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Use of Graph-Theoretic and
Geometrical Molecular
Descriptors in
Structure-Activity
Relationships
SUBHASH C. BASAK, GREGORY D. GRUNWALD, and

GERALD J. NIEMI

Ostensibly there is color, ostensibly sweetness, ostensibly
bitterness, but actually only atoms and the void.

GALEN

(Nature and the Greeks, Erwin Schrödinger, 1954)

4.1. INTRODUCTION

One of the current interests in pharmaceutical drug design,1–20 chemistry,21–40 and
toxicology41–53 is the prediction of physicochemical, biomedicinal, and toxicological
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properties of molecules from nonempirical structural parameters which can be calcu-
lated directly from their structure. Both in drug design3,4,31,33,54 and in hazard assess-
ment of chemicals,31,33,46–53,55 one has to evaluate therapeutic or toxic potential of a
large number of compounds, many of which have not even been synthesized. Drug
design usually begins with the discovery of a “lead” compound which has the particular
therapeutic activity of interest. The lead is altered through molecular modifications
and the analogues thus produced are tested until a compound of desirable activity and
toxicity profile is found. The combination of possibilities in such a process is almost
endless. For example, let us assume the compound in Figure 1 is a lead. The medicinal
chemist can carry out numerous manipulations on the lead in terms of substitution. On
a very limited scale, if one carries out 50 substitutions in each of the aromatic positions,
10 modifications for esterification, 10 substitutions for the aliphatic carbon and 10
substitutions for the nitrogen, the total number of possible analogues comes to

billion structures. This astronomical number is reached by
considering only a small fraction of the possible substituents that the medicinal chemist
has in his repertoire.54

A similar situation exists for the hazard assessment of environmental pollutants.
More than 15 million distinct chemical entities have been registered with the Chemical
Abstract Service and the list is growing by nearly 775,000 per year. About 1000 of
these chemicals enter into societal use every year.56 Few of these chemicals have
experimental properties needed for risk assessment. Table 1 gives a partial list of
properties necessary for a reasonable risk assessment of a chemical.31,33 In the United
States, the Toxic Substances Control Act Inventory has about 74,000 entries and the
list is growing by nearly 3000 per year. Of the approximately 3000 chemicals
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submitted yearly to the U.S. Environmental Protection Agency for the premanufacture
notification process, more than 50% have no experimental data, less than 15% have
empirical mutagenicity data, and only about 6% have experimental ecotoxicological
and environmental fate data.55 Also, limited data are available for many of the over
700 chemicals found on the Superfund list of hazardous substances.

In the face of this massive unavailability of experimental data for the vast majority
of chemicals, practitioners in drug discovery and hazard assessment have developed
the use of nonempirical parameters to estimate molecular properties.1,3,4,20,31–33 By
nonempirical, we mean those parameters that can be calculated directly from molecu-
lar structure without any other input of experimental data. Topological indexes (TIs),
substructural parameters defined on chemical graphs, geometrical (3D or shape)
parameters, and quantum-chemical parameters fall in this category.3,4,21–40,46–55,57–61

A large number of quantitative structure–activity relationships (QSARs) pertain-
ing to chemistry, pharmacology, and toxicology have used these nonempirical parame-
ters. QSARs are mathematical models that relate molecular structure to their
physicochemical, biomedicinal, and toxic properties. Two distinct processes are
involved in the derivation of nonempirical parameters for a chemical: (1) defining the
model object called “structure” which represents the salient features of the architecture
of the chemical species and (2) calculating structural quantifiers from a selected set of
critical features of the model object.31,62 Figure 2 depicts the process of experimental
determination of properties vis-à-vis prediction of properties using descriptors.

Figure 2 represents an empirical property as a function which maps the
set C of chemicals into the real line R. A nonempirical QSAR may be regarded as a
composition of a description function, , mapping each chemical structure of
C into a space of nonempirical structural descriptors (D) and a prediction function,

, which maps the descriptors into the real line. When is
within the range of experimental errors, we say that we have a good nonempirical
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predictive model. On the other hand, a property–activity relationship (PAR) is the
composition of , which maps the set C into the molecular property space M,
and , mapping those molecular properties into the real line R. PAR seeks to
predict one property (usually a complex property) of a molecule in terms of another
(usually simpler or available) property. The latter group of properties may consist
either of a number of experimentally determined quantities (e.g., melting point, boiling
point, vapor pressure, partition coefficient) or substituent constants or solvatochromic
parameters (e.g., steric, electronic, hydrophobic, charge transfer substituent constants,
hydrogen bond donor acidity, hydrogen bond acceptor basicity).54,60 PAR using a
calculated property, e.g., calculated partition coefficient (log P, octanol-water), may
be looked on as a mapping , which is a composition of

mapping the descriptor space into the molecular property space (e.g., calculation
of log P from fragments using additivity rule), and

Graph invariants have been used in a large number of QSARs.1–53 A graph
invariant is a graph-theoretic property that is preserved by isomorphism.63,64 A graph
invariant may be a polynomial, a sequence of numbers, or a single numerical index.
Numerical indexes derived from the topological characteristics of molecular graphs
are called topological indexes. Molecular structures can be symbolized by graphs
where the atomic cores are represented by vertices and covalent chemical bonds are
depicted by edges of the graph. Such a graph depicts the connectivity of atoms in a
chemical species irrespective of the metric parameters (e.g., equilibrium distance
between nuclei, valence angles) associated with the molecular structure. It is in this
sense that molecular graphs can be seen as topological, rather than geometrical,
representations of molecular structure.65 TIs are numerical quantifiers of molecular
topology and are sensitive to such structural features of molecules as size, shape,
symmetry, branching, and cyclicity. Two nonisomorphic graphs may have the same
set of graph invariants. In that sense, TIs do not uniquely characterize molecular
topology. Yet, it has to be emphasized that TIs quantify many salient aspects of
molecular structure. As a result, different graph invariants have been successfully used
in characterizing the structural similarity/dissimilarity of molecules,1–4 28,29,47,49,50,66
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quantifying the degree of molecular branching,34,35,67 and developing structure-
activity relationships in chemistry, biomedical sciences, and environmental toxicol-
ogy.5–53,64,67–81

4.2. TOPOLOGICAL INDEXES AND QSAR

TIs have been used in developing QSAR models for predicting various properties.
We give below some examples of successful QSARs using TIs. Definitions of the TIs
used in the following equations and throughout this chapter may be found in Table 2.

(continued)
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4.2.1. Physicochemical Properties

4.2.1.1. Boiling Point of Alkanes

Needham et al.21 used TIs to develop a regression equation to predict the normal
boiling point (BP) for 74 alkanes:

Subsequently, Basak and Grunwald78 derived the following equation:
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4.2.1.2. Boiling Point of Chlorofluorocarbons (CFCs)

Balaban et al.70 were able to model the boiling points of a large set of CFCs using
TIs with the following equation:

Using a backpropagation neural network (NN), Balaban et al.25 successfully
predicted BP for 276 CFCs. As inputs to the NN, the following parameters were used:
J index, Wiener index (W), number of carbon atoms (Nc), number of chlorine atoms
(NCl),  and  number  of  fluorine  atoms  (NF).  This  NN  resulted  in  a  correlation (r) = 0.992
of observed BP with predicted BP, with a standard error (s) of 8.5°C. The data set used
for NN model development consisted of 276 CFCs with, at most, four carbon atoms.

4.2.1.3. Lipophilicity of Diverse Sets of Compounds

Basak et al.27 derived the following equation to predict lipophilicity (log P,
octanol–water):

where HB1, is a theoretically calculated hydrogen bonding parameter.
Basak et al.31 developed a refined model for chemicals with HB1 equal to zero:

4.2.1.4. Chromatographie Retention Time of Alkanes, Alkylbenzenes

Bonchev and Trinajsti  79 derived the following correlation for alkylbenzenes:

For alkanes, Kier and Hall77 found the following relationship:
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4.2.2. Biomedicinal Properties

4.2.2.1. Anesthetic Dose (AD50) of Barbiturates

Basak et al.13 predicted AD50 of barbiturates using various TIs:

4.2.2.2. Analgesic Potency (A-ED50) of Barbiturates

Basak et al.13 correlated A-ED50 of barbiturates using graph-theoretic parameters:

4.2.2.3. Enzymatic Acetyl Transfer Reaction

Several TIs have been found to correlate with the enzymatic acetyl transfer
reaction,12 as shown by the following equations:
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4.2.2.4. Hill Reaction Inhibitory Potency of Triazinones6

4.2.2.5. Complement Inhibition by Benzamidines80

4.2.2.6. Binding of Barbiturates to Cytochrome P450

Basak43 used several TIs to correlate the binding of barbiturates to cytochrome

4.2.3. Toxicological Properties

4.2.3.1. Nonspecific Narcotic Activity of Alcohols

Basak and Magnuson81 correlated the nonspecific narcotic activity (LC50) of
alcohols using TIs:

4.2.3.2. Nonspecific Toxicity of Esters to Pimephales promelas41

P450:
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4.2.3.3. Mutagenicity of Nitrosamines
Basak et al.42 correlated information- or complexity-based parameters with

mutagenic potency of nitrosamines:

4.2.3.4. Mutagenicity of Diverse Structures
Basak et al.46 used six TIs and four substructure (subgraph) indicator variables to

develop a linear model to classify a set of 520 diverse chemicals as mutagens or
nonmutagens as defined by the Ames mutagenicity test.82 The data set used in their
study consisted of 260 mutagens and 260 nonmutagens. The TIs included three
information-based indexes: information content of the graph orbits (IORB), information
content at sixth order (IC6), and structural information content at zeroth order (SIC0).
A fourth index included number of paths of length 10(P10). The remaining two indexes
were connectivity type: third-order bond-corrected cluster connectivity and
third-order valence-corrected chain connectivity The four substructure indica-
tors were: (1) nitroso chemicals, (2) halogen-substituted mustard, sulfur mustard, or
oxygen mustard, (3) organic sulfate or sulfonate, and (4) a biphenyl amine, benzidine,
or 4,4'-methylene dianiline derivative.

Using these parameters, a 74.8% overall correct classification rate was achieved.
Jackknifed classification tests showed a 74.6% overall correct classification rate.

4.2.3.5. Toxicity of Monoketones
Basak et al.83 derived the following correlations between TIs and the toxicity

(LD50) of monoketones:
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4.2.3.6. Inhibition of  p-Hydroxylation of Aniline by Alcohols84

Table 3 gives more exhaustive information about the list of properties of different
chemical classes that have been successfully correlated using TIs.

(continued)
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(continued)
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4.3. TOPOLOGICAL APPROACHES TO MOLECULAR
SIMILARITY

One important application of TIs and substructural parameters has been in the
quantification of molecular similarity. In practical drug design and risk assessment,
good-quality QSARs of specific classes of chemicals, if available, are the best option.
However, class-specific QSARs are often not available. In such cases, one selects
analogues of the chemical of interest (lead or toxicant), and uses the property of
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selected analogues for the estimation of the biomedicinal/toxic potential of the
chemical.

4.3.1. Quantification of Similarity Using Path Numbers
Path numbers and weighted paths have been used by Randi  and

co-workers in determining partial orderings relating dopamine agonist properties for
2-aminotetralins,105 physicochemical properties of decanes,106 therapeutic potential of
diverse compounds,40 and antitumor activity of phenyldialkyltriazines.107 Randi  66 has
also reviewed the use of path numbers and weighted paths as they are applied in
molecular similarity approaches to property optimization. The results show that the
ordering of molecules by path numbers reflects the pattern of activity reasonably well.

4.3.2. Quantification of Similarity Using Topological Indexes
Basak et al.2 used TIs to compute intermolecular similarity of chemicals. Ninety

TIs were calculated for a set of 3692 chemicals with diverse structures. Principal
component analysis (PCA) was used to reduce the 90-dimensional space to a 10-
dimensional subspace which explained 93% of the variance. In the 10-dimensional PC
space, the intermolecular similarity of chemicals were quantified in terms of their
Euclidean distance (ED). Ten chemicals were then chosen at random from the set of
3692 structures and their analogues were selected using the Euclidean distance as the
criterion for nearest-neighbor selection. Figure 3 gives one example of a probe
chemical and its five chosen neighbors using this method. The results show that the
probe and its selected analogues have a reasonable degree of structural similarity.

4.3.3. Quantification of Intermolecular Similarity Using Substructural
Parameters

4.3.3.1. Atom Pairs (APs)

Carhart et al.4 developed the AP method of measuring molecular similarity. An
AP is defined as a substructure consisting of two nonhydrogen atoms i and j and their
interatomic separation:

where encodes information about the element type, number of
nonhydrogen neighbors, and number of electrons. Interatomic separation of two
atoms is the number of atoms traversed in the shortest bond-by-bond path containing
both atoms.

For two molecules, Mi and Mj, AP-based similarity is defined as:

(30) Sij = 2C/(Ti + Tj)
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where C is the number of APs common to molecule i and j. Ti and Tj are the total
number of APs in chemicals i and j, respectively. The numerator is multiplied by 2 to
reflect the presence of shared APs in both molecules.

The Lederle group has used the AP similarity method to compare chemicals in
their data base. Basak et al.28,29,46,47,49,50,53,108 have used the AP method in selecting
analogues of chemicals in different and diverse data bases. The relative effectiveness
of the AP and ED methods in selecting analogues of chemicals in the STARLIST109

database containing more than 4000 chemicals are shown in Figure 4.108
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4.3.3.2. Similarity Methods Based on Substructures

Willett and co-workers110–115 have developed several novel and useful techniques
in molecular similarity based on substructural fragments. These approaches are based
on the frequency of occurrence of generated fragment descriptors within the molecular
graph. Success of these methods has been shown in 2D and 3D matchings of chemical
structure, classification of chemical data bases, as well as property estimation.

4.3.4. K Nearest-Neighbor (KNN) Method of Estimating Properties
Basak and co-workers also used K (K = 1–10, 15, 20, 25) nearest neighbors of

compounds in predicting properties like lipophilicity,29 boiling point,28,47,49,116 and
mutagenicity28,47,49,50 of diverse data bases. For a structurally diverse set of 76
compounds, lipophilicity (logP, octanol–water) could be reasonably estimated using
AP (r = 0.85) and ED (r = 0.85) methods for K= 5.29

Four topologically based methods were used by Basak and Grunwald47 in esti-
mating the boiling point of a set of 139 hydrocarbons and a group of 15 nitrosamines
using the nearest neighbor (K = 1).

Basak and Grunwald50 carried out a comparative study of five molecular similar-
ity techniques, four topologically and one physicochemically based, in estimating the
mutagenicity of a set of 73 aromatic and heteroaromatic amines. Of the five methods,
two measures of molecular similarity were calculated using topological descriptors,
two were derived using physical properties, and the fifth was based on a combination
of both topological and physicochemical parameters. The best estimated values were
obtained with K = 4–5.

Basak and Grunwald49 also used topologically based similarity for KNN estima-
tion of the mutagenicity of a set of 95 aromatic amines and the boiling point of a group
of over 2900 chemicals with good results.

4.4. GEOMETRICAL/SHAPE PARAMETERS IN SAR

Geometrical parameters, such as molecular shape parameters,117 sterimol descrip-
tors,59 volume,61 bulk parameters,60,118 and 3D Wiener index,119 have been developed
and used in SARs. Such parameters are derived from the relative distances of atoms
in the 3D Euclidean space. We give below some examples of QSARs using 3D
descriptors.

4.4.1. van der Waals Volume (VW)

4.4.1.1. Physicochemical Properties

Bhatnagar et al.120 studied the relationship of boiling point with V W for several
classes of chemicals, including saturated alcohols, primary amines, and alkyl halides:
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Correlation of water solubility (molality) with VW has also been determined for
the saturated alcohols120:

4.4.1.2. Biomedicinal Properties

Moriguchi and Kanada61 developed a regression equation modeling the effective
concentration (C) of penicillins against Staphylococcus aureus in mice:

4.4.1.3. Toxicological Properties

For tadpole narcosis of a diverse set of chemicals, the following equation has been
developed61:

Correlation of nonspecific toxicity on the Madison 517 fungus, expressed as
log(1/C) (C is the minimum toxic dose), with VW was found to be61:

4.4.2. Comparative Molecular Field Analysis (CoMFA) Approach
In the CoMFA method developed by Cramer et al.,121 a molecule is described

using electrostatic, steric, and, sometimes, hydrogen bonding fields calculated at the
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intersections of a 3D lattice. The partial least-squares method is used to describe
statistical relationships between these fields and biological activity.

4.5. COMPARATIVE STUDY OF TOPOLOGICAL VERSUS
GEOMETRICAL DESCRIPTORS IN QSARs

It is clear from the above that both topological and 3D descriptors have been
extensively used in QSARs of large sets of molecules. However, no systematic work
has been carried out on the relative effectiveness of TIs versus 3D parameters in the
prediction of properties using QSAR models. We summarize below the results of our
recent studies on the utility of graph-theoretic indexes and geometrical parameters such
as 3D Wiener index and volume in estimating: (1) normal boiling point of a set of 140
hydrocarbons, (2) lipophilicity (log P, octanol–water) of a diverse set of 254 mole-
cules, and (3) mutagenic potency (In R, R being the number of revertants per nanomole
in the Ames test) of a set of 95 aromatic and heteroaromatic amines.

4.5.1. Property Data Bases

4.5.1.1. Boiling Point
All normal BP data for the hydrocarbons were found in the literature. The

hydrocarbons analyzed include 74 alkanes,21 29 alkyl benzenes,122 and 37 polycyclic
aromatic hydrocarbons.123 Table 4 presents a list of the hydrocarbon compounds with
their normal BP (°C).

(continued)
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(continued)
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4.5.1.2. Lipophilicity (logP, Octanol–Water)
The 254 chemicals used to model log P are presented in Table 5. These chemicals

were a subset of 382 chemicals studied by us previously27 and consist of only those
compounds with measured log P available in STARLIST,109 a selected subset of data
deemed to be of very high quality by experts in the field. The log P values are provided
in Table 5.

(continued)
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(continued)
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4.5.1.3. Mutagenicity (InR)
The set of compounds used to model mutagenic potency consisted of 95 aromatic

and heteroaromatic amines available from the literature.124 A list of these chemicals
and their mutagenic potency is presented in Table 6. The mutagenic potency of the
aromatic amines in S. typhimurium TA98 + S9 microsomal preparation is expressed
by the natural logarithm of the number of revertants per nanomole.

(continued)



102 Chapter 4



Graph-Theoretic and Geometric Descriptors in SAR 103

4.5.2. Calculation of Parameters

4.5.2.1. Computation of Topological Indexes

The first TI reported in the chemical literature, the Wiener index W,87 may be
calculated from the distance matrix D(G) of a hydrogen-suppressed chemical graph G
as the sum of the entries in the upper triangular distance submatrix. The distance matrix
D(G) of a nondirected graph G with n vertices is a symmetric  matrix (dij), where
dij is equal to the topological distance between vertices vi and vj in G. Each diagonal
element dii of D(G) is zero. We give below the distance matrix D(G1) of the labeled
hydrogen-suppressed graph G1 of isobutane (Figure 5):

W is calculated as:
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where is the number of unordered pairs of vertices whose distance is h.
Randi ’s connectivity index,35 higher-order connectivity indexes, and path, clus-

ter, path-cluster, and chain types of simple, bond and valence connectivity parameters
developed by Kier and Hall77 were calculated by a computer program POLLY 2.3
developed by Basak, Harriss, and Magnuson125 at the University of Minnesota. Also,

parameters, the number of paths of length h(h = 0–10) in the hydrogen-suppressed
graph, are calculated using standard algorithms.

Balaban22–24 defined a series of indexes based on distance sums within the
distance matrix for a molecular graph which he designated as J indexes. Unlike W,
these indexes are independent of molecular size and have low degeneracy.

Information-theoretic TIs are calculated by the application of information theory on
molecular graphs. An appropriate set A of n elements is derived from a molecular graph G
depending on certain structural characteristics. On the basis of an equivalence relation
defined on A, the set A is partitioned into disjoint subsets of order

A probability distribution is then assigned to the set of equivalence
classes:

where is the probability that a randomly selected element of A will occur in
the ith subset.

The mean information content of an element of A is defined by Shannon’s
relation126:

The logarithm base 2 is used to measure the information content in bits. The total
information content of the set A is then n times IC.
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To account for the chemical nature of vertices, as well as their bonding pattern,
Sarkar, Roy, and Sarkar127 calculated information content of molecular graphs on the
basis of an equivalence relation where two atoms of the same element are considered
equivalent if they possess an identical first-order topological neighborhood. Since
properties of atoms or reaction centers are often modulated by physicochemical
characteristics of distant neighbors, i.e., neighbors of neighbors, it was deemed
essential to extend this approach to account for higher-order neighbors of vertices.
This can be accomplished by defining open spheres for all vertices of a molecular
graph. If r is any nonnegative real number, and v is a vertex of the graph G, then the
open sphere S(v,r) is defined as the set consisting of all vertices in G such that

Obviously, for and if then S(v,r)
is the set consisting of v and all vertices of G situated at unit distance from v.

One can construct such open spheres for higher integral values of r. For a particular
value of r, the collection of all such open spheres S(v,r), where v runs over the whole
vertex set V, forms a neighborhood system of the vertices of G. A suitably defined
equivalence relation can then partition Vinto disjoint subsets consisting of topological
neighborhoods of vertices up to rth order neighbors. Such an approach has already
been developed and the information-theoretic indexes calculated are called indexes of
neighborhood symmetry.128

In this method, chemical species are symbolized by weighted linear graphs. Two
vertices and of a molecular graph are said to be equivalent with respect to rth

order neighborhood if and only if corresponding to each path of length
r, there is a distinct path of the same length such that the paths have
similar edge weights, and both and are connected to the same number and type
of atoms up to the rth order bonded neighbors. The detailed equivalence relation is
described in our earlier studies.128

Once partitioning of the vertex set for a particular order of neighborhood is
completed, is calculated by equation (39). Basak, Roy, and Ghosh129 defined
another information-theoretic measure, structural information content ( ), which is
calculated as:

where is calculated from equation (39) and n is the total number of vertices of the
graph.

Another information-theoretic invariant, complementary information content
( ), is defined as81:

represents the difference between maximum possible complexity of a graph
(where each vertex belongs to a separate equivalence class) and the realized topological
information of a chemical species as defined by . Figure 6 provides an example of
the first order (r = 1) calculations of IC, SIC, and CIC.
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The information-theoretic index on graph distance, is calculated from the
distance matrix D (G) of a molecular graph G as follows34:

The mean information index, , is found by dividing the information index by
W. ICr, SICr, CICr, and were calculated by POLLY 2.3.125 The information-
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theoretic parameters defined on the distance matrix, HD and HV, were calculated by
the method of Raychaudhury et al.36

4.5.2.2. Computation of Geometrical Parameters

Volume (VW) was calculated using the SYBYL130 package from Tripos Associates,
Inc. The 3D Wiener numbers were calculated using SYBYL with an SPL (Sybyl
Programming Language) program. Calculation of 3D Wiener numbers consists of the
sum of entries in the upper triangular submatrix of the topographic Euclidean distance
matrix for a molecule. The 3D coordinates for the atoms were determined using
CONCORD 3.0.1.131 Two variants of the 3D Wiener number were calculated. For
3DWH, hydrogen atoms are included in the computations and for 3DW, hydrogen atoms
are excluded from the computations.

4.5.2.3. Computation of HB1

The hydrogen bonding parameter HB1 was calculated using a program developed
by Basak.132 This program is based on the ideas of Ou et al.l33

The list of parameters used in this chapter is given in Table 2.

4.5.3. Statistical Methods

4.5.3.1. Index Selection

Since the scale of the TIs vary by several orders of magnitude, each TI was
transformed by the natural log of the index plus one.

The large number of TIs, and the fact that many of them are highly correlated,
confounds the development of predictive models. Therefore, we attempted to reduce
the number of TIs to a smaller set of relatively independent variables. Variable
clustering134 was used to divide the TIs into disjoint subsets (clusters) that are
essentially unidimensional. These clusters form new variables which are the first
principal component derived from the members of the cluster. From each cluster of
indexes, a single index was selected. The index chosen was the one most correlated
with the cluster variable. In some cases, a member of a cluster showed poor group
membership relative to the other members of the cluster, i.e., the correlation of an index
with the cluster variable was much lower than the other members. Any variable
showing poor cluster membership was selected for further studies as well. A correla-
tion of a TI with the cluster variable less than 0.7 was used as the definition of poor
cluster membership.

4.5.3.2. Regression Analysis

The variables used to model each of the properties in this study were TIs, HB1

and three geometry-related parameters, volume (VW) and the two 3D Wiener numbers
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(3DW and 3DWH). The TIs were restricted to those selected by the variable clustering
procedure described previously.

All subsets regression was used for the development of the models. The criteria
used for defining the “best” model were R2 and Mallow’s CP.135 For each of the
properties examined, initial models used only the TIs and HB1 as potential variables.
Subsequently, we added the three geometric variables to examine the improvement
provided by the addition of geometric information.

4.5.4. Results

4.5.4.1. Boiling Point

HB1 is zero for all hydrocarbons and, therefore, was deleted from analyses of BP.
Twelve of the TIs were deleted for the analysis of the 140 hydrocarbons as well. These
indexes included the third- and fourth-order chain connectivity indexes, which were
zero for all chemicals, the fourth- and sixth-order bond and valence corrected cluster
connectivity indexes, which were perfectly correlated with the simple cluster connec-
tivity indexes (r = 1.0), and JX and JY, which were perfectly correlated with JB for
hydrocarbons.

Variable clustering of the remaining 89 TIs resulted in ten clusters. These clusters
explained 89.7% of the total variation. In Table 7, we present the indexes selected from
each cluster for subsequent use in modeling the BP of hydrocarbons. O, IC0, IC1, IC2,
S1C0, and SIC1 were selected because of their poor relationship with their clusters

With the 16 TIs, all subsets regression resulted in a seven-parameter model as
follows:
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Two chemicals, acenaphthene and cyclopenta(cd)pyrene (Nos. 106 and 117 of Table
4, respectively) had rather large residuals The Cook’s distance136 for these
two chemicals indicated they were influential cases. Given these circumstances, an
outlier test136 was performed and both chemicals had a significant result. After the
removal of these chemicals, the following model was developed:

With the inclusion of the geometric parameters, an eight-parameter model was
developed, which included two of the geometric parameters:

Table 4 presents the predicted normal BP for the hydrocarbons when using equations
(44) and (45).

4.5.4.2. Lipophilicity (logP)

Twelve of the TIs were dropped from the study of the logP data set. The third-
and fourth-order chain connectivity indexes were zero for all chemicals and the
fifth-order chain connectivity index was nonzero for only one chemical. The sixth-
order cluster connectivity indexes were nonzero for only one compound as well.
Therefore, 89 indexes were used for the variable clustering.

There were 12 clusters generated by variable clustering for the 89 TIs used for the
logP data set. The total variation explained by these clusters was 87.8% of the total.
Table 8 presents the indexes selected from each of the clusters. The indexes O, S1C0,
J, IC0, IC1, and SIC2 showed poor membership within the clusters and were
retained as well.

Using all subsets regression with the selected TIs and HB1 as independent
variables resulted in a nine-parameter model:



110 Chapter 4

Inclusion of the geometric parameters resulted in the following 11-parameter
model:

Predicted values of logP using equations (46) and (47) are presented in Table 5.

4.5.4.3. Mutagenicity

Twelve TIs were dropped from the analyses of the 95 aromatic and heteroaromatic
amines. The indexes dropped included the third- and fourth-order chain connectivity
indexes, which were zero for all chemicals, and the fourth- and sixth-order cluster
connectivity indexes, which were nonzero for only three compounds.

There were eight clusters generated by variable clustering the 89 TIs used for the
aromatic amine data set. The total variation explained by these clusters was 88.6% of
the total. In Table 9, we present the indexes selected from each of the clusters. Indexes

and were retained because of their poor cluster membership

Using all subsets regression with the selected TIs and HB1 as independent
variables resulted in an eight-parameter model:
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The predicted mutagenicity values for each of the aromatic amine chemicals from
equations (48) and (49) are presented in Table 6.

4.6. DISCUSSION

The objectives of this chapter were to review the utility of TIs and 3D parameters
in QSARs as well as to report recent results on the relative effectiveness of TIs versus
geometrical parameters in the development of QSARs for estimating properties. A
large number of QSAR models summarized here show that graph-theoretic invariants
correlate reasonably well with physicochemical, biomedicinal, toxicological, and
biochemical properties of diverse congeneric sets of molecules. It is also clear that TIs
and substructures have found successful applications in the quantification of molecular
similarity, selection of analogues, and molecular similarity-based estimation of prop-
erties. Of special interest is the fact that the molecular similarity method developed by
Basak et al.2 has been successfully used in the discovery of a novel class of human
immunodeficiency virus reverse transcriptase (HIV-RT) inhibitors, showing the utility
of such nonempirically based methods in practical drug discovery. Examples of
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QSARs using 3D descriptors also demonstrate that geometrical parameters alone can
predict properties of congeneric molecules quite satisfactorily.

In this context, it was of interest to compare the capabilities of TIs and 3D
descriptors in QSAR analysis. To this end, we reported the QSAR studies developed
on three different properties, viz., normal boiling of 140 hydrocarbons, lipophilicity
(log P, octanol–water) of a diverse set of 254 chemicals, and mutagenicity (lnR) of a
group of 95 aromatic and heteroaromatic amines. Results of these QSARs show that
TIs contain important structural information sufficient to develop useful predictive
models for these properties. However, in the case of BP, the addition of geometrical
parameters, viz., 3DW and 3DWH, to the list of independent variables resulted in
improved models in the sense that, while the TI-based QSARs had two outliers, the
addition of geometrical variables gave well-behaved models including all of the
hydrocarbons in the set. Also, estimate errors were significantly smaller for the
regression equation using geometrical descriptors [equation (45) versus (44)]. This
indicates that for BP of hydrocarbons, 3D or geometrical parameters encode some
pertinent information relevant to BP which are not included in TIs. For logP and
mutagenicity, however, the addition of geometrical descriptors resulted in only a slight
improvement in the quality of the QSAR models over those derived from TIs only.

For log P, we also used HB1, an algorithmically derived hydrogen bonding
parameter, in addition to TIs, VW, 3DW, and 3DWH. This is because the magnitude of
logP of a molecule is known to depend significantly on the strength of hydrogen-bond-
ing ability of solutes with solvents.60,133 Our earlier studies on the correlation of log
using algorithmically derived parameters show that HB1 is an important parameter in
predicting log P.27,31,45 QSARs of logP reported in this chapter provide evidence that
the role of HB1 cannot be carried out by a combination of TIs and 3D parameters.

In many practical situations of drug design and risk assessment, one has to
estimate physical/biomedical/toxicological properties of chemicals without access to
any empirical data.55 Similarity-based models1–3,28,29,47,50,66,111 and estimated values
based on nonempirical structural parameters25,27,31,32,45,70 are two viable alternatives
for deriving property values under such data-poor situations. The QSAR models
reported here based on TIs and geometrical parameters may find applications in
selecting analogues and in estimating properties of chemicals in such cases.
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