no meeting could be scheduled to all others: C4 = n (n – 1).
Note that only positive results (i.e., a meeting is possible) are broadcasted. If
the result is negative, the agents automatically go to the next bit. If the result is
still negative after the last bit, it was not possible to schedule a meeting.

Therefore at most C = C 1 + C 2 + lC 3 + C4 = (1 + n – 1+2nl + n)(n – 1) =
(2 + 2l) n (n – 1) messages are sent. For example, for a scheduling window
of 3 eight-hour working days, granularity 1 hour (l = 24) and 5 participants
(n = 5) this amounts to at most 1000 messages; for 10 participants in the same
conditions, there will be up to 4500 messages sent.

190 Part Five Secure Workflow Environment

3. USING SECURE DISTRIBUTED COMPUTING

3.1. THE PROBLEM OF SECURE DISTRIBUTED
COMPUTING

Usually, the problem of Secure Distributed Computing (SDC) is stated as
follows. Let ƒ be a publicly known function taking n inputs, and suppose there
are n different parties, each holding their own private input xi (i = 1 . . . n) .
The n parties want to compute the value ƒ(x1 , . . . , xn) without leaking any
information about their private inputs to the other parties (except of course the
information about xi that is implicitly present in the function result). In descrip-
tions of solutions to the Secure Distributed Computing problem, the function
ƒ is usually encoded as a boolean circuit, and therefore Secure Distributed
Computing is also often referred to as secure circuit evaluation.

Over the past two decades, a fairly large variety of solutions (other than the
trivial one using a trusted third party) to the problem has been proposed. An
overview is given by Franklin [4] and more recently by Cramer [2].

3.2 HOW TO PERFORM GENERAL SECURE
DISTRIBUTED COMPUTING

The core problem of SDC is that we want to perform computations on hidden
data (using encryption, secret sharing or other techniques) without revealing the
data. One class of techniques to compute with encrypted data is based on homo-
morphic probabilistic encryption. An encryption technique is probabilistic if
the same cleartext can encrypt to many different ciphertexts under the same en-
cryption key. To work with encrypted bits, probabilistic encryption is essential,
otherwise only two ciphertexts (the encryption of a zero and the encryption of a
one) would be possible, and cryptanalysis would be fairly simple. An encryp-
tion technique is homomorphic if it satisfies at least one equation of the form
E (x op y = E (x) op' E (y) for some operations op and op' . A ho-
momorphic encryption scheme allows operations to be performed on encrypted
data, and hence is suitable for secure circuit evaluation.

In [5], Franklin and Haber present a protocol that evaluates a boolean circuit
on data encrypted with such a homomorphic probabilistic encryption scheme.
In order to support any number of participants, they use a group oriented en-
cryption scheme, i.e., an encryption scheme that allows anyone to encrypt, but
that needs the cooperation of all participants to decrypt. In the group oriented
encryption scheme used by Franklin and Haber, a bit b is encrypted for a group
of participants S ⊆ {1. . . n} as

On Securely Scheduling a Meeting 191

where N = pq, p and q are two primes such that p ≡ q mod 4, and r ∈R ZN .
K1 KnThe public key is given by [N, g, g mod N, . . . , g mod N], while Ki

is the private key of the ith participant. This scheme has some additional
properties that are used in the protocol:

�

�

�

XOR-Homomorphic. Anyone can compute a joint encryption of the XOR
of two jointly encrypted bits. Indeed, if ES (b) = [α, β] and ES (b') =
[α', β '], then ES (b ⊕ b') = [αα' mod N, ββ ' mod N] .

Blindable. Given an encrypted bit, anyone can create a random ciphertext
that decrypts to the same bit. Indeed, if ES (b) = [α, β] and r ∈R ZN ,
then [αgr mod N, mod N] is a joint encryption of
the same bit.

Witnessable. Any participant can withdraw from a joint encryption by
providing the other participants with a single value. Indeed, if ES(b) =
[α , β], it is easy to compute Di (ES (b)) from Wi ([α, β]) = α – Ki

mod N

First of all, the participants must agree on a value for N and g, choose a secret
key K i and broadcast g Ki mod N to form the public key. To start the actual
protocol, each participant broadcasts a joint encryption of his own input bits.
To evaluate an XOR-gate, everyone simply applies the XOR-homomorphism.
The encrypted output of a NOT-gate can be found by applying the XOR-
homomorphism with a default encryption of a one, e.g. [l, –1 mod N].

The encryption scheme is not AND-homomorphic, so the evaluation of an
AND-gate will be more troublesome. Suppose the encrypted input bits for
the AND-gate are û = E (u) and = E(v). To compute a joint encryption

= E(w) = E (u Λ v), they proceed as follows:

= E c
1 Each participant i chooses random bits bi and ci and broadcasts =

E(bi) and (i).

2 Each participant repeatedly applies the XOR-homomorphism to calculate
and

Each participant broadcasts decryption witnesses Wi (û') and Wi

3 Everyone can now decrypt û' and By repeatedly applying the fact that
one can prove that

w1 ⊕ . . . ⊕ wn where

Each participant is able to compute a joint encryption of wi : he knows bi

and c (he chose them himself) and he received encryptionsi from the
other participants, so he can compute E(bi Λ cj) as follows: if bi = 0,
then bi Λ cj = 0, so any default encryption for a zero will do, e.g. [1, 1].

192 Part Five Secure Workflow Environment

Otherwise, if bi = 1, then bi ∧ c = cj j , so is a valid substitution for
E (bi ∧ cj).

E (u ∧ ci) and E (v ∧ bi) can be computed in an analogous way. He uses
the XOR-homomorphism to combine all these terms, blinds the result
and broadcasts this as

4 Each participant combines a n d (j = 1 . . . n), again using the
XOR-homomorphism, to form = E (w) .

When all gates in the circuit have been evaluated, every participant has a joint
encryption of the output bits. Finally, the participants broadcast decryption
witnesses for the output bits to reveal them.

3.3. SECURE MEETING SCHEDULING USING SDC

We already showed how to reduce the problem of scheduling a meeting for
n secret agendas to a series of logical AND operations on n secret bits. For
every time slot in the schedule, each negotiator has one secret input bit: a one
if he is available to start the meeting at that time, a zero if he isn’t. Because
the Secure Distributed Computing protocol we just discussed can only handle
binary gates, we implement the n -ary AND operation as a log2 (n -depth tree)
of binary AND-gates. The output bit of the circuit indicates if this slot is an
appropriate starting time for the meeting (1) or not (0).

3.4. SECURITY ANALYSIS

Franklin and Haber show that their protocol is provably secure against passive
adversaries (i.e., adversaries who follow the rules of the protocol, but who try
to learn as much information from the communication as possible), given that
ElGamal encryption with a composite modulus is secure. This means that
under the assumption of passive adversaries, complete privacy of all agendas is
guaranteed (except of course for the fact that everybody is available at the time
the meeting is scheduled). However, the proof Franklin and Haber give uses a
more complicated encryption scheme and they mention the one we used here
as an alternative. To the best of our knowledge, the security of this encryption
scheme is still an open problem.

The protocol is not provably secure against active adversaries (who can devi-
ate from the protocol). For example, a malicious participant can flip the output
of an AND gate by XORing his with the encryption of a one. For this
particular application however, the most obvious attacks don’t seem to give
rise to substantial information leaks. The SDC protocol presented by Chaum,
Damgård and van de Graaf in [1] provides provable security against active
adversaries at the cost of higher bandwidth requirements.

On Securely Scheduling a Meeting

3.5. COMPLEXITY

Let’s have a closer look at the message complexity of this protocol. The same
public and private keys can be used for every evaluation. This means that the
initiator’s invitation message can contain N and g (C1 = n – 1 messages), while
g Ki can be wrapped together with the message that announces each participant’s
position towards the invitation (C2 = (n – 1) (n – 1) messages).

The evaluation of a single AND gate consists of four phases, of which the first
three need an all-to-all broadcast (consuming n(n – 1) messages each) while
the last one doesn’t need any communication. Since the AND gates within one
level of the tree can be evaluated in parallel, the evaluation of the entire circuit
takes C3 = ⎡ log2(n)⎤ · 3 n (n – 1) messages. The broadcast of the encrypted
input bits of the circuit and the broadcast of decryption witnesses for the output
bit both take another C4 = n(n – 1) messages.

If l slot evaluations are needed before a suitable meeting time is found, the
total message complexity is given by C1 + C2 + l (C3 + 2C4) = n(n – 1) (1 +

l (2 + 3 ⎡log2 (n)⎤)). If we consider the same example as we did in the previous
section (= 24), this amounts to 5300 messages for 5 participants and 30330l
messages for 10 participants.

Before comparing this result to that of the custom-made protocol in the
previous section, we should notice that only the number of messages is taken
into account, not their size. As |N | should be about 1024 bits to be secure, the
messages in the SDC protocol will be larger than the messages in the custom-
made protocol. However, since the maximum message length for 10 participants
is only 2.5 KB (which easily fits into a single IP packet), we considered the
number of transmitted messages more relevant than the number of bits that are
strictly needed.

It should also be noted that we do not take into account computation or
memory overhead for the protocols. The amount of computation and storage
needed for the SDC protocol is considerably higher than for the custom-made
protocol.

4 . USING MOBILE AGENTS

In this section, it will be shown how mobile agents can be used to reduce
the communication overhead of the two solutions for the agenda scheduling
problem. The basic idea is to use mobility to bring agents of the participants
closer together. Of course, a mobile agent needs to trust his execution platform
but we will show that the trust requirements are less strong than for a classical
trusted third party (TTP) solution for the meeting scheduling problem.

To compare the trust requirements of the different approaches, we use the
following simple trust model. We say a participant trusts an execution site if
it believes that: (1) the execution site will correctly execute any code sent to it

193

194 Part Five Secure Workflow Environment

by the participant; (2) the execution site will correctly (i.e., as expected by the
participant) handle any data sent to it by the participant. It also implies that the
execution site will maintain the privacy of the data or the code if this is expected
by the participant. If p trusts E, we denote this as shown in Fig. 3.

Figure 3 Notation for “p trusts E ”

To compare bandwidth requirements (for communication overhead), we
make the following simple distinction. High bandwidth is required to exe-
cute one of the discussed protocols. Low bandwidth suffices to transmit data or
agent code. Also intermittent connections (e.g. for devices that are sometimes
disconnected from the network) are considered low bandwidth. We assume
low bandwidth communication is available between any two parties. If high
bandwidth communication is possible between Ei and Ej , we denote this as
shown in Fig. 4.

i and EjFigure 4 Notation for high bandwidth connection between E

Based on these simple models of communication and trust, we compare three
options for implementing secure meeting scheduling.

4.1. A TRUSTED THIRD PARTY

The first, perhaps most straightforward option, is to use a globally trusted
third party. Every participant sends its agenda to the TTP who will compute
an appropriate meeting time and disseminate the result to the participants. Of
course, data must be sent to the TTP, through an authenticated and safe channel.
This can be accomplished via conventional cryptographic techniques.

It is clear that this approach has a very low communication overhead: the
data is only sent once to the TTP; later, every participant receives the result of
the computation. However, every participant should unconditionally trust the
TTP. For the case of 4 participants, the situation is as shown in Fig. 5.

It is not clear whether n distrustful participants will easily agree on one
single trustworthy third party. This requirement of one single globally trusted
execution site is the main disadvantage of this approach.

On Securely Scheduling a Meeting 195

Figure 5 Situation with 4 participants and a TTP.

4.2. CRYPTOGRAPHIC SECURE MEETING
SCHEDULING

The second option is the use of cryptographic techniques (as discussed in
previous sections) that make the use of a TTP superfluous.

The trust requirements are really minimal: every participant only trusts its
own execution site.

Although this option is very attractive, it should be clear from the previous
sections that the communication overhead might be too high to be practically
useful in a general networked environment. High bandwidth is required between
all of the participants. For the case of 4 participants, the situation can be
summarized as shown in Fig. 6.

Figure 6 Situation with 4 participants without a TTP.

4.3. USING MOBILE AGENTS

Finally, a third solution tries to combine the two previous options: the com-
munication overhead is remedied by introducing semi-trusted execution sites
and mobile agents.

In this approach, every participant pi sends its representative, agent ai , to
a trusted execution site Ej . The agent contains a copy of the agenda and is
capable of running a secure meeting scheduling protocol.

It is allowed that different participants send their agents to different sites.
The only restriction being that the sites should be located closely to each other,
i.e., should have high bandwidth communication between them.

196 Part Five Secure Workflow Environment

The amount of long distance communication is moderate: every participant
sends its agent to a remote site, and receives the result from its agent. The
agents use a cryptographic protocol, which unfortunately involves a high com-
munication overhead. However, since the agents are executing on sites that are
near each other, the overhead of the protocol is acceptable. For a situation with
4 participants, we could have the situation as depicted in Fig. 7.

Figure 7 Situation with 4 participants using mobile agents

No high bandwidth communication between the participants is necessary,
and there is no longer a need for one single trusted execution site.

4.4. CURRENT IMPLEMENTATION WITH AGLETS

“agenTa” is the name of our prototype implementation of a secure meeting
scheduling system. Currently it uses the custom-made protocol described in
this paper.

We have used the Aglets SDK 1.1 beta 3 [7], a mobile agents system devel-
opment kit which was released to the open source community by its creator,
IBM. The SDK contains an agent server, the API needed to write agents in Java
(called aglets), examples and documentation. The prototype implementation
of agenTa has around 3500 lines of Java code.

For the inter-agent communication KQML (Knowledge Query and Manip-
ulation Language) was chosen. KQML was developed at the University of
Baltimore Maryland County, and enhanced with security capabilities in [8].

In our implementation, each user’s scheduling application is modular, the
user interface, the agenda management and the negotiation being performed
by distinct intercommunicating aglets. Only the negotiator aglets of all users
take advantage of their mobility to gather on a host where they carry out the
negotiation protocol by local communication.

There are no language limitations for implementing the custom-made proto-
col. Communication relies on transmitting character strings. Therefore, agents
implemented with other agent platforms and in other programming languages
can take part in the negotiation, provided the platforms can interoperate.

On Securely Scheduling a Meeting 197

5. CONCLUSION

This paper has shown that there exist several techniques for secure meeting
scheduling. Moreover, a trade-off can be made between the level of security
that can be obtained, the degree of trust that is required, and the amount of
overhead that is caused by the protocol.

When a TTP is used, a meeting can be scheduled very efficiently. The
custom-made protocol has more overhead, but does not require trust in a third
party. An SDC protocol is more secure than our custom-made protocol, but it
is also much less efficient.

Using mobile agents when implementing any protocol can improve the effi-
ciency, while still avoiding the need for one single trusted entity.

Acknowledgements

This work was supported in part by the FWO-Vlaanderen project G.0358.99
and by the Concerted Research Action (GOA) Mefisto-666. Joris Claessens
is funded by a research grant of the Flemish Institute for the Promotion of
Industrial Scientific and Technological Research (IWT), Gregory Neven is an
FWO-Vlaanderen Aspirant, and Frank Piessens is an FWO-Vlaanderen Post-
doctoral fellow.

References

[1] D. Chaum, I. Damgård, J. van de Graaf, “Multiparty computations ensur-
ing privacy of each party’s input and correctness of the result.” In C. Pomer-
ance, ed., Advances in Cryptology—CRYPTO ’87 Proceedings, Lecture
Notes in Computer Science, LNCS 293, pp. 87–l19, Springer-Verlag,
New York, 1988.

[2] R. Cramer, “An introduction to secure computation.” In I. Damgård,
ed., Lectures on Data Security, Lecture Notes in Computer Science,
LNCS 1561, pp. 16–62, 1999.

[3] B. De Decker, F. Piessens, E. Van Hoeymissen, G. Neven, “Semi-trusted
Hosts and Mobile Agents: Enabling Secure Distributed Computations.”
In E. Horlait, ed., Mobile Agents for Telecommunication Applications,
Lecture Notes in Computer Science, LNCS 1931, pp. 219–232, Springer-
Verlag, 2000.

[4] M. Franklin, “Complexity and security of distributed protocols.”
Ph.D. thesis, Computer Science Department of Columbia University, New
York, 1993.

[5] M. Franklin and S. Haber, “Joint encryption and message-efficient secure
computation .” Journal of Cryptology, 9(4), pp. 217–232, Autumn 1996.

198 Part Five Secure Workflow Environment

[6] T. Herlea, J. Claessens, D. De Cock, B. Preneel, J. Vandewalle, “Secure
Meeting Scheduling with agenTa.” Proceedings of IFIP Communications
and Multimedia Security, 2001.

[7] Danny B. Lange, Mitsuru Oshima, “Mobile agents with Java: The Aglet
API.” http://www.genmagic.com/asa/danny/Wwwj.pdf.

[8] Chelliah Thirunavukkarasu, Tim Finin, James Mayfield, “Secret Agents -
A Security Architecture for the KQML Agent Communication Language.”
http://www.cs.umbc.edu/kqml/papers/secret.ps.

	13 ON SECURELY SCHEDULING A MEETING
	1. INTRODUCTION
	2. USING A CUSTOM-MADE NEGOTIATIONPROTOCOL
	2.1. DATA REPRESENTATION
	2.2. SCHEDULING MODEL
	2.3. SCHEDULING A MEETING
	2.4. SECURITY ANALYSIS
	2.5. COMPLEXITY

	3. USING SECURE DISTRIBUTED COMPUTING
	3.1. THE PROBLEM OF SECURE DISTRIBUTEDCOMPUTING
	3.2 HOW TO PERFORM GENERAL SECUREDISTRIBUTED COMPUTING
	3.3. SECURE MEETING SCHEDULING USING SDC
	3.4. SECURITY ANALYSIS
	3.5. COMPLEXITY

	4 . USING MOBILE AGENTS
	4.1. A TRUSTED THIRD PARTY
	4.2. CRYPTOGRAPHIC SECURE MEETINGSCHEDULING
	4.3. USING MOBILE AGENTS
	4.4. CURRENT IMPLEMENTATION WITH AGLETS

	5. CONCLUSION
	Acknowledgements
	References

