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Descriptors in
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Ostensibly there is color, ostensibly sweetness, ostensibly
bitterness, but actually only atoms and the void.

GALEN
(Nature and the Greeks, Erwin Schrodinger, 1954)

4.1. INTRODUCTION

One of the current interests in pharmaceutical drug design,' ™ chemistry,
toxicology*' ™
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properties of molecules from nonempirical structural parameters which can be calcu-
lated directly from their structure. Both in drug design®**'**** and in hazard assess-
ment of chemicals,” 4% one has to evaluate therapeutic or toxic potential of a
large number of compounds, many of which have not even been synthesized. Drug
design usually begins with the discovery of a “lead” compound which has the particular
therapeutic activity of interest. The lead is altered through molecular modifications
and the analogues thus produced are tested until a compound of desirable activity and
toxicity profile is found. The combination of possibilities in such a process is almost
endless. For example, let us assume the compound in Figure 1 is a lead. The medicinal
chemist can carry out numerous manipulations on the lead in terms of substitution. On
a very limited scale, if one carries out 50 substitutions in each of the aromatic positions,
10 modifications for esterification, 10 substitutions for the aliphatic carbon and 10
substitutions for the nitrogen, the total number of possible analogues comes to 50° x
10 x 10 x 10 = 312.5 billion structures. This astronomical number is reached by
considering only a small fraction of the possible substituents that the medicinal chemist
has in his repertoire.™

A similar situation exists for the hazard assessment of environmental pollutants.
More than 15 million distinct chemical entities have been registered with the Chemical
Abstract Service and the list is growing by nearly 775,000 per year. About 1000 of
these chemicals enter into societal use every year.® Few of these chemicals have
experimental properties needed for risk assessment. Table 1 gives a partial list of
properties necessary for a reasonable risk assessment of a chemical.”"* In the United
States, the Toxic Substances Control Act Inventory has about 74,000 entries and the
list is growing by nearly 3000 per year. Of the approximately 3000 chemicals

- 50 groups for each aromatic position {*)
- 10 groups for esterification

- 10 groups for aliphatic C

- 10 groups for ring N

Total analogs = 50° x 10 x 10 x 10 = 312.5 billion

Figure 1. Probable number of derivatives from a lead via molecular modification.
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Table 1. Properties Necessary for Risk Assessment of Chemicals

Physicochemical Biological
Molar volume Receptor binding (Kp)
Boiling point Michaelis constant (K,,)
Melting point Inhibitor constant (Xj)
Vapor pressure Biodegradation
Aqueous solubility Bioconcentration
Dissociation constant (pKa) Alkylation profile
Partition coefficient Metabolic profile
Octanol-water (log P) Chronic toxicity
Air-water Carcinogenicity
Sediment—water Mutagenicity
Reactivity (electrophile) Acute toxicity
LDs,
LCsp
ECso

submitted yearly to the U.S. Environmental Protection Agency for the premanufacture
notification process, more than 50% have no experimental data, less than 15% have
empirical mutagenicity data, and only about 6% have experimental ecotoxicological
and environmental fate data.> Also, limited data are available for many of the over
700 chemicals found on the Superfund list of hazardous substances.

In the face of this massive unavailability of experimental data for the vast majority
of chemicals, practitioners in drug discovery and hazard assessment have developed
the use of nonempirical parameters to estimate molecular properties.1’3’4’20’31’33 By
nonempirical, we mean those parameters that can be calculated directly from molecu-
lar structure without any other input of experimental data. Topological indexes (TIs),
substructural parameters defined on chemical graphs, geometrical (3D or shape)
parameters, and quantum-chemical parameters fall in this category,>**!~0:46-55.37-61

A large number of quantitative structure—activity relationships (QSARs) pertain-
ing to chemistry, pharmacology, and toxicology have used these nonempirical parame-
ters. QSARs are mathematical models that relate molecular structure to their
physicochemical, biomedicinal, and toxic properties. Two distinct processes are
involved in the derivation of nonempirical parameters for a chemical: (1) defining the
model object called “structure” which represents the salient features of the architecture
of the chemical species and (2) calculating structural quantifiers from a selected set of
critical features of the model object.”"** Figure 2 depicts the process of experimental
determination of properties vis-a-vis prediction of properties using descriptors.

Figure 2 represents an empirical property as afunction a.:C — R which maps the
set C of chemicals into the real line R. A nonempirical QSAR may be regarded as a
composition of a description function, 8,:C — D, mapping each chemical structure of
C into a space of nonempirical structural descriptors (D) and a prediction function,
B,:D — R, which maps the descriptors into the real line. When [a(C) — B,B(C)]is
within the range of experimental errors, we say that we have a good nonempirical
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Figure 2. Composition functions for quantitative struc-
ture—activity relationship (QSAR) and property— activity
relationship (PAR).

predictive model. On the other hand, a property-activity relationship (PAR) is the
composition of 8:C — M, which maps the set C into the molecular property space M,
and 6,:M — R, mapping those molecular properties into the real line R. PAR seeks to
predict one property (usually a complex property) of a molecule in terms of another
(usually simpler or available) property. The latter group of properties may consist
either of a number of experimentally determined quantities (e.g., melting point, boiling
point, vapor pressure, partition coefficient) or substituent constants or solvatochromic
parameters (e.g., steric, electronic, hydrophobic, charge transfer substituent constants,
hydrogen bond donor acidity, hydrogen bond acceptor basicity).’* PAR using a
calculated property, e.g., calculated partition coefficient (log P, octanol-water), may
be looked on as a mapping 6,y,B,:C — R, which is a composition of ,;:C — D, y;:D
— M mapping the descriptor space into the molecular property space (e.g., calculation
of log P from fragments using additivity rule), and 8;:M — R

Graph invariants have been used in a large number of QSARs.'™ A graph
invariant is a graph-theoretic property that is preserved by isomorphism.®® A graph
invariant may be a polynomial, a sequence of numbers, or a single numerical index.
Numerical indexes derived from the topological characteristics of molecular graphs
are called topological indexes. Molecular structures can be symbolized by graphs
where the atomic cores are represented by vertices and covalent chemical bonds are
depicted by edges of the graph. Such a graph depicts the connectivity of atoms in a
chemical species irrespective of the metric parameters (e.g., equilibrium distance
between nuclei, valence angles) associated with the molecular structure. It is in this
sense that molecular graphs can be seen as topological, rather than geometrical,
representations of molecular structure.”” TIs are numerical quantifiers of molecular
topology and are sensitive to such structural features of molecules as size, shape,
symmetry, branching, and cyclicity. Two nonisomorphic graphs may have the same
set of graph invariants. In that sense, TIs do not uniquely characterize molecular
topology. Yet, it has to be emphasized that TIs quantify many salient aspects of
molecular structure. As aresult, different graph invariants have been successfully used
in characterizing the structural similarity/dissimilarity of molecules, ' 28:2%47:49.50.66
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quantifying the degree of molecular branching,**>%" and developing structure-

actiyist 64r6e71§1ti0nships in chemistry, biomedical sciences, and environmental toxicol-
oy > 536467

4.2. TOPOLOGICAL INDEXES AND QSAR

TIs have been used in developing QSAR models for predicting various properties.
We give below some examples of successful QSARs using TIs. Definitions of the TIs
used in the following equations and throughout this chapter may be found in Table 2.

Table 2. Symbols for Topological Indexes, Geometrical Parameters, and Hydrogen
Bonding Parameter and Their Definitions

Index
symbol Definition

I,VDV Information index for the magnitudes of distances between all possible pairs of vertices of
a graph

7y Mean information index for the magnitude of distances

VIE Mean information index for the equality of distances

w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

P Degree complexity

HY Graph vertex complexity

HP Graph distance complexity

IC Information content of the distance matrix partitioned by frequency of occurrences of
distance h

o Order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph

IorB Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices

M, A Zagreb group parameter = sum of square of degree over all vertices

M, A Zagreb group parameter = sum of cross-product of degrees over all neighboring
(connected) vertices

1C, Mean information content or complexity of a graph based on the r'*" (r = 0-6) order
neighborhood of vertices in a hydrogen-filled graph

SIC, Structural information content for r'" (r = 0—6) order neighborhood of vertices in a
hydrogen-filled graph

CIC, Complementary information content for r'" (r = 0—6) order neighborhood of vertices in a
hydrogen-filled graph

TIC, Total information content for r'" order neighborhood of vertices in a hydrogen-filled graph

by or hxp Path connectivity index of order #=0-6

hye Cluster connectivity index of order & = 3-6

oy cn Chain connectivity index of order £ =3-6

bype Path—cluster connectivity index of order & = 4-6

hyb Bonding path connectivity index of order h = 0-6

Byl Bonding cluster connectivity index of order h = 3-6

B Bonding chain connectivity index of order h = 3-6

hx,b;C Bonding path—cluster connectivity index of order h =4-6

(continued)
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Table 2. (Continued)

Index

symbol Definition
ByY Valence path connectivity index of order h = 0-6
Ryt Valence cluster connectivity index of order A =3-6
Py s Valence chain connectivity index of order h = 3-6
hxl‘éc Valence path—cluster connectivity index of order h = 4-6
X Total structure index
Q-MCI Orthogonal molecular connectivity indexes
T Branchedness indexes
K Shape indexes
[} Flexibility indexes
As Half-sum of the cube of the adjacency matrix
P Polarity number: number of third neighbors
N, Gordon—Scantlebury index: number of second neighbors
Py, Number of paths of length # = 0-10
J Balaban’s J index based on distance
JB Balaban’s J index based on multigraph bond orders
JX Balaban’s J index based on relative electronegativities
JY Balaban’s J index based on relative covalent radii
UVXY Balaban’s information-based indexes on distance sums
AZV Local vertex invariant based on the adjacency matrix, atomic numbers, and vertex degrees
D Mean distance topological index for any graph
D, Mean distance topological index for acyclic graphs
V4 Hosoya index
HB, Hydrogen bonding potential of molecule
ID Molecular identification numbers
Vw Volume of molecule
3DWH 3D Wiener number including hydrogens
Ow 3D Wiener number without hydrogens

4.2.1. Physicochemical Properties

4.2.1.1. Boiling Point of Alkanes

Needham er al.** used TIs to develop a regression equation to predict the normal
boiling point (BP) for 74 alkanes:

() BP = 9.6 + 38.1("x) - 49.0(1/%) + 5.7(%pc) — 94.5(x0) + 8.4(%p)
(N=74,r=0999,s=1.86, F = 9030)

Subsequently, Basak and Grunwald’® derived the following equation:

() BP = -263 + 237('y) + 18.6(CICy)
(N=74,r=0.997,s = 3.83, F = 5287)
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4.2.1.2. Boiling Point of Chlorofluorocarbons (CFCs)

Balaban ez al.” were able to model the boiling points of a large set of CFCs using
TIs with the following equation:

(3)  BP=-73.65+3321("y" - %) — 64.06(°x") + 94.46('y) — 20.65(Ng,) —

22.18(Ny) + 6.36(*¢" — %)
(N=532,r=0.98, s=10.94, F=2953)

Using a backpropagation neural network (NN), Balaban et al® successfully
predicted BP for 276 CFCs. As inputs to the NN, the following parameters were used:
J index, Wiener index (W), number of carbon atoms (N.), number of chlorine atoms
(Nc1), and number of fluorine atoms (Ng). This NN resulted in a correlation(r)=0.992

of observed BP with predicted BP, with a standard error (s) of 8.5°C. The data set used
for NN model development consisted of 276 CFCs with, at most, four carbon atoms.

4.2.1.3. Lipophilicity of Diverse Sets of Compounds

Basak er al.”’ derived the following equation to predict lipophilicity (log P,
octanol-water):

4 logP =1.76 - 0.50(HB,) — 5.28(ICy) — 1.48(CIC,) + 3.75("x") + 0.41(P¢)
(N=382,r=095,5s=027, F=1186)

where HBy, is a theoretically calculated hydrogen bonding parameter.
Basak et al.”! developed a refined model for chemicals with HB | equal to zero:

(5) log P = -3.13 — 1.64(IC;) + 2.12Cxc) — 2.91Cxcn) + 4.21(%)

+ 1.06(*%Y) — 1.02¢(*%bo)
(N=137, r=0.98, s =0.26, F = 446)

4.2.1.4. Chromatographie Retention Time of Alkanes, Alkylbenzenes

Bonchev and Trinajsti¢” derived the following correlation for alkylbenzenes:

(6) RI =683 + 2.97('TE) + 2.71(Py - 6)
N=28,r=099,5=0.58)
For alkanes, Kier and Hall”’ found the following relationship:

@) RI=-0.242 + 0.719('y) + 0.125(y,)
(N=18,r=0998, s = 0.045, F = 1702)
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4.2.2. Biomedicinal Properties

4.2.2.1. Anesthetic Dose (ADsg) of Barbiturates
Basak er al.” predicted ADs, of barbiturates using various TIs:

(8 ADg, = —49.1 + 200(SIC,) — 190(SIC,)>
(N=13,r=0.76, s =0.20, F = 6.6)

9 ADjso = —200 + 153(IC)) - 28.3(IC))*
(N=13,r=0.74,5=021, F=6.1)

(10) ADsy = —41.2 + 11.5('y) - 0.740('x)?
(N=13,r=0.72,s =021, F=54)

4.2.2.2. Analgesic Potency (A-EDs;) of Barbiturates
Basak et al.”® correlated A-ED;, of barbiturates using graph-theoretic parameters:

(11) A-EDs; = 4700 — 26300(SIC,) + 36700(SIC,)*
(N=7,r=097,5=65, F=29)

(12) A-EDs, = 5280 — 2800(CIC,) + 372(CIC,)
(N=7,r=096,s=74,F=27)

(13) A-EDs, = 2400 — 444('y) + 20.4('y)*
(N=7,r=094,5=9.1, F=17)

4.2.2.3. Enzymatic Acetyl Transfer Reaction

Several TIs have been found to correlate with the enzymatic acetyl transfer
reaction,'” as shown by the following equations:

(14) A, =320-0.62('y)
(N=9,r=0.88,s=0.24, F = 23)

(15) A, =2.67-083(IC)
(N=9,r=091, 5=0.20, F = 35)
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(16) A, =3.13 - 4.07(SIC))
(N=9,r=092,5=0.20, F=36)

4.2.2.4. Hill Reaction Inhibitory Potency of Triazinones®

(7) plso =—13.36 + 71.15(8IC,) — 63.64(SIC,)*
(N=11,r=0937,5s=0.316, F = 28.6)

4.2.2.5. Complement Inhibition by Benzamidines™

(18) 1/log,y € = ~1.125 + 0.487(ID) + 0.01 1(0)
(N =105, r=0.941, s = 0.020, F = 391)

4.2.2.6. Binding of Barbiturates to Cytochrome Pyso
Basak® used several TIs to correlate the binding of barbiturates to cytochrome

Pyso:

(19) K, =27.79 - 36.78(1Cy) + 12.17(IC,)*
(N=10,r=099, s=0.01, F=156.1)

(20 K, =5.94 — 41.26(SICy) + 71.84(SIC,)>
(N=10, r=0.99, s =0.01, F = 224.3)

(2D K, =35.74 - 18.45(H") + 2.38(H Y’

(N=10,r=098,s=0.01, F=94.6)

4.2.3. Toxicological Properties

4.2.3.1. Nonspecific Narcotic Activity of Alcohols
Basak and Magnuson®' correlated the nonspecific narcotic activity (LCso) of
alcohols using TIs:

(22) log LCsy = 1.979 — 1.896(CIC,)
(N=10, r=0.989, s = 0.323, F = 355.3)

4.2.3.2. Nonspecific Toxicity of Esters to Pimephales promelas*

(23) log LCsy = —0.774 — 0.364(CIC,) - 0.774('%")
(N=15,r=0.965,s=0.194, F = 81.1)
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log LCsp = 1.012 — 0.774(CIC,) - 0.615(1%)

(24) (N=15,r=0961,5=0.204, F=72.7)

4.2.3.3. Mutagenicity of Nitrosamines

Basak er al.* correlated information- or complexity-based parameters with
mutagenic potency of nitrosamines:

(25) InR = 61.0 — 86.8(IC,) + 29.2(IC,)>
(N=15,r=096,s=1.17, p < 0.001)

(26) InR = 12.0 - 15.3(IC,) + 3.84(IC,)’
(N=15,r=098, s=0.86, p <0.001)

4.2.3.4. Mutagenicity of Diverse Structures

Basak et al.** used six TIs and four substructure (subgraph) indicator variables to
develop a linear model to classify a set of 520 diverse chemicals as mutagens or
nonmutagens as defined by the Ames mutagenicity test.*” The data set used in their
study consisted of 260 mutagens and 260 nonmutagens. The TIs included three
information-based indexes: information contentofthe graphorbits (Iog), information
content at sixth order (IC¢), and structural information content at zeroth order (SICy).
A fourth index included number of paths of length 10(P,,). The remaining two indexes
were connectivity type: third-order bond-corrected cluster connectivity (x2) and
third-order valence-corrected chain connectivity (*y&;).The four substructure indica-
tors were: (1) nitroso chemicals, (2) halogen-substituted mustard, sulfur mustard, or
oxygen mustard, (3) organic sulfate or sulfonate, and (4) a biphenyl amine, benzidine,
or 4,4"-methylene dianiline derivative.

Using these parameters, a 74.8% overall correct classification rate was achieved.
Jackknifed classification tests showed a 74.6% overall correct classification rate.

4.2.3.5. Toxicity of Monoketones
Basak er al.® derived the following correlations between TIs and the toxicity
(LDsp) of monoketones:

(27 LDs(control ) = 620.0 — 448.0(CIC,) + 83.5(CIC,*
(N=13,r=095,5s=9.62, F=48.9)

(28) LDs(CCl,) = 407.0 — 235.0(CIC,) + 35.1(CIC, )
(N=13,r=097,s=4.76, F =74.0)
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4.2.3.6. Inhibition of p-Hydroxylation of Aniline by Alcohols*

(29 pICsy = —13.85 + 25.17(IC,) — 27.8%(SIC,) — 1.87(CIC,)
(N=20,r=096, F=62.7)

Table 3 gives more exhaustive information about the list of properties of different

chemical classes that have been successfully correlated using TIs.

Table 3. Summary of QSARs Using Topological Parameters

Property Chemical class Variables? Method Citation Ref. No.
BP Aliphatic alcohols MCLID,J, x, LR Smeeks and 85
Elec. Jurs
BP Alkanes LOVI/LOIS NLR Filip et al. 73
BP Alkanes MCI LR Needham et al. 21
BP Alkanes 'x LR Randi¢ 35
BP Haloalkanes W, J, Nci, N, NN Balaban et al. 25
Ne, My
BP Haloalkanes MCI, Ny LR Balaban et al. 70
BP Haloalkanes N, MCLk, ¢,/ LR Balaban et al. 70
BP Nonanes— Z, W,p3, No,, A5 LR Gao and 86
dodecanes Hosoya
BP Paraffins Platt’s No. LR Platt 88
BP Paraffins w LR Wiener 87
CD a-Amino acids MCIL LR Pogliani 76
CNDO/2 charge  Alkanes MCI LR Hall and Kier 89
Cavity SA Alcohols LOVI/LOIS NLR Filip er al. 73
d Nonanes— Z, W, p3, Nj,A; LR Gao and 86
dodecanes Hosoya
d Alkanes LOVI/LOIS NLR Filip et al. 73
43° Infinite linear W LR,NLR Mekenyan 69
polymers et al.
dP° Organophosphorus  MCI LR Pogliani 90
dc Nonanes— Z,W,p3, N,,A; LR Gao and 86
dodecanes Hosoya
AGy Nonanes— Z, W,p3 Nby Ay LR Gao and 86
dodecanes Hosoya
AH ., Alkanes LOVILOIS NLR Filip et al. 73
AS Nonanes— Z, W, p3, Np,,A3 LR Gao and 86
dodecanes Hosoya
Diverse profile  Diverse TI CCA Boecklen and 91
Niemi
E, Diverse LOVI/Sub.-TI LR Balaban and 92
Catana
E, Hydrocarbons Vv LR Gupta and 93
Singh
AHg Nonanes— Z,W,p3, Ny, Ay LR Gao and 86
dodecanes Hosoya
AHp Paraffins Platt’s No. LR Platt 88

(continued)
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Table 3. (Continued)
Property Chemical class Variables” Method Citation Ref. No.
MON Alkanes J.D,D, LR Balaban 23
MON Alkanes LOVI/LOIS NLR Filip et al. 73
MON Alkanes MCI LR Pogliani 90
MP Alkanes MCI LR Pogliani 90
MP Caffeine MCI LR Pogliani 90
homologues
MP Infinite linear 14 LR.NLR Mekenyan 69
polymers etal
MR Alkylbenzenes O-MCI LR Randic 94
MR Alkylgermanes Ist-order MCI LR Kupchik 75
MR Heptanes Q-MCI LR Randi¢ 94
MR Nonanes— Z, W,p3, Ny, Ay LR Gao and 86
dodecanes Hosoya
MR Organophosphorus  MCI LR Pogliani 90
MR Paraftins Platt’s No. LR Platt 88
MR Nonanes— Z,W,p3, Ny, Ay LR Gao and 86
dodecanes Hosoya
MV Paraffins Plaut’s No. LR Platt 88
MW a-Amino acids MCI LR Pogliani 76
np Nonanes— Z, W,py, N, Ay LR Gao and 86
dodecanes Hosoya
ng) Organophosphorus  MCl LR Pogliani 90
Pc Alkanes L XY V.U, LR Balaban and 74
'y, AZV Feroiu
Pe Nonanes— Z, W.p3, NpoA; LR Gao and 86
dodecanes Hosoya
R, a-Amino acids MCI LR Pogliani 76
RI Alkanes MCI LR Kier and Hall 77
RI Alkylbenzenes P p, LR Bonchev and 79
Trinajsti¢
RI Diverse drugs MCL, P, LR Rohrbaugh 95
K, Elec. and Jurs
RI Organophosphorus  MCI LR Pogliani 90
RON Alkanes T LR Pal et al. 96
S a-Amino acids MCI LR Pogliani 76
S Caffeine MClI LR Pogliani 90
homologues
Tc Alkanes LX Y V.U, LR Balaban and 74
', AZV Ferotu
Tc Nonanes— Z, W.p3, N,A; LR Gao and 86
dodecanes Hosoya
Ultrasonic sound  Alkanes, alcohols W, J,MCL ID LR Rouvray and 98
Tatong
VP o-Amino acids MCI LR Pogliani 76
VP Polychlorinated W,J,MCL Ng LR Rouvray and 97
biphenyls Tatong
Ve Alkanes LX YV, U, LR Balaban and 74
YN AZV Ferotu
Ve Nonanes— Z, W,py, N5, A3 LR Gao and 86
dodecanes Hosoya

(continued)
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Table 3. (Continued)

Property Chemical class Variables” Method Citation Ref. No.
ap22 Infinite linear w LR,NLR Mekenyan 69

polymers et al.
log P Diverse TI, HB, LR Basak et al. 27
log P Diverse TI LR Niemi er al. 45
log P Diverse MCI LRNLR,PCR  Niemi et al. 99
log P Diverse, HB; =0 TI LR Basak et al. 31
pl a-Amino acids MCI LR Pogliani 76
Biomedicinal Bioactive Inf. LR Ray et al. 9
Pharmacological Bioactive agents  Inf. LR Basak et al. 5
1/logC Benzamidines TI LR Basak et al. 80
A-EDsg Barbiturates MCI, Inf. LR Basak et al. 13
ADs Barbiturates MCI, Inf. LR Basak et al. 13
ADs, Barbiturates MCIL, Inf., W NLR Basak et al. 16
Ax Anilines MCI, Inf. LR Basak et al. 12
Antihistaminic ~ 2-(Piperidin-4- Sub.-W LR Lukovits 100

ylamino)-1H-

benzimidazoles
BOD Diverse MCI Clustering, DA Niemi et al. 99
BOD Diverse MCI, logP Clustering, DA Niemi er al. 101
Biodegradation  Diverse MCI, «, Sub. DA Gombar and 102

Enslein
Carcinogenicity  Diverse o, kK, MCI, Sub. LR,DA Blake er al. 103
Cytostatic activity 1 H-Isoindolediones Sub.-W LR Lukovits 100
Estrogen binding 2-Phenylindoles Sub.-W LR Lukovits 100
Ks Barbiturates TI LR Basak 43
LCsq Alcohols CIC LR Basak and 81
Magnuson
LCs Esters W, 1y, 'xV.Inf. LR Basak et al. 41
LDsg Monoketones TIC,, TIC,, NLR Basak et al. 83
CIC,, CIC,

Mutagenicity Diverse o, x, MCL, Sub. LR,DA Blake er al. 103
Taste Sulfamates Wt-paths SIMCA Okuyama er al. 104
Therapeutic type Therapeutics Wt-paths Clustering Randi¢ 40
InR Nitrosamines 1Cy, IC, NLR Basak et al. 42
pICso N-alkylnorketo- Inf. LR Ray et al. 6

bemidones/

triazinones
pICsq Alcohols Inf. LR Magnuson et al. 84

“Property: BP = boiling point; CD = crystal density; SA = surface area; d = liquid state density; dio =density; d¢. =
critical density; AG = free energy of formation; AH,,, = vaporization enthalpy; AS = entropy; Eg = Taft’s steric pa-
rameter; AHg, = heat of formation; MON, = motor octane number; MP = melting point; MR = molar refractivity; MV =
molar volume; ny, = refractive index; np, = refractivity index; P = critical pressure; R, = relaxation rate; Rl = reten-
tion index; RON = research octane number; § = solubility; 7. = critical temperature; VP = vapor pressure; Ve = criti-
cal volume; ay = specific rotation; logP = logarithm of the octanol-water partition coefficient; pl = isoelectric points;
C = molar concentration of inhibitor required for 50% inhibition of complement; A-EDy, = analgesic effective dose;
ADg, = anesthetic dose; A, = enzymatic acetyl transfer reaction rate; BOD = biological oxygen demand; K = binding
constant; LC,g = lethal concentration; LDy, = lethal dose; InR = natural logarithm of the number of revertants per
nanomole; pICs; = negative logarithm of the inhibition concentration;

bvariables: MCI = molecular connectivity indexes; Inf. = information indexes; LOVI = local vertex invariant; LOIS =

local invariant set; Elec. = electronic variables; TI = diverse set of topological indexes; Sub. = substructure.



86 Chapter 4

4.3. TOPOLOGICAL APPROACHES TO MOLECULAR
SIMILARITY

One important application of TIs and substructural parameters has been in the
quantification of molecular similarity. In practical drug design and risk assessment,
good-quality QSARs of specific classes of chemicals, if available, are the best option.
However, class-specific QSARs are often not available. In such cases, one selects
analogues of the chemical of interest (lead or toxicant), and uses the property of

0 Yo '
Target chemical
HO o)
HO HoN

Neighbor 1 Neighbor 2 Neighbor 3

HO

Neighbor 4 Neighbor 5

Figure 3. Target chemical and five selected analogues using ED method from the set of 3692 chemicals.
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selected analogues for the estimation of the biomedicinal/toxic potential of the
chemical.

4.3.1. Quantification of Similarity Using Path Numbers

Path numbers Py (2 =1, 2, .. .)and weighted paths have been used by Randi¢ and
co-workers in determining partial orderings relating dopamine agonist properties for
2-aminotetralins,'” physicochemical properties of decanes,'* therapeutic potential of
diverse compounds,* and antitumor activity of phenyldialkyltriazines.'”” Randic® has
also reviewed the use of path numbers and weighted paths as they are applied in
molecular similarity approaches to property optimization. The results show that the
ordering of molecules by path numbers reflects the pattern of activity reasonably well.

4.3.2. Quantification of Similarity Using Topological Indexes

Basak et al.” used TIs to compute intermolecular similarity of chemicals. Ninety
TIs were calculated for a set of 3692 chemicals with diverse structures. Principal
component analysis (PCA) was used to reduce the 90-dimensional space to a 10-
dimensional subspace which explained 93% of the variance. In the 10-dimensional PC
space, the intermolecular similarity of chemicals were quantified in terms of their
Euclidean distance (ED). Ten chemicals were then chosen at random from the set of
3692 structures and their analogues were selected using the Euclidean distance as the
criterion for nearest-neighbor selection. Figure 3 gives one example of a probe
chemical and its five chosen neighbors using this method. The results show that the
probe and its selected analogues have a reasonable degree of structural similarity.

4.3.3. Quantification of Intermolecular Similarity Using Substructural
Parameters

4.3.3.1. Atom Pairs (APs)

Carhart er al.* developed the AP method of measuring molecular similarity. An
AP is defined as a substructure consisting of two nonhydrogen atoms i and j and their
interatomic separation:

(atom descriptor; )-(separation}-(atom descriptor; )

where (atom descriptor;) encodes information about the element type, number of
nonhydrogen neighbors, and number of n electrons. Interatomic separation of two
atoms is the number of atoms traversed in the shortest bond-by-bond path containing
both atoms.

For two molecules, M; and M;, AP-based similarity is defined as:

(30) S;=2CKT; + T)
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where C is the number of APs common to molecule i and j. T; and T; are the total
number of APs in chemicals i and j, respectively. The numerator is multiplied by 2 to
reflect the presence of shared APs in both molecules.

The Lederle group has used the AP similarity method to compare chemicals in
their data base. Basak er ql ##46474303318 haye used the AP method in selecting
analogues of chemicals in different and diverse data bases. The relative effectiveness
of the AP and ED methods in selecting analogues of chemicals in the STARLIST'"
database containing morethan4000chemicalsare shownin Figure4.'"®
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Figure 4. Target chemical and five selected analogues using ED and AP methods from the STARLIST data
base of chemicals.
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4.3.3.2. Similarity Methods Based on Substructures

Willett and co-workers''*"* have developed several novel and useful techniques
in molecular similarity based on substructural fragments. These approaches are based
on the frequency of occurrence of generated fragment descriptors within the molecular
graph. Success of these methods has been shown in 2D and 3D matchings of chemical
structure, classification of chemical data bases, as well as property estimation.

4.3.4. K Nearest-Neighbor (KNN) Method of Estimating Properties

Basak and co-workers also used K (K= 1-10, 15, 20, 25) nearest neighbors of
compounds in predicting properties like lipophilicity,” boiling point,*4741¢ and
mutagenicity”*"*" of diverse data bases. For a structurally diverse set of 76
compounds, lipophilicity (logP, octanol-water) could be reasonably estimated using
AP (r=0.85) and ED (r = 0.85) methods for K=5.”

Four topologically based methods were used by Basak and Grunwald*’ in esti-
mating the boiling point of a set of 139 hydrocarbons and a group of 15 nitrosamines
using the nearest neighbor (K = 1).

Basak and Grunwald™ carried out a comparative study of five molecular similar-
ity techniques, four topologically and one physicochemically based, in estimating the
mutagenicity of a set of 73 aromatic and heteroaromatic amines. Of the five methods,
two measures of molecular similarity were calculated using topological descriptors,
two were derived using physical properties, and the fifth was based on a combination
of both topological and physicochemical parameters. The best estimated values were
obtained with K = 4-5.

Basak and Grunwald® also used topologically based similarity for KNN estima-
tion of the mutagenicity of a set of 95 aromatic amines and the boiling point of a group
of over 2900 chemicals with good results.

44. GEOMETRICAL/SHAPE PARAMETERS IN SAR

Geometrical parameters, such as molecular shape parameters,'"’ sterimol descrip-
tors,59 volume,61 bulk parametersf“118 and 3D Wiener index,119 have been developed
and used in SARs. Such parameters are derived from the relative distances of atoms
in the 3D Euclidean space. We give below some examples of QSARs using 3D
descriptors.

4.4.1. van der Waals Volume (Vy)

4.4.1.1. Physicochemical Properties

Bhatnagar er al." studied the relationship of boiling point with Vy for several
classes of chemicals, including saturated alcohols, primary amines, and alkyl halides:
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(3D BPohols = 5.019 + 127.969( V)
(N=48, r=0.964, s = 8.25, F = 605)

(32) BP,mines = —60.175 + 166.419(Vy)
(N=21,r=0.995, s=5.13, F = 2061)

(33) BPy hatides = —108.431 + 226.874(Vyy)
(N=24,r=0.896, s = 16.35, F =90)
Correlation of water solubility (molality) with Vi has also been determined for
the saturated alcohols'®’:
(34) logS = 6.908 — 8.596(Vy)
(N=48, r=0.974, s =0.464, F = 860)

4.4.1.2. Biomedicinal Properties

Moriguchi and Kanada®' developed a regression equation modeling the effective
concentration (C) of penicillins against Staphylococcus aureus in mice:

(35) log (1/C) = 5911 — 1.692(Vy)
(N=18,r=0927,5=0.18)

4.4.1.3. Toxicological Properties
For tadpole narcosis of a diverse set of chemicals, the following equation has been
developed®":

(36) log (1/C) = =2.022 + 2.940( Vi)
(N=53,r=0.969, s =0.29)

Correlation of nonspecific toxicity on the Madison 517 fungus, expressed as
log(1/C) (C is the minimum toxic dose), with Vy was found to be®!:

37 log (1/C) = —1.236 + 2.645(Vyy)
(N=45,r=0982,5=0.19)

4.4.2. Comparative Molecular Field Analysis (CoMFA) Approach

In the COMFA method developed by Cramer ez al.,'”' a molecule is described
using electrostatic, steric, and, sometimes, hydrogen bonding fields calculated at the
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intersections of a 3D lattice. The partial least-squares method is used to describe
statistical relationships between these fields and biological activity.

4.5. COMPARATIVE STUDY OF TOPOLOGICAL VERSUS
GEOMETRICAL DESCRIPTORS IN QSARs

It is clear from the above that both topological and 3D descriptors have been
extensively used in QSARs of large sets of molecules. However, no systematic work
has been carried out on the relative effectiveness of TIs versus 3D parameters in the
prediction of properties using QSAR models. We summarize below the results of our
recent studies on the utility of graph-theoretic indexes and geometrical parameters such
as 3D Wiener index and volume in estimating: (1) normal boiling point of a set of 140
hydrocarbons, (2) lipophilicity (log P, octanol-water) of a diverse set of 254 mole-
cules, and (3) mutagenic potency (In R, R being the number of revertants per nanomole
in the Ames test) of a set of 95 aromatic and heteroaromatic amines.

4.5.1. Property Data Bases

4.5.1.1. Boiling Point

All normal BP data for the hydrocarbons were found in the literature. The
hydrocarbons analyzed include 74 alkanes,”' 29 alkyl benzenes,'* and 37 polycyclic
aromatic hydrocarbons.'> Table 4 presents a list of the hydrocarbon compounds with
their normal BP (°C).

Table 4. Normal Boiling Point (°C) for 140 Hydrocarbons and Predicted Boiling Point
Using Equations (44) and (45)

Predicted BP
No. Chemical name Obsd. BP Eq. (44) Eq. (45)
1 ethane ~88.6 -108.1 ~94.7
2 n-propane ~42.1 -61.3 -47.7
3 n-butane -0.5 -l16.1 =23
4 2-methylpropane ~11.7 -17.9 -93
5 n-pentane 36.1 263 36.8
6 2-methylbutane 27.8 21.6 27.6
7 2,2-dimethylpropane 9.5 15.8 22.0
8 n-hexane 68.7 64.6 70.5
9 2-methylpentane 60.3 51.8 59.9
10 3-methylpentane 63.3 57.6 64.1
11 2,2-dimethylbutane 49.7 51.9 53.9
12 2,3-dimethylbutane 58.0 61.6 65.0
13 n-heptane 98.4 99.0 99.8
14 2-methylhexane 90.0 83.6 88.9

(continued)
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Table 4. (Continued)
Predicted BP

No. Chemical name Obsd. BP Eq. (44) Eq. (45
15 3-methylhexane 91.8 86.5 915
16 3-ethylpentane 93.5 91.6 98.3
17 2,2-dimethylpentane 79.2 75.6 80.3
18 2,3-dimethylpentane 89.3 90.9 91.1
19 2,4-dimethylpentane 80.5 83.6 89.3
20 3,3-dimethylpentane 86.1 81.8 83.6
21 2,2,3-trimethylbutane 80.9 88.4 88.4
22 n-octane 125.7 129.9 124.7
23 2-methylheptane 117.7 113.4 1139
24 3-methylheptane 1189 115.1 116.2
25 4-methylheptane 117.7 114.3 115.8
26 3-ethylhexane 118.5 119.2 123.0
27 2,2-dimethythexane 106.8 102.7 104.3
28 2,3-dimethylhexane 115.6 113.7 114.5
29 2,4-dimethylhexane 109.4 114.9 112.2
30 2,5-dimethylhexane 109.1 108.8 110.4
31 3,3-dimethylhexane 112.0 105.2 106.4
32 3,4-dimethylhexane 117.7 119.0 117.9
33 2-methyl-3-ethylpentane 1156 115.0 116.7
34 3-methyl-3-ethylpentane 1183 111.8 115.6
35 2,2,3-trimethylpentane 109.8 11.7 109.1
36 2,2 4-trimethylpentane 992 106.5 105.1
37 2,3,3-trimethylpentane 114.8 115.0 112.3
38 2,3,4-trimethylpentane 113.5 120.6 120.6
39 2,2,3,3-tetramethylbutane 106.5 119.0 112.7
40 n-nonane 150.8 158.0 147.3
41 2-methyloctane 143.3 140.8 136.7
42 3-methyloctane 144.2 142.2 138.6
43 4-methyloctane 142.5 140.7 138.4
44 3-ethylheptane 143.0 145.4 145.8
45 4-ethylheptane 1412 144.7 145.5
46 2,2-dimethylheptane 132.7 128.7 126.2
47 2,3-dimethylheptane 140.5 138.9 136.8
48 2,4-dimethylheptane 1335 136.7 1333
49 2,5-dimethylheptane 136.0 137.5 133.8
50 2,6-dimethylheptane 135.2 135.3 132.3
51 3,3-dimethylheptane 137.3 1304 128.5
52 3,4-dimethylheptane 140.6 141.3 139.1
53 3,5-dimethylheptane 136.0 142.8 138.8
54 4,4-dimethylheptane 1352 130.2 127.9
55 2-methyl-3-ethylhexane 138.0 139.6 138.9
56 2-methyl-4-ethylhexane 133.8 137.2 136.7
57 3-methyl-3-ethylhexane 140.6 135.9 136.5
58 3-methyl-4-ethylhexane 140.4 145.9 146.1
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(Continued)
Predicted BP
No. Chemical name Obsd. BP Eq. (44) Eq. (45)
59 2,2,3-trimethylhexane 133.6 131.7 130.0
60 2,2,4-trimethylhexane 126.5 130.2 125.4
61 2,2,5-trimethylhexane 124.1 129.0 124.1
62 2,3,3-trimethylhexane 137.7 134.8 132.9
63 2,3,4-trimethylhexane 139.0 144.9 140.7
64 2,3,5-trimethylhexane 131.3 138.5 137.4
65 2,4,4-trimethylhexane 130.6 133.0 128.0
66 3,3,4-trimethylhexane 140.5 137.5 133.2
67 3,3-diethylpentane 146.2 145.0 144.5
68 2,2-dimethyl-3-ethylpentane 133.8 132.9 130.8
69 2,3-dimethyl-3-ethylpentane 142.0 140.0 136.7
70 2,4-dimethyl-3-ethylpentane 136.7 144.9 139.2
71 2,2,3,3-tetramethylpentane 140.3 141.3 132.8
72 2,2,3,4-tetramethylpentane 133.0 139.3 134.7
73 2,2,4,4-tetramethylpentane 122.3 130.9 128.2
74 2,3,3,4-tetramethylpentane 141.6 145.0 139.2
75 benzene 80.1 99.2 76.0
76 toluene 110.6 121.3 112.2
77 ethylbenzene 136.2 152.6 137.5
78 o-xylene 144.4 142.3 146.7
79 m-xylene 139.1 137.3 135.1
80 p-xylene 1384 137.3 134.5
81 n-propylbenzene 159.2 182.0 163.6
82 1-methyl-2-ethylbenzene 165.2 170.1 169.2
83 1-methyl-3-ethylbenzene 161.3 166.8 158.7
84 1-methyl-4-ethylbenzene 162.0 166.0 157.9
85 1,2,3-trimethylbenzene 176.1 162.7 175.6
86 1,2,4-trimethylbenzene 169.4 161.4 166.5
87 1,3,5-trimethylbenzene 164.7 162.1 167.5
88 n-butylbenzene 183.3 209.0 190.4
89 1,2-diethylbenzene 183.4 195.2 192.8
90 1,3-diethylbenzene 181.1 193.0 189.2
91 1,4-diethylbenzene 183.8 194.4 188.1
92 1-methyl-2-n-propylbenzene 184.8 194.8 193.5
93 1-methyl-3-n-propylbenzene 181.8 191.0 183.5
94 1-methyl-4-n-propylbenzene 183.8 190.4 182.5
95 1,2-dimethyl-3-ethylbenzene 193.9 187.4 196.2
96 1,2-dimethyl-4-ethylbenzene 189.8 186.6 187.5
97 1,3-dimethyl-2-ethylbenzene 190.0 187.2 193.5
98 1,3-dimethyl-4-ethylbenzene 188.4 186.4 190.4
99 1,3-dimethyl-5-ethylbenzene 183.8 187.0 188.6
100 1,4-dimethyl-2-ethylbenzene 186.9 187.2 190.7
101 1,2,3,4-tetramethylbenzene 205.0 185.2 202.9
102 1,2,3,5-tetramethylbenzene 198.2 185.1 198.8

(continued)
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Table 4. (Continued)

Predicted BP
No. Chemical name Obsd. BP Eq. (44) Eq. (45)
103 1,2,4,5-tetramethylbenzene 196.8 185.7 198.5
104 naphthalene 218.0 228.5 209.9
105 acenaphthalene 270.0 234.4 267.6
106 acenaphthene 279.0 — 272.0
107 fluorene 294.0 299.2 295.7
108 phenanthrene 338.0 346.4 329.8
109 anthracene 340.0 344.8 330.6
110 4H-cyclopenta(def)phenanthrene 359.0 326.9 349.7
11 fluoranthene 383.0 416.0 378.4
112 pyrene 393.0 392.2 384.3
113 benzo(a)fluorene 403.0 386.0 406.4
114 benzo(b)fluorene 398.0 390.8 406.4
115 benzo(c)fluorene 406.0 386.3 404.5
116 benzo(ghi)fluoranthene 422.0 443.4 427.0
117 cyclopenta(cd)pyrene 439.0 — 435.7
118 chrysene 431.0 445.8 439.2
119 benz(a)anthracene 425.0 440.1 439.7
120 triphenylene 429.0 454.6 433.6
121 naphthacene 440.0 4452 4442
122 benzo(b)fluoranthene 481.0 503.9 476.0
123 benzo(j )fluoranthene 480.0 492.2 4748
124 benzo(k)fluoranthene 481.0 501.1 4899
125 benzo(a)pyrene 496.0 485.9 4879
126 benzo(e)pyrene 493.0 490.8 484.4
127 perylene 497.0 484.0 479.7
128 anthanthrene 547.0 527.7 539.2
129 benzo(ghi)perylene 542.0 526.9 529.7
130 indeno(1,2,3-cd)fluoranthene 531.0 547.3 541.2
131 indeno(1,2,3-cd)pyrene 534.0 540.1 534.5
132 dibenz(a,c)anthracene 535.0 535.2 5331
133 dibenz(a.h)anthracene 535.0 528.9 546.2
134 dibenz(a,j)anthracene 531.0 529.6 543.6
135 picene 519.0 531.1 545.1
136 coronene 590.0 575.6 591.6
137 dibenzo(a,e)pyrene 592.0 5749 581.6
138 dibenzo(a,h)pyrene 596.0 569.8 591.8
139 dibenzo(a,i)pyrene 594.0 569.2 591.1

140 dibenzo(a,/)pyrene 595.0 573.9 590.5




Graph-Theoretic and Geometric Descriptors in SAR

4.5.1.2. Lipophilicity (logP, Octanol-Water)

The 254 chemicals used to model log P are presented in Table 5. These chemicals

were a subset of 382 chemicals studied by us previously®’ and consist of only those
compounds with measured log P available in STARLIST,'” a selected subset of data

deemed to be of very high quality by experts in the field. The log P values are provided

in Table 5.

Table 5. Observed log P and Estimated log P from Equations (46) and (47)
for 254 Diverse Chemicals

Estimated log P

No. Chemical name Obsd. log P Eq. (46) Eq. 47)
I butane 2.89 1.61 1.69
2 pentane 3.39 2.08 2.16
3 cyclopentane 3.00 2,61 2.46
4 cyclohexane 3.44 227 2.46
5 1-butene 2.40 1.65 1.57
6 1-hexene 3.39 2.64 2.63
7 cyclohexene 2.86 244 2.48
8 1-pentyne 1.98 1.66 1.63
9 ethylchloride 1.43 1.05 1.20

10 |-chloropropane 2.04 1.43 1.65

11 1-chlorobutane 2.64 1.81 2.04

12 1-chloroheptane 4.15 3.09 3.32

13 carbon tetrachloride 2.83 2.25 2.49

14 1,2-dichloroethane 1.48 1.60 2.03

15 {,1,1-trichloroethane 2.49 1.88 2.19

16 1,1,2,2-tetrachloroethane 2.39 2.95 3.36

17 trichloroethylene 2.42 2.86 3.16

18 tetrachloroethylene 3.40 3.79 4.04

19 trichlorofluoromethane 2.53 2.66 2.46

20 benzene 2.13 221 2.14

21 toluene 2.73 2.59 243

22 o-xylene 312 3.09 2.98

23 m-xylene 3.20 3.08 3.00

24 p-xylene 3.15 2.89 2.79

25 1,3,5-trimethylbenzene 3.42 3.61 3.58

26 1,2,4-trimethylbenzene 3.78 3.62 3.57

27 1,2,3-trimethylbenzene 3.66 3.60 3.50

28 1,2,3,4-tetramethylbenzene 4.11 3.96 3.84

29 1,2,3,5-tetramethylbenzene 4.17 4.25 4.14

30 1,2,4,5-tetramethylbenzene 4.00 3.98 3.85

31 pentamethylbenzene 4.56 4.70 4.73

32 hexamethylbenzene 5.1 5.15 5.13

33 ethylbenzene 3.15 2.94 2.83

(continued)
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Table 5. (Continued)
Estimated log P

No. Chemical name Obsd. log P Eq. (46) Eq. (47)
34 propylbenzene 3.72 3.37 3.30
35 isopropylbenzene 3.66 3.35 3.30
36 butylbenzene 4.26 3.82 3.82
37 -butylbenzene 4.11 3.76 371
38 p-cymene 4.10 3.85 3.78
39 fluorobenzene 227 2.37 2.00
40 chlorobenzene 2.84 2.37 2.42
41 bromobenzene 2.99 2.37 2.65
42 iodobenzene 3.25 2.37 315
43 o-dichlorobenzene 3.38 297 312
44 1,3-dichlorobenzene 3.60 297 3.15
45 p-dichlorobenzene 352 2.89 3.03
46 1,2,3-trichlorobenzene 4.05 3.71 3.92
47 1,2,4-trichlorobenzene 4.02 3.56 3.74
48 1,3,5-trichlorobenzene 4.15 3.66 395
49 1,2,3,4-tetrachlorobenzene 4.64 434 4.55
50 1,2,3,5-tetrachlorobenzene 4.92 4.32 4.57
51 1,2,4,5-tetrachlorobenzene 4.82 4.31 4.56
52 pentachlorobenzene 5.17 5.15 5.40
53 hexachlorobenzene 5.31 6.05 6.27
54 o-dibromobenzene 3.64 2.97 3.52
55 p-dibromobenzene 3.79 2.89 348
56 o-chlorotoluene 3.42 2.87 2.88
57 m-chlorotoluene 3.28 2.87 290
S8 p-chlorotoluene 333 2.79 2.83
59 ethyl ether 0.89 1.23 1.21
60 dipropyl ether 2.03 2.12 2.15
6l dibutyl ether 3.21 2.91 2.96
62 tetrahydrofuran 0.46 1.82 1.50
63 ethyl vinyl ether 1.04 1.25 1.09
64 anisole 2.11 2.08 1.91
65 o-methylanisole 2.74 2.70 2.58
66 m-methylanisole 2.66 2.69 2.59
67 p-methylanisole 2.81 2.59 2.50
68 4-chloroanisole 2.78 2.36 2.39
69 phenetole 2.51 2.50 241
70 phenyl propyl ether 3.18 2.95 2.88
71 formic acid, propyl ester 0.83 1.16 0.92
72 acetic acid, methyl ester 0.18 0.72 0.18
73 acetic acid, ethyl ester 0.73 1.04 0.70
74 propionic acid, ethyl ester 1.21 1.49 1.23
75 acrylic acid, methy] ester 0.80 1.03 0.50
76 methacrylic acid, methyl ester 1.38 1.35 0.91
77 benzoic acid, methyl ester 2.12 2.29 2.08
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Table 5. (Continued)
Estimated log P
No. Chemical name Obsd. log P Eqg. (46) Eq. (47)
78 ethyl benzoate 2.64 2.68 2.46
79 o-toluic acid, methyl ester 2.75 2.87 2.68
80 acetic acid, benzy lester 1.96 2.70 2.58
81 acetic acid, B-phenylethyl ester 2.30 3.00 2.95
82 phenylacetic acid, methy lester 1.83 2.69 2.53
83 B-phenylpropionic acid, ethy! ester 2.73 3.36 332
84 benzyl benzoate 3.97 3.68 3.70
85 acetic acid, phenyl ester 1.49 232 2.09
86 o-tolylacetate 1.93 2.89 2.72
87 m-tolylacetate 2.09 2.81 2.61
88 p-tolylacetate 2.11 2.81 2.66
89 2-chlorophenyl acetate 2.18 2.69 2.59
90 3-chlorophenyl acetate 2.32 2.62 2.56
91 2-bromophenyl acetate 2.20 2.69 2,76
92 propionaldehyde 0.59 0.87 0.64
93 butyraldehyde 0.88 1.25 1.16
94 hexaldehyde 1.78 2.16 2.13
95 benzaldehyde 1.48 2.1 .87
96 acetone -0.24 0.47 0.17
97 2-butanone 0.29 1.20 0.94
98 2-pentanone 0.91 1.63 1.46
99 2-hexanone 1.38 220 2.10
100 2-heptanone 1.98 2.58 2.50
101 cyclohexanone 0.81 1.85 1.87
102 acetophenone 1.58 2.52 2.36
103 m-chloroacetophenone 2.51 2.89 2.86
104 p-chloroacetophenone 2.32 2.76 2.77
105 p-bromoacetophenone 243 2.76 2.95
106 p-fluoroacetophenone 1.72 2.76 2.42
107 p-methylacetophenone 2.10 2.99 2.86
108 propiophenone 2.19 2.92 2.76
109 1-phenyl-2-propanone 1.44 2.95 2.77
110 ethylamine -0.13 -0.66 -0.51
111! propylamine 0.48 -0.13 0.23
112 butylamine 0.97 0.29 0.70
113 amylamine 1.49 0.81 1.22
114 hexylamine 2.06 1.23 1.64
115 heptylamine 2.57 1.64 2.06
116 diethylamine 0.58 0.72 1.00
117 dipropylamine 1.67 1.64 1.93
118 dibutylamine 2.83 2.43 2.70
119 trimethylamine 0.16 0.11 0.13
120 triethylamine 1.45 1.99 1.95
121 tripropylamine 2.79 3.30 3.25

(continued)
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Table 5. (Continued)
Estimated log P

No. Chemical name Obsd. log P Eq. (46) Eq. (47)
122 aniline 0.90 0.71 0.89
123 o-toluidine 1.32 1.31 1.51
124 m-toluidine 1.40 1.31 1.54
125 p-toluidine 1.39 1.23 1.43
126 m-chloroaniline 1.88 1.12 1.46
127 p-chloroaniline 1.83 1.04 1.38
128 m-bromoaniline 2.10 1.12 1.69
129 p-bromoaniline 2.26 1.04 1.62
130 m-fluoroaniline 1.30 1.12 1.05
131 p-fluoroaniline 1.15 1.04 0.97
132 benzidine 1.34 1.37 1.94
133 a-naphthylamine 225 2.20 2.39
134 B-naphthylamine 2.28 2.16 2.31
135 N, N-dimethylaniline 2.31 2.45 2.47
136 N, N-dimethyl-p-toluidine 2.81 2.95 2.96
137 N,N-diethylaniline 3.31 3.40 3.44
138 N,N-dimethylbenzylamine 1.98 2.90 294
139 pyridine 0.65 1.45 1.46
140 3-methylpyridine 1.20 1.69 1.65
141 3-chloropyridine 1.33 1.67 1.81
142 3-bromopyridine 1.60 1.67 2.07
143 4-bromopyridine 1.54 1.67 2.08
144 acetonitrile -0.34 0.45 0.24
145 propionitrile 0.16 0.93 0.84
146 butyronitrile 0.53 1.27 1.21
147 benzonitrile 1.56 2.17 2.01
148 phenylacetonitrile 1.56 2.54 2.40
149 benzylacetonitrile 1.72 2.96 2.93
150 acrylonitrile 0.25 1.19 0.99
151 nitromethane -0.35 -0.37 -1.01
152 nitroethane 0.18 0.47 0.10
153 1-nitropropane 0.87 0.75 0.52
154 I-nitrobutane 1.47 1.21 1.03
155 I-nitropentane 2.01 1.57 1.45
156 nitrobenzene 1.85 1.64 1.38
157 m-nitrotoluene 2.45 2.13 1.99
158 p-nitrotoluene 2.37 2.02 1.87
159 2-chloro-1-nitrobenzene 2.24 2.12 2.02
160 3-chloro-1-nitrobenzene 2.41 2.12 2.07
161 4-chloro-1-nitrobenzene 2.39 2,01 1.98
162 3-bromo- l-nitrtobenzene 2.64 2.12 2.30
163 4-bromo- 1-nitrobenzene 2.55 2.01 2.20
164 m-dinitrobenzene 1.49 1.71 1.43
165 p-dinitrobenzene 1.46 1.63 1.38
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Table 5. (Continued)

Estimated log P
No. Chemical name Obsd. log P Eq. (46) Eq. (47)
166 dimethylformamide -1.01 0.19 -0.03
167 N,N-dimethylacetamide -0.77 0.61 0.44
168 diethylacetamide 0.34 1.74 1.60
169 benzamide 0.64 0.75 0.85
170 dimethylsulfoxide -1.35 0.07 0.36
7 diethylsulfide 1.95 172 2.06
172 methanol -0.77 -0.13 -0.66
173 ethanol -0.31 -0.07 -0.30
174 propanol 0.25 0.39 0.43
175 butanol 0.88 0.80 0.97
176 isobutanol 0.76 0.64 0.67
177 pentanol 1.56 1.30 1.50
178 isopentanol 1.42 1.10 1.21
179 hexanol 2.03 171 1.89
180 octanol 2.97 245 2.70
181 allyl alcohol 0.17 0.38 0.26
182 isopropanol 0.05 -0.00 -0.05
183 s-butanol 0.61 0.78 0.82
184 3-pentanol 1.21 1.04 1.07
185 cyclohexanol 1.23 1.49 1.75
186 r-butanol 0.35 0.26 0.22
187 2-ethyl-2-propanol 0.89 1.02 1.02
188 benzyl alcohol 1.10 159 1.54
189 m-methylbenzyl alcohol 1.60 2.20 2.23
190 p-methylbenzyl alcohol 1.58 2,10 2412
191 m-chlorobenzy) alcohol 1.94 197 2.13
192 p-chlorobenzyl alcohol 1.96 1.87 2.02
193 2-phenylethanol 1.36 2.01 2.08
194 3-phenylalcohol 1.88 2.46 2.60
195 cinnamyl alcohol 1.95 2.36 2.38
196 phenol 1.46 1.28 1.19
197 m-methylphenol 1.96 1.84 1.83
198 p-methylphenol 1.94 1.75 1.73
199 m-chlorophenol 2.50 1.70 1.83
200 p-chlorophenol 2.39 1.62 1.75
201 m-bromophenol 2.63 L.70 2.08
202 p-bromophenol 2.59 1.62 1.99
203 m-fluorophenol 1.93 1.70 1.40
204 p-fluorophenol 1.77 1.62 1.27
205 acetic acid -0.17 -0.19 -0.74
206 propionic acid 0.33 023 -0.13
207 butyric acid 0.79 0.55 0.39
208 valeric acid 1.39 1.07 1.01
209 hexanoic acid 1.92 143 1.43

(continued)
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Table 5. (Continued)
Estimated log P

No. Chemical name Obsd. log P Eq. (46) Eq. (47)
210 decanoic acid 4.09 2.69 2.86
211 benzoic acid 1.87 1.47 1.32
212 m-toluic acid 237 2.01 1.95
213 p-toluic acid 2.27 1.88 1.78
214 m-chlorobenzoic acid 2.68 1.89 1.93
215 p-chlorobenzoic acid 2.65 1.76 1.84
216 m-bromobenzoic acid 2.87 1.89 2.13
217 p-bromobenzoic acid 2.86 1.76 2.01
218 m-fluorobenzoic acid 2.15 1.89 1.55
219 p-fluorobenzoic acid 2.07 1.76 1.48
220 phenylacetic acid 1.41 1.83 1.72
221 m-chlorophenylacetic acid 2.09 2.13 2:23
222 p-chlorophenylacetic acid 2.12 2,12 2.23
223 m-bromophenylacetic acid 2.37 2.13 242
224 o-fluorophenylacetic acid 1.50 2.20 1.93
225 m-fluorophenylacetic acid 1.65 2.13 1.91
226 p-fluorophenylacetic acid 1.55 2.12 1.89
227 [B-phenylpropionic acid 1.84 2.21 227
228 4-phenylbutyric acid 2.42 2.51 2.61
229 |-naphthoic acid 3.10 279 2.76
230 naphthalene 3.30 3.59 3.36
231 1-methylnaphthalene 3.87 4.07 3.91
232 2-methylnaphthalene 3.86 4.03 3.83
233 1,3-dimethylnaphthalene 4.42 453 4.39
234 1,4-dimethylnaphthalene 4.37 4.56 4.40
235 1,5-dimethylnaphthalene 4.38 4.46 4.28
236 2,3-dimethylnaphthalene 4.40 4.50 4.37
237 2,6-dimethylnaphthalene 4.31 4.46 4.32
238 [-nitronaphthalene 3.19 2.95 2.82
239 anthracene 4.45 4.80 4.59
240 9-methylanthracene 5.07 5.15 5.03
241 phenanthracene 4.46 4.83 4.66
242 pyrene 4.88 5.49 5.24
243 fluorene 4.18 3.69 3.77
244 acenaphthene 3.92 3.68 3.69
245 quinoline 2.03 2.69 2.60
246 isoquinoline 2.08 2.69 2.60
247 2,2'-biquinoline 431 4.49 4.63
248 biphenyl 4.09 4.10 397
249 2-chlorobiphenyl 4.38 4.27 4.24
250 2,4'-dichlorobiphenyl 5.10 4.56 4.62
251 2,5-PCB 5.16 4.59 4.68
252 2,6-PCB 493 4.67 4.72
253 2.4,6-PCB 5.47 4.99 5.09
254 bibenzyl 4.79 4.55 452
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4.5.1.3. Mutagenicity (InR)

The set of compounds used to model mutagenic potency consisted of 95 aromatic
and heteroaromatic amines available from the literature.'** A list of these chemicals
and their mutagenic potency is presented in Table 6. The mutagenic potency of the
aromatic amines in S. typhimurium TA98 + S9 microsomal preparation is expressed
by the natural logarithm of the number of revertants per nanomole.

Table 6. Mutagenicity (InR)® of 95 Aromatic and Heteroaromatic Amines and Predicted
Mutagenicity by Equations (48) and (49)

Predicted InR
No. Chemical name Obsd. InR Eq. (48) Eq. (49)
1 2-bromo-7-aminofluorene 2.62 2.14 2.66
2 2-methoxy-5-methylaniline -2.05 -2.57 -2.07
3 S-aminoquinoline -2.00 -1.60 -1.71
4 4-ethoxyaniline -2.30 -3.75 -3.40
5 l-aminonaphthalene -0.60 -0.93 -0.86
6 4-aminofluorene 1.13 0.73 1.02
7 2-aminoanthracene 2.62 1.26 1.22
8 7-aminofluoranthene 2.88 1.60 227
9 8-aminoquinoline -1.14 -1.79 -2.02
10 1,7-diaminophenazine 0.75 0.18 0.23
11 2-aminonaphthalene -0.67 0.21 -0.42
12 4-aminopyrene 3.16 2.99 2.89
13 3-amino-3'-nitrobipheny] -0.55 -0.26 0.19
14 2,4,5-trimethylaniline -1.32 -1.20 -0.55
15 3-aminofluorene 0.89 1.35 1.37
16 3,3'-dichlorobenzidine 0.81 0.24 0.95
17 2,4-dimethylaniline -2.22 -2.88 -2.34
18 2,7-diaminofluorene 0.48 0.85 1.02
19 3-aminofluoranthene 3.31 2.38 3.06
20 2-aminofluorene 1.93 1.75 1.74
21 2-amino-4'-nitrobiphenyl -0.62 0.06 0.20
22 4-aminobiphenyl -0.14 0.10 -0.04
23 3-methoxy-4-methylaniline -1.96 -3.21 -2.55
24 2-aminocarbazole 0.60 0.61 0.25
25 2-amino-5-nitrophenol -2.52 -2.65 -3.16
26 2,2’-diaminobiphenyl -1.52 -0.42 -0.46
27 2-hydroxy-7-aminofluorene 0.41 1.29 1.44
28 I-aminophenanthrene 2.38 1.06 1.19
29 2,5-dimethylaniline -2.40 -241 -2.34
30 4-amino-2'-nitrobiphenyl -0.92 0.06 0.09
31 2-amino-4-methylphenol -2.10 -3.59 -2.88

32 2-aminophenazine 0.55 0.83 0.66

(continued)
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Table 6. (Continued)
Predicted InR

No. Chemical name Obsd. InR Eq. (48) Eq. (49)
33 4-aminophenyl sulfide 0.31 0.32 0.18
34 2,4-dinitroaniline -2.00 -0.59 -1.54
35 2,4-diaminoisopropylbenzene -3.00 -1.79 -1.35
36 2,4-difluoroaniline -2.70 -1.95 ~2.68
37 4,4'-methylenedianiline -1.60 -1.23 -1.19
38 3,3'-dimethylbenzidine 0.01 -0.65 -0.76
39 2-aminofluoranthene 3.23 2.51 2.79
40 2-amino-3'-nitrobiphenyl -0.89 -0.33 0.04
41 1-aminofluoranthene 3:35 2.61 292
42 4,4'-ethylenebis(aniline) -2.15 -1.79 -1.59
43 4-chloroaniline -2.52 -2.54 -2.52
44 2-aminophenanthrene 2.46 2.02 1.59
45 4-fluoroaniline -3.32 -2.85 -3.01
46 9-aminophenanthrene 2.98 1.33 1.26
47 3,3'-diaminobiphenyl -1.30 -1.28 -1.14
48 2-aminopyrene 3.50 343 3.01
49 2,6-dichloro-1,4-phenylenediamine -0.69 -1.50 -1.78
50 2-amino-7-acetamidofluorene 1.18 1.09 1.46
51 2,8-diaminophenazine 1.12 0.17 0.34
52 6-aminoquinoline -2.67 -1.31 -1.51
53 4-methoxy-2-methylaniline -3.00 -3.07 -2.55
54 3-amino-2'-nitrobipheny! -1.30 -0.22 -0.10
55 2,4'-diaminobiphenyl -0.92 0.08 -0.31
56 1,6-diaminophenazine 0.20 0.41 0.54
57 4-aminophenyl disulfide -1.03 -0.12 0.43
58 2-bromo-4,6-dinitroaniline -0.54 -1.05 -1.33
59 2.4-diamino-n-butylbenzene -2.70 -2.93 -3.09
60 4-aminophenyl ether -1.14 -0.50 -0.56
61 2-aminobiphenyl -1.49 0.02 -0.40
62 1,9-diaminophenazine 0.04 0.13 0.26
63 {-aminofluorene 0.43 0.99 1.1
64 8-aminofluoranthene 3.80 2.77 3.01
65 2-chloroaniline -3.00 -3.16 -2.95
66 3-amino-aaa-trifluorotoluene -0.80 -0.78 -1.16
67 2-amino- -nitronaphthalene -1.17 -0.24 -0.47
68 3-amino-4'-nitrobiphenyl 0.69 -0.29 0.28
69 4-bromoaniline -2.70 -2.23 -2.04
70 2-amino-4-chlorophenol -3.00 ~2.56 -2.68
71 3,3'-dimethoxybenzidine 0.15 -0.50 -0.43
72 4-cyclohexylaniline -1.24 -1.97 -1.89
73 4-phenoxyaniline 0.38 -0.28 -0.80
74 4,4'-methylenebis(o-ethylaniline) -0.99 -0.11 ~1.62
75 2-amino-7-nitrofluorene 3.00 1.56 2.36
76 Benzidine -0.39 —-0.98 -0.94
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Table 6. (Continued)

Predicted InR
No. Chemical name Obsd. InR Eq. (48) Eq. (49)
71 1-amino-4-nitronaphthalene -1.77 -0.21 -0.36
78 4-amino-3'-nitrobipheny! 1.02 -0.36 0.08
79 4-amino-4'-nitrobiphenyl 1.04 -0.27 0.28
80 1-aminophenazine -0.01 0.67 0.51
81 4,4'-methylenebis(o-fluoroaniline) 0.23 0.46 0.66
82 4-chloro-2-nitroaniline -2.22 -2.31 -2.79
83 3-aminoquinoline -3.14 -1.50 -1.82
84 3-aminocarbazole —048 0.84 0.51
85 4-chioro-1,2-phenylenediamine -0.49 -1.50 -1.68
86 3-aminophenanthrene 3.77 1.64 1.30
87 3,4'-diaminobiphenyl 0.20 -0.74 -1.03
88 1-aminoanthracene 1.18 1.32 1.33
89 }-aminocarbazole -1.04 0.14 -0.11
90 9-aminoanthracene 0.87 1.65 1.45
91 4-aminocarbazole -1.42 033 0.06
92 6-aminochrysene 1.83 2.49 3.31
93 1-aminopyrene 1.43 291 2.88
94 4,4'-methylenebis(o-isopropylaniline) -1.77 0.71 -1.29
95 2,7-diaminophenazine 397 1.42 1.10

“InR = log revertants per nanomole, S. typhimurium TA98 with metabolic activation.

4.5.2. Calculation of Parameters

4.5.2.1. Computation of Topological Indexes

The first TI reported in the chemical literature, the Wiener index W,87 may be
calculated from the distance matrix D(G) of a hydrogen-suppressed chemical graph G
as the sum of the entries in the upper triangular distance submatrix. The distance matrix
D(G) of a nondirected graph G with n vertices is a symmetric » x n matrix (d;), where
d;is equal to the topological distance between vertices v; and v; in G. Each diagonal
element d;; of D(G) is zero. We give below the distance matrix D(G,) of the labeled
hydrogen-suppressed graph G; of isobutane (Figure 5):

1@ e @

iro 1 2 2
DGY=211 0 1 1
302 1 0 2

42 1 2 0

W s calculated as:

(38) W=]/?Zdij=zh-gh
i h
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G,

Figure 5. Labeled hydrogen-suppressed graph of isobutane.

where g, is the number of unordered pairs of vertices whose distance is &.

Randi¢’s connectivity index,” higher-order connectivity indexes, and path, clus-
ter, path-cluster, and chain types of simple, bond and valence connectivity parameters
developed by Kier and Hall” were calculated by a computer program POLLY 2.3
developed by Basak, Harriss, and Magnuson'* at the University of Minnesota. Also,
P, parameters, the number of paths of length #(h = 0-10) in the hydrogen-suppressed
graph, are calculated using standard algorithms.

Balaban™* defined a series of indexes based on distance sums within the
distance matrix for a molecular graph which he designated as J indexes. Unlike W,
these indexes are independent of molecular size and have low degeneracy.

Information-theoretic TIs are calculated by the application of information theory on
molecular graphs. An appropriate set A of n elements is derived from a molecular graph G
depending on certain structural characteristics. On the basis of an equivalence relation
defined on A, the set A is partitioned into disjoint subsets A; of order n; (i=1,
2,...,h Z;n;=n). A probability distribution is then assigned to the set of equivalence
classes:

ApLAg .. A,

P1sP2 -3 P
where p; = n;/n is the probability that a randomly selected element of A will occur in
the i subset.
The mean information content of an element of A is defined by Shannon’s
relation'*:

h
(39) IC=-% pilog, p;

i=t
The logarithm base 2 is used to measure the information content in bits. The total
information content of the set A is then n times IC.
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To account for the chemical nature of vertices, as well as their bonding pattern,
Sarkar, Roy, and Sarkar'?’ calculated information content of molecular graphs on the
basis of an equivalence relation where two atoms of the same element are considered
equivalent if they possess an identical first-order topological neighborhood. Since
properties of atoms or reaction centers are often modulated by physicochemical
characteristics of distant neighbors, i.e., neighbors of neighbors, it was deemed
essential to extend this approach to account for higher-order neighbors of vertices.
This can be accomplished by defining open spheres for all vertices of a molecular
graph. If r is any nonnegative real number, and v is a vertex of the graph G, then the
open sphere S(v,r) is defined as the set consisting of all vertices v; in G such that
d(v,v;) < r. Obviously, Sv,0)=¢, S(v,r)=vforO<r< 1, and if | <r<2, then S(v,r)
is the set consisting of v and all vertices v; of G situated at unit distance from v.

One can construct such open spheres for higher integral values of . For a particular
value of r, the collection of all such open spheres S(v,r), where v runs over the whole
vertex set V, forms a neighborhood system of the vertices of G. A suitably defined
equivalence relation can then partition Vinto disjoint subsets consisting of topological
neighborhoods of vertices up to 7™ order neighbors. Such an approach has already
been developed and the information-theoretic indexes calculated are called indexes of
neighborhood symmetry.'?®

In this method, chemical species are symbolized by weighted linear graphs. Two
vertices uy and vo of a molecular graph are said to be equivalent with respect to "
order neighborhood if and only if corresponding to each path ug, uy, . . ., u, of length
r, there is a distinct path vg,vy, ..., v, of the same length such that the paths have
similar edge weights, and both ug and vy are connected to the same number and type
of atoms up to the /™ order bonded neighbors. The detailed equivalence relation is
described in our earlier studies.'*®

Once partitioning of the vertex set for a particular order of neighborhood is
completed, IC, is calculated by equation (39). Basak, Roy, and Ghosh'* defined
another information-theoretic measure, structural information content (SIC,), which is

calculated as:
(40) SIC, =IC,/log, n

where IC, is calculated from equation (39) and n is the total number of vertices of the
graph.

Another information-theoretic invariant, complementary information content
(CIC,), is defined as™":

(41) CIC,=log, n -~ IC,

CIC, represents the difference between maximum possible complexity of a graph
(where each vertex belongs to a separate equivalence class) and the realized topological
information of a chemical species as defined by IC,. Figure 6 provides an example of
the first order (r = 1) calculations of IC, SIC, and CIC.



Chapter 4

106
He Hg
I He l
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First order neighbors:
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o] o o H ©O H C H H
Subsets:
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(H1) {H2-Hs) (Oy) (C4) (C2) (Cs)
Probability:
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112 7112 112 112 1/12 1/12

IC, =5"1/12"1og, 12 + 7/12*log, 12/7 = 1.950 bits
SICy = 1Cy/logy 12 = 0.544 bits
CIC = log, 12 - IC, = 1.635 bits

Figure 6. Derivation of first-order neighborhoods and calculation of complexity indexes (IC,, SIC,, and

CIC,) for n-propanol.

The information-theoretic index on graph distance, 7\ is calculated from the
distance matrix D (G) of a molecular graph G as follows™

IY =Wlog, W= gy hlog h
h

The mean information index, T, is found by dividing the information index I}y by
W. IC,, SIC,, CIC,, I, and T} were calculated by POLLY 2.3.'>> The information-
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theoretic parameters defined on the distance matrix, H° and H", were calculated by
the method of Raychaudhury e al.*

4.5.2.2. Computation of Geometrical Parameters

Volume (V) was calculated using the SYBYL' package from Tripos Associates,
Inc. The 3D Wiener numbers were calculated using SYBYL with an SPL (Sybyl
Programming Language) program. Calculation of 3D Wiener numbers consists of the
sum of entries in the upper triangular submatrix of the topographic Euclidean distance
matrix for a molecule. The 3D coordinates for the atoms were determined using
CONCORD 3.0.1.”" Two variants of the 3D Wiener number were calculated. For
PWy, hydrogen atoms are included in the computations and for **W, hydrogen atoms
are excluded from the computations.

4.5.2.3. Computation of HB;

The hydrogen bonding parameter HB, was calculated using a program developed
by Basak."** This program is based on the ideas of Ou ez al.™”
The list of parameters used in this chapter is given in Table 2.

4.5.3. Statistical Methods

4.5.3.1. Index Selection

Since the scale of the TIs vary by several orders of magnitude, each TI was
transformed by the natural log of the index plus one.

The large number of TIs, and the fact that many of them are highly correlated,
confounds the development of predictive models. Therefore, we attempted to reduce
the number of TIs to a smaller set of relatively independent variables. Variable
clustering"* was used to divide the TIs into disjoint subsets (clusters) that are
essentially unidimensional. These clusters form new variables which are the first
principal component derived from the members of the cluster. From each cluster of
indexes, a single index was selected. The index chosen was the one most correlated
with the cluster variable. In some cases, a member of a cluster showed poor group
membership relative to the other members of the cluster, i.e., the correlation of an index
with the cluster variable was much lower than the other members. Any variable
showing poor cluster membership was selected for further studies as well. A correla-
tion of a TI with the cluster variable less than 0.7 was used as the definition of poor
cluster membership.

4.5.3.2. Regression Analysis

The variables used to model each of the properties in this study were Tls, HB,
and three geometry-related parameters, volume (Vy) and the two 3D Wiener numbers
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(®W and *PW;). The TIs were restricted to those selected by the variable clustering
procedure described previously.

All subsets regression was used for the development of the models. The criteria
used for defining the “best” model were R* and Mallow’s C*.'*® For each of the
properties examined, initial models used only the TIs and HB, as potential variables.
Subsequently, we added the three geometric variables to examine the improvement
provided by the addition of geometric information.

4.5.4. Results

4.5.4.1. Boiling Point

HB, is zero for all hydrocarbons and, therefore, was deleted from analyses of BP.
Twelve of the TIs were deleted for the analysis of the 140 hydrocarbons as well. These
indexes included the third- and fourth-order chain connectivity indexes, which were
zero for all chemicals, the fourth- and sixth-order bond and valence corrected cluster
connectivity indexes, which were perfectly correlated with the simple cluster connec-
tivity indexes (r = 1.0), and J* and J¥, which were perfectly correlated with J® for
hydrocarbons.

Variable clustering of the remaining 89 TIs resulted in ten clusters. These clusters
explained 89.7% of the total variation. In Table 7, we present the indexes selected from
each cluster for subsequent use in modeling the BP of hydrocarbons. O, IC,, IC,, IC,,
S1C,, and SIC, were selected because of their poor relationship with their clusters
(r<0.7).

With the 16 TIs, all subsets regression resulted in a seven-parameter model as
follows:

BP =-322.86 + 5.46(P,;) — 45.76(1C;) — 53.23(IC,) + 799.94(6xCh) +
Tuble 7. Topological Indexes Selected by Variable

Clustering 89 Indexes for the Set of 140 Hydrocarbons
with Measured Boiling Point

Cluster Indices selected Correlation

( P, 0.992

2 CIC,, IC, 0.968,0.338

3 ICs, O, IC,, SIC, 0.969, 0.400, 0.581, 0.456
4 Sy 0.964

5 Suén 0.998

6 0y¥, SIC, 0.986, 0.537

7 3k 0.990

8 5w IC 0.916, 0.292

9 cIc, 0.986
10 Sybe 0973
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(43) 288.26(%") — 32.76(*¢&) — 2518.52C %)
(N =140, r=0.9956, s = 15.5, F=2114)

Two chemicals, acenaphthene and cyclopenta(cd)pyrene (Nos. 106 and 117 of Table

4, respectively) had rather largeresiduals (> 60° C). The Cook’s distance'* for these

two chemicals indicated they were influential cases. Given these circumstances, an
outlier test'® was performed and both chemicals had a significant result. After the
removal of these chemicals, the following model was developed:

BP = -349.11 - 0.71(P,) — 31.93(IC,) — 44.70(IC,) + 884.75(®ycr) +

(44) 291.24(%") - 33.10C%¢) - 3327.61Cx )
(N=138,r=0.9976, s = 1.4, F = 3876)

With the inclusion of the geometric parameters, an eight-parameter model was
developed, which included two of the geometric parameters:

BP = —626.4 + 1050.8(SICy) — 204.0(SIC,) — 249.8(®xcy) + 364.0C%") —

(43) 32.3C%L) + 833.4C 1) + 20.4C°°W)' 2 - 8.0CPWy)'
(N =140, r=0.9994, s = 6.1, F = 12246)

Table 4 presents the predicted normal BP for the hydrocarbons when using equations
(44) and (45).

4.5.4.2. Lipophilicity (logP)

Twelve of the TIs were dropped from the study of the logP data set. The third-
and fourth-order chain connectivity indexes were zero for all chemicals and the
fifth-order chain connectivity index was nonzero for only one chemical. The sixth-
order cluster connectivity indexes were nonzero for only one compound as well.
Therefore, 89 indexes were used for the variable clustering.

There were 12 clusters generated by variable clustering for the 89 TIs used for the
logP data set. The total variation explained by these clusters was 87.8% of the total.
Table 8 presents the indexes selected from each of the clusters. The indexes O, S1C,
J, ICy, IC,, and SIC, showed poor membership (r < 0.7) within the clusters and were
retained as well.

Using all subsets regression with the selected TIs and HB, as independent
variables resulted in a nine-parameter model:

log P = —3.64 + 4.81(Py) — 0.54(IC) — 9.30(IC,) + 13.65(SIC,) +

(46) 3.88(SIC,) — 7.68(%xcn) + 0.63(%x D) — 1.52(J®) — 0.49(HB))
(N=1254,r=0912, s=0.56, F = 134.1)
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Table 8. Topological Indexes Selected by Variable Clustering 89
Indexes for the Set of 254 Chemicals with Measured log P

Cluster Indices selected Correlation

| Py 0.981

2 SIC, 0.944

3 Syd 0.929

4 ICs, SIC,, O 0.972, 0.469, 0.681

5 S8 0.976

6 e 0.980

g Sver J 0.855, 0.406

8 SIC,, IC,, IC,, SIC, 0.910. 0.503, 0.585, 0.689
9 JB 0.996
10 Il 0.968
11 ic 0.843
12 4y 0.963

Inclusion of the geometric parameters resulted in the following 11-parameter
model:

logP = —12.06 — 0.68(IC) — 8.13(IC,) + 2.25(ICs) + 12.62(SIC,) —

(“47) 5.65(%1cn) + 0.66(°x5c) — 2.22(J) — 0.37(HB,) +

4.23 log(Vyy) + 0.60 logCPW) - 0.75 log(*°Wy)
(N=254,r=0.932, s=0.50, F = 129.1)

Predicted values of logP using equations (46) and (47) are presented in Table 5.

4.5.4.3. Mutagenicity

Twelve TIs were dropped from the analyses of the 95 aromatic and heteroaromatic
amines. The indexes dropped included the third- and fourth-order chain connectivity
indexes, which were zero for all chemicals, and the fourth- and sixth-order cluster
connectivity indexes, which were nonzero for only three compounds.

There were eight clusters generated by variable clustering the 89 TIs used for the
aromatic amine data set. The total variation explained by these clusters was 88.6% of
the total. In Table 9, we present the indexes selected from each of the clusters. Indexes
0,1C, IC,, SIC3, CIC5,and 3y ¥ were retained because of their poor cluster membership
(r<0.7).

Using all subsets regression with the selected TIs and HB; as independent
variables resulted in an eight-parameter model:

InR = 9.308 + 5.141(IC) - 3.018(0) — 23.814(IC;) - 15.050(SIC,) +
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Table 9. Topological Indexes Selected by Variable Clustering 89 Indexes for the Set of 95
Aromatic and Heteroaromatic Amines with Measured InR*

Cluster Index selected Correlation

1 4 0.982

2 SIC,, SIC,, CIC, 0.969, 0.698, 0.665

3 B 0.951, 0.631

4 SIC,. O 0.922,0.478

5 52 0.944

6 P, 0.990

7 8¢ 0.919

8 1C,, IC, IC, 0.909, 0.698, 0.537

“Natural log of number of revertants per nanomole.

(48) 41.572(SIC4) + 2.636(*y) + 3.728(%xc) + 3.018(C1%)
(N=95,r=0872,5s=098, F=342)

Addition of the geometric parameters resulted in the following model:

InR = 15.785 + 3.883(IC) — 1.374(0) — 14.152(SIC,) + 2.878(*y) +

(49)  3.409(xD>c) + 4.625(C%L) — 7.867(P,) — 0.0021(3°Wy) + 0.0096(*° W)
(N=95,r=0.893,5=091, F=372)

The predicted mutagenicity values for each of the aromatic amine chemicals from
equations (48) and (49) are presented in Table 6.

4.6. DISCUSSION

The objectives of this chapter were to review the utility of TIs and 3D parameters
in QSARs as well as to report recent results on the relative effectiveness of TIs versus
geometrical parameters in the development of QSARs for estimating properties. A
large number of QSAR models summarized here show that graph-theoretic invariants
correlate reasonably well with physicochemical, biomedicinal, toxicological, and
biochemical properties of diverse congeneric sets of molecules. It is also clear that TIs
and substructures have found successful applications in the quantification of molecular
similarity, selection of analogues, and molecular similarity-based estimation of prop-
erties. Of special interest is the fact that the molecular similarity method developed by
Basak er al.’ has been successfully used in the discovery of a novel class of human
immunodeficiency virus reverse transcriptase (HIV-RT) inhibitors, showing the utility
of such nonempirically based methods in practical drug discovery. Examples of



112 Chapter 4

QSARs using 3D descriptors also demonstrate that geometrical parameters alone can
predict properties of congeneric molecules quite satisfactorily.

In this context, it was of interest to compare the capabilities of TIs and 3D
descriptors in QSAR analysis. To this end, we reported the QSAR studies developed
on three different properties, viz., normal boiling of 140 hydrocarbons, lipophilicity
(log P, octanol-water) of a diverse set of 254 chemicals, and mutagenicity (InR) of a
group of 95 aromatic and heteroaromatic amines. Results of these QSARs show that
TIs contain important structural information sufficient to develop useful predictive
models for these properties. However, in the case of BP, the addition of geometrical
parameters, Viz., W and 3DWH, to the list of independent variables resulted in
improved models in the sense that, while the TI-based QSARs had two outliers, the
addition of geometrical variables gave well-behaved models including all of the
hydrocarbons in the set. Also, estimate errors were significantly smaller for the
regression equation using geometrical descriptors [equation (45) versus (44)]. This
indicates that for BP of hydrocarbons, 3D or geometrical parameters encode some
pertinent information relevant to BP which are not included in TIs. For logP and
mutagenicity, however, the addition of geometrical descriptors resulted in only a slight
improvement in the quality of the QSAR models over those derived from TIs only.

For log P, we also used HBj, an algorithmically derived hydrogen bonding
parameter, in addition to TIs, Vy, 3DW, and 3DWH. This is because the magnitude of
logP of a molecule is known to depend significantly on the strength of hydrogen-bond-
ing ability of solutes with solvents.’™'** Our earlier studies on the correlation of log
using algorithmically derived parameters show that HB, is an important parameter in
predicting log P.**"* QSARs of logP reported in this chapter provide evidence that
the role of HB; cannot be carried out by a combination of TIs and 3D parameters.

In many practical situations of drug design and risk assessment, one has to
estimate physical/biomedical/toxicological properties of chemicals without access to
any empirical data.” Similarity-based models'-2%2%4790-8¢111 4 estimated values
based on nonempirical structural parameters®~"*"****"" are two viable alternatives
for deriving property values under such data-poor situations. The QSAR models
reported here based on TIs and geometrical parameters may find applications in
selecting analogues and in estimating properties of chemicals in such cases.
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