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Abstract
Binary search trees (BSTs) are one of the most important data structures in the field of computer science. We may easily 
write a parallel construction program of a BST by extending the sequential algorithm straightly. However, in such conven-
tional approaches, the order of nodes inserted into a BST is determined dynamically, depending on the occasional state of 
the parallel thread execution. It results in a BST with a different structure (node position) generated on every execution of 
the parallel program. On the other hand, we have been developing parallel construction schemes of the BST with the same 
structure as a BST generated by the sequential algorithm. One is the speculatively parallel construction of a BST. And another 
is the purely (non-speculatively) parallel construction, but it was derived through the concept of thread-level speculation. 
This paper evaluates the performances of those construction schemes on several types of shared-memory multiprocessors. 
For the large enough size of BST, our new parallel programs can construct a BST with always the same structure on a little 
lower or sometimes higher performance than the program that makes a BST with a different structure on every execution. 
And in contrast with the general expectation that simply enlarging the size of parallel tasks increases misspeculation and 
damages the performance, we found that it sometimes enhances the performance of speculatively parallel execution.
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1 Introduction

Binary search trees (BSTs) are one of the most important 
data structures in the field of computer science. They are 
often used for data sorting or implementation of priority 
queues, which many usual applications require. They are 
also used to implement abstract data structures, such as sets/
multisets and associative arrays.

A parallel construction algorithm of a BST can be easily 
derived from the sequential algorithm. However, since the 
structure of a generated BST depends on the order of inserted 
nodes, such a parallel algorithm cannot create a BST with the 
same structure (node position) as a BST constructed by the 
sequential algorithm. That is, the structure of the generated BST 

will be different for every time of program execution. When we 
use BSTs only as an intermediate data representation for data 
sorting and do not require sorting stability, we may not need to 
care about the uniqueness of the tree structure. Here, sorting 
stability means that the order of data elements with the same 
key is preserved before and after sorting.

On the other hand, for example, if we would like to per-
form a read or modification for data in the nodes after generat-
ing the BST, the occasional difference in the BST structure 
makes the verification or the debugging of the program more 
complex. Therefore, we have been challenged to develop par-
allel construction schemes to create a BST having the same 
structure as a BST generated by the sequential algorithm. The 
first scheme is based on speculatively parallel execution, and 
we presented it in the previous literature [1]. It is not a simple 
speculative execution version, and we enhanced it by embed-
ding the checkpoint restart mechanism to reduce the repair time 
from the misspeculation. And the second scheme we presented 
in [2] is purely parallel and no longer speculative, although we 
have developed it through the concept of speculative execution. 
It is an outcome of optimizing a speculatively parallel execu-
tion model. Such conceptual flow from the sequential execution 
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through the speculative execution to the purely parallel execu-
tion is a novel methodology in parallel processing.

Our mainstream research on speculative execution is the 
development of a general-purpose system based on thread-level 
parallel speculation [1, 3–6], and the construction of a BST is 
one of the applications we picked up often in our past papers. 
Those studies provide two contributions to computer engineer-
ing. One is the parallel construction scheme as a deliverable to 
create the BST with the same structure as the sequential con-
struction. And the other is the expectation that our speculation-
based approach may lead to a new methodology for developing 
parallel algorithms for other objectives too.

In this paper, we evaluate the performance of those parallel 
schemes on several types of shared-memory machines, investi-
gate their relationship with machine memory models, and ver-
ify the effectiveness of the speculation-based BST construction.

The rest of the paper is organized as follows. Section 2 
summarizes the conventional purely parallel construction 
of a BST. The structure of the constructed BST here is not 
unique. Section 3 summarizes the speculative construction 
of a BST. The described algorithm here is not an ordinary 
speculative and is enhanced to improve the performance. 

Section 4 summarizes the non-speculative but conceptu-
ally speculation-based construction of a BST. BSTs con-
structed in Sects. 3 and 4 have the same structure as those 
constructed sequentially. The ideas described in Sects. 3 and 
4 are already published [1, 2], and Sect. 5 newly evaluates 
and analyzes the performance of them in detail. Section 6 
concludes the evaluation results and future works.

2  Background

Program 1 is a simply parallelized version of constructing 
the BST. The data structure of nodes of the BST is defined 
as NODE at lines 1 and 7–10. To resolve conflicts among 
threads willing to add their nodes to the same location in the 
BST, each pointer to a child node (the member ptr in Link) 
is coupled with a lock variable (the member lock in Link). 
Each parallel thread executes the function insert() to insert a 
new node—which is assigned to the argument of insert()—to 
a BST. It walks down in the BST to search for the insertion 
point while dereferencing links to child nodes and then adds 
a new node to the insertion point found.
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At line 29 of Program 1, the member ptr of the structure 
Node pointed to by the variable cur points to the current 
node in the BST. If the value of ptr is NULL, the thread 
acquires the lock for it (at line 30) and re-reads it (at line 
31) using the macro MR(). This macro, defined in line 21, 
prevents the optimizing compiler from using the already-
read value and enforces re-reading from memory. And 
if it is still NULL after re-reading, the thread writes the 
address of a new node there (at line 34) after initializing 
the new node (at line 32). When the value of ptr is not 
NULL at lines 29 or 31, the thread walks down to the next 
child node (at lines 41–44).

Thus, the thread acquires the lock only when adding 
a new node and does not while merely walking down 
through intermediate nodes of the BST. This strategy can 
significantly improve the performance compared to the 
case that the thread acquires locks to access every node 
link it passes by on its walk-down. On the other hand, how-
ever, this strategy is also hazardous in parallel program-
ming. Feng et al. [7] presented almost the same strategy 
as Program 1, and Howley et al. [8] proposed a lock-free 
algorithm for a BST. However, they said nothing about a 
critical situation on parallel execution.

When we attempt to optimize programs by bypassing 
mutual exclusion controls, we should take care of the mem-
ory ordering models of the machines on which the programs 
run. In the case that Program 1 runs on processors imple-
menting x86 architecture, it works well as we expected, even 
if the memory fence [9] at line 33 is omitted. x86 archi-
tecture uses the total store ordering model (TSO) [10], so 
writes performed by one processor are observed from other 
processors in the original order of the writes. Therefore, 
when another thread can observe the results of the assign-
ment of line 34, it can also observe the result of line 32 (that 
is, lines 15–18).

On the other hand, when we execute Program 1 without 
the memory fence at line 33 on processors which use more 
relaxed memory ordering models, it may abnormally termi-
nate. For example, IBM POWER/PowerPC uses the weak 
consistency model [11], and MIPS/RISC-V and ARMv8 
use the release consistency model [12]. In these ordering 
models, the writes from one processor may be observed by 
other processors in a different order from the original. For 
example, suppose a thread has modified data X and then data 
Y. Another parallel thread cannot always read the modified 
value of data X even after reading the modified value of data 
Y. It may read the old value of data X before modification.

Here is a concrete scenario explaining a critical situation 
in constructing a BST. Assume a thread P added a node X as 
a child of a node Y. Thread P initialized the link pointers A 
and B of node X to NULL (at line 32) and then set the link 
pointer C of node Y to point to node X (at line 34). Even 

when another thread, Q here, can observe that C points to 
node X (at line 29), Q may not yet observe that A or B is 
NULL (at line 29, but in the next loop iteration). Therefore, 
to guarantee that thread Q can always read NULL from A/B 
if Q has read the address of node X stored in C, a program-
mer must put a memory fence (or memory barrier) operation 
at line 33. When using the GNU C compiler or others, we 
can perform the memory fence by calling the built-in func-
tion __sync_synchronize().

Program 1 supports an internal BST, in which every node 
stores an actual key (or data). There were also lock-free or 
wait-free algorithms [13–15] presented for an external (or 
leaf-oriented) BST. In external BSTs, only the leaf nodes 
store actual keys, and other intermediate nodes are used 
merely for routing purposes. Of course, those algorithms 
are all for concurrent manipulations of a BST, and the struc-
ture of a constructed BST is not unique. On the other hand, 
this paper discusses only parallel algorithms to construct 
an internal BST with the same structure as a sequentially 
constructed BST.

3  Speculatively Parallel Construction

3.1  Speculative Memory

Thread-Level Speculation (TLS) [16–34] is one easy way 
to parallelize a sequential program, even if there may be 
unknown dependencies among parallel tasks generated 
from the program. Of course, the practical performance 
gain depends on the parallelism inherent in the program. We 
have been developing a Software-based Speculative Memory 
(SSM) system [1, 4–6] as an aid oriented for both specula-
tive and non-speculative parallelization.

Our SSM system implicitly provides each thread with a 
Speculation Buffer (SB), which is the private buffer to log 
the history of the speculative memory accesses. The SSM 
system employs the lazy versioning policy. When a thread 
writes speculatively to memory, the SSM system adds the 
pair of the memory location and the write value to the SB, 
and memory remains unchanged. When a thread reads spec-
ulatively from memory, it gets the value from the SB if the 
required data are stored in the SB. Otherwise, the thread 
reads from memory and then adds the memory location and 
the copy of the read value from memory to the SB. The 
contents of the SB are invisible from other threads.

At the end of the task, a thread waits until all of the 
threads preceding in the program order of the original 
sequential program finish their tasks. And then, the thread 
tries to detect the memory hazard by comparing the read val-
ues stored in the SB and the memory values. The mismatch 
between them shows the hazard, which means that after the 
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thread read the data, some preceding threads modified it. 
If no hazards are detected, the thread commits. That is, the 
thread writes back all of the write values buffered in its SB 
to memory.

If a hazard is detected, the thread aborts. Concretely, it 
flushes its SB and re-executes its task from the beginning. 
However, the SSM system supports the so-called check-
point-repair mechanism. Therefore, the SSM system does 
not constantly enforce the thread to re-execute from the 
beginning of the task and can make it roll back to the point 
of reading the data that caused the hazard.

3.2  Speculative Node‑Insertion Algorithm

Program 2 is a part of the speculatively parallel version 
using the SSM library. This paper roughly summarizes the 
program’s behavior. More details, such as implementations 
of the SSM library functions and speculative execution 
mechanism, were described in [1]. Each thread executes 
the function insert() to add a new node to the BST.
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A tree node contains a serial number (at line 8), repre-
senting the logical order if the BST is sequentially con-
structed. Before a thread calls the function insert(), the 
serial number of the node assigned for its argument must 
have already been set. A node-link has two pointers to 
nodes (at lines 4–5). One is the “fixed” pointer ptr, point-
ing to the correct child node. Another is a provisional 
pointer prov, pointing to the node that may be a child. A 
pointer written speculatively to ptr by a thread is merely 
buffered to its SB and remains invisible from other threads 
until the thread commits. Therefore, a succeeding thread 
may attempt to add its node here without knowing that the 
preceding thread has already modified ptr. This failure to 
find the correct insertion point leads to misspeculation. 
Therefore, we make a thread write a pointer into prov 
before it commits, which helps the succeeding threads 
walk down to deeper levels in the BST.

A thread (P here) checks whether the current pointer is 
NULL (at line 28). Even if it is NULL, another thread (Q 
here) that has not yet committed might have modified it specu-
latively. So next, P checks the provisional pointer (at line 29). 
If it is also NULL, P speculatively adds its node here (at lines 
30–34). Otherwise, P checks whether Q is P’s preceding or 
succeeding thread by comparing their node’s serial number (at 
line 29). If Q is P’s preceding thread, P behaves as if Q’s node 
has already been added here (and goes to line 38). However, if 
Q is P’s succeeding thread, P speculatively adds its node here 
(at lines 30–34).

Function sm_readed_chkpt() is an SSM library function 
that adds a speculative read history to the SB and puts a check-
point. When called at line 30, it records that the value of cur|-
>|ptr was NULL. When called at line 38, it records that the 
value of cur|->|ptr was the value stored in variable t. Here, we 
do not care what the actual content of cur|->|ptr is. We merely 
pretend that the content of cur|->|ptr was so. Before the thread 
tries to commit, it checks the content at the memory location 
specified by cur|->|ptr. If the actual content on memory is not 
the same as the value recorded by function sm_readed_chkpt(), 
the thread re-reads from that memory location and re-executes 
the posterior part of the task.

A thread adds its node to a BST by calling an SSM library 
function sm_write(). At line 33, it speculatively writes the 
address of its node to cur|->|ptr. The result of this speculative 
write is invisible from other threads until the thread commits. 
Therefore, to make its node addition visible immediately from 
other threads, the thread also writes directly to cur|->|prov 
(at line 34). When we execute this program on the machine 
using relaxed memory ordering models, the memory fence is 
necessary between the call of init_node_link() (at line 31) and 
the write to cur|->|prov (at line 34).

After a thread finishes the execution of insert(), it tries to 
commit. It scans its SB to verify the read histories, and if no 

hazard is detected, it commits. For Program 2, only the read 
histories recorded by function sm_readed_chkpt() should be 
verified. If the thread detects a hazard, it calls a repair func-
tion. It must find the correct insertion point by walking down 
in the BST from not the root node but the faulted node link. Of 
course, besides insert(), a programmer must provide a repair 
function that starts the walk-down from a given (faulted) node. 
As described above, the SSM system passes the memory loca-
tion to be re-read as the faulted node-link information to that 
repair function.

4  TLS‑Inspired Parallel Construction

4.1  Development Insight for a New Parallel 
Algorithm

TLS requires commitment, which causes the serializa-
tion among parallel threads. This serialization essentially 
comes with two overheads. First, every thread trying to 
commit must wait for all its preceding threads to commit. 
Second, the hazard detection, the re-execution on abort 
(or the repair from misspeculation), and the write-back on 
commitment should be performed exclusively from other 
threads. Therefore, the time it took for those cannot be 
hidden.

Our further step in TLS system development was to 
reduce (or remove, if possible) the overhead for the com-
mitment in TLS. To enable each thread to add a node with-
out waiting for its preceding threads, first, we must employ 
the eager versioning policy instead of the lazy versioning 
one, which SSM uses. However, in this case, the following 
two issues arise. One is managing the multiple versions of 
data as visible from all threads. In general, this creates a 
fatal overhead. However, when inserting a new node into 
a BST, a link pointer is modified only once from NULL to 
the new node’s address and not modified multiple times by 
multiple threads. We can make use of this characteristic to 
reduce the version management overhead.

The other and more significant issue is who and how 
to resolve a detected hazard. With lazy versioning, it is 
natural for each thread to be responsible for detecting and 
resolving a hazard on the nodes it inserted by itself. With 
eager versioning, however, it may be natural for a thread 
to detect another thread’s misspeculation result. Conse-
quently, as presented in [2], we finally gave a thread that 
found a hazard during its walk-down (not the thread itself 
that caused a hazard) the role of repairing the misspecu-
lated node insertion.
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4.2  TLS‑Inspired Parallel Node‑Insertion Algorithm

Program 3 implements our new parallel algorithm. Each 
thread rearranges nodes when it detects another thread’s 
misspeculation. While the program involves such analo-
gous features with TLS, such as logging of speculative 
reads, hazard detection, and checkpoint repair, it is written 
as a purely parallel program directly using the standard 

lock primitives. Each node has a serial number (at line 8), 
and the locking granularity is the link pointer (lines 3–6 
and 10). Each thread executes function insert() to insert 
a new node to a BST or reinsert a node once inserted but 
removed because of a hazard detected. When function 
insert() is called, structure member left.ptr/right.ptr of the 
node assigned for the argument of function insert() must 
be NULL or point to another node.
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The outline of the node insertion is as the followings. A 
thread walks down in the BST to find the insertion point. 
When it encounters the NULL pointer or a pointer to the 
node that any succeeding thread has already added, it rec-
ognizes here is the insertion point. If another node has been 
added by a succeeding thread, the thread removes it and its 
subtrees from the BST and adds a new node here. Note that 
other threads may be walking down in the subtree being 
removed. Therefore, at this time, we had better remove nodes 
with a unit of a subtree and never decompose the subtree to 
nodes. On the other hand, when a thread tries to add a new 
node at an insertion point, it should verify that its insertion 
point is not included in a removed subtree. For this verifica-
tion, a thread walks down with logging the nodes it passed 
by. This log is also helpful for restarting the walk-down not 
from the root node of the BST but from the cut-off point 
after the subtree is removed.

Now, we trace the behavior of a thread using Program 3. 
A thread starts the walk-down of the BST after clearing the 
logs of nodes on the walk-down path by calling the func-
tion reset_history() at line 21. This log is the private data 
structure for each thread and is implemented with a linear 
list containing the pairs of the pointer to the link field (left 
or right) in a node and its content (left.ptr or right.ptr). The 
function add_history() at line 51 adds a new pair of cur and 
t to the log.

If the current pointer (cur|->|ptr) is NULL or points to a 
node with a later serial number (at line 23), this place may 
be the insertion point. Therefore, the thread acquires the lock 
for this link (at line 24) and then re-reads the current pointer 
from memory (at line 25) to confirm this place is undoubt-
edly the insertion point. When the current pointer (cur|-
>|ptr) is still NULL, and this insertion point is not included 
in a removed subtree, the thread executes the codes in lines 
31–35. The function reset_node_link() removes the node 
pointed to by the link assigned as its argument and inserts 
it into the list of removed subtrees (LRST). Here, note that 
the new node to be inserted may be a node removed from 
the BST before. And then, the function reset_node_link() 

initializes the link to NULL. After that, the thread adds the 
new node to this insertion point (at line 33).

When another node has already been added to the 
insertion point, and this insertion point is not included in 
a removed subtree, the thread executes the codes in lines 
43–47. The function substitute() removes the already added 
node and adds a new node. Before, we said we remove nodes 
with the unit of a subtree, but it is better to retain the result 
of the already performed insertion as possible. Figure 1 
shows an example of restructuring the BST. Figure 1a illus-
trates the BST before a thread adds a new node X as the 
left child of node A. A succeeding thread already added 
node B here, and node B has its child subtrees C and D. The 
function substitute() inserts node X between nodes A and 
B instead of replacing a subtree whose root is node B with 
node X. If node B’s key is less than node X’s, substitute() 
removes subtree D and restructures the BST to one shown 
in Fig. 1b. Otherwise, it removes subtree C and restructures 
the BST to one shown in Fig. 1c. The function substitute() 
returns the pointer to the root node of the removed subtree 
(C or D in the case of Fig. 1) (at line 43). Therefore, the 
thread inserts the removed subtree into the LRST by calling 
push_removed() (at line 46). Multiple locks are required for 
the manipulation in substitute(), and we must consider the 
case that other threads pass through the restructuring region 
in the BST. Therefore, the manipulation in substitute() must 
be implemented carefully. Details of substitute() [and other 
functions called from the inside of insert()] and the critical 
cases to be considered to guarantee the correctness of the 
program are described in [2].

When the insertion point is included in a removed sub-
tree, the thread executes the codes in lines 27–29 or 39–41. 
The thread executes the function verify() (at lines 26 or 38) 
to check whether the found insertion point is included in a 
removed subtree. The function verify() scans the walk-down 
log and confirms the path from the root node to the inser-
tion point is still connected. If it detects the path is cut off, 
it discards information from the cut-off point to the inser-
tion point in the log and returns the pointer to the terminal 
node of the cut-off path. Thus, the thread can restart the 
walk-down from the cut-off point, reducing the repairing 
cost compared to restarting from the root node of the BST. 
Between the time when a thread has finished the execution 
of the function verify() and the time when it adds a new 
node to the insertion point, another thread may cut off the 
walk-down path. Therefore, even if verify() did not detect 
that the walk-down path is cut off, it is not always guaranteed 
that the found insertion point is correct. This rare case is not 
preferable in performance. Still, it does not pollute the cor-
rectness of the BST construction, because nodes inserted in 
a removed subtree are reinserted into the BST later.
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Fig. 1  Example of restructuring the BST on the node insertion
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5  Performance Evaluation

5.1  Evaluation Setting

5.1.1  Evaluated Programs

We measured the time each program described above took 
to construct a BST. As the search key, we used a randomly 
generated 29-character string. We started the measurement 
from the state where input data were already loaded to the 
main memory. The resulting time excludes the time spent on 
actual I/O, memory allocation of input data, key generation, 
and so on.

In our discussion below about the performance, we use 
labels consisting of two characters; the first character rep-
resents the lock implementation, and the second character 
represents the program (algorithm). For the lock implemen-
tation, we used either of the following two mechanisms for 
all inter-thread synchronization in a program;

• M(Mutex): the suspend lock mechanism, which puts a 
thread that could not acquire a lock to the sleeping state 
at the OS level, and

• S(Spin): the spin-lock mechanism, which lets a thread 
trying to acquire a lock check repeatedly whether it is 
available.

The second character of the labels represents one of the fol-
lowing three types of programs:

• P (Par: parallel) represents the purely parallel program 
shown as Program 1. It acquires a lock only for a leaf 
node when adding a new node. The structure of the gen-
erated BST is usually different every time of program 
execution.

• S (Spec: speculative) represents our speculatively parallel 
program shown as Program 2. It is implemented using 
our SSM library based on the lazy versioning policy. It 
creates a BST having the same structure as a BST gener-
ated by the sequential algorithm.

• R (Rear: rearranging) represents our purely parallel program 
developed with inspiration from TLS. It is shown as Pro-
gram 3 and rearranges nodes in the BST on detecting a node 
inserted differently from the sequential insertion order.

Par is not a primary target for our discussion in this paper, 
but we evaluated it for comparison.

5.1.2  Problem Size and Task Granularity

For the data size of a BST, we evaluated the three cases: 
10,000, 1,000,000, and 100,000,000 nodes.

About the task size, we took the two cases of U = 8 and 
U = 64, where U is the number of nodes included in a task. 
By increasing U, we can reduce the overhead of the task 
allocation. On the other hand, a large U may unbalance loads 
of threads (in Par and Rear) and increase the time spent for 
hazard detection, commitment, and repair from misspecula-
tion (in Spec).

Each data node is initially included as an element of a lin-
early linked list, named the source node list, shared among 
parallel threads. A thread in parallel versions of the program 
(Par and Rear) acquires the lock and then takes out U nodes 
at once from the list. On the other hand, since threads in the 
speculative version (Spec) are logically ordered, each thread 
traverses the linked list independently from other threads and 
gets U nodes from the list while skipping the nodes allocated 
to other threads. So the pressure on the total memory access 
bandwidth is higher than that in the parallel versions, but 
instead, the threads don’t suffer from waiting to acquire the 
lock to get their task.

The task allocation unit is U nodes, but in the case of 
Spec, the repair from misspeculation is performed for each 
node insertion, not each task. Assume the case of U = 3 for 
simplicity, and a thread inserts nodes A, B, and C in this 
order. After inserting them speculatively, the thread checks 
for hazards. When a hazard is detected only on the insertion 
of node B, the thread commits the result of the speculative 
insertion of node A, repairs from misspeculation on node B, 
and commits on node C. For node B, the thread restarts the 
walk-down not from the root node of the BST but from the 
faulted point. Note that misspeculation on node B does not 
involve reinserting node C.

5.1.3  List of Removed Subtrees

In Rear, each thread acquires the lock to get a task of U new 
nodes, as described before. Besides that, nodes included in 
the LRST must be reinserted. Therefore, a thread checks 
whether any subtree remains in the LRST every time after 
inserting a node into the BST. If any subtree does, the thread 
inserts them until the LRST becomes empty, then inserts 
the next node of a task. Here, an implementation issue of 
the LRST arises. In this paper, as the principle, all threads 
share one global LRST, which is implemented as a stack 
with a linear linked list structure. Therefore, mutual exclu-
sion control is needed when a subtree is pushed to or popped 
from the LRST. Therefore, we enable each thread to keep up 
to L removed subtrees locally. A thread can add a removed 
subtree to the global LRST only if it keeps L subtrees locally. 
And a thread takes out a subtree from the global LRST only 
if it keeps no subtrees locally. Thus, we can alleviate the 
frequency of access racing to the global LRST.
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We ran the program of Rear with several values of L and 
examined the optimal value of L. As a result, when L = 2, 
we could, in many cases, but not always, get the shortest 
execution time of the program. Therefore, we use L = 2 in 
this paper.

5.1.4  Execution Environment

We ran the BST construction programs on the following four 
types of server machines:

• Machine A has one Intel Xeon Gold 6126, which consists 
of 12 processor cores with 2-way SMT [34, 35]. The total 
number of logical processor cores is 24.

• Machine B has two Intel Xeon Silver 4216s, each con-
sisting of 16 processor cores with 2-way SMT. The total 
number of logical processor cores is 64. The connection 
between two MPU chips and multiple memory banks 
causes non-uniform memory access time. Therefore, 
execution time may vary depending on which thread ran 
on which processor core.

• Machine C is an IBM Power S812L which has one 
POWER8 MPU. This MPU comprises two chip dies, 
each including five physical processor cores with 8-way 
SMT. The total number of logical processor cores is 80. 
POWER8 uses the weak consistency model, so explicit 
memory synchronization, such as memory fence opera-
tion, may be required when we write a non-conservative 
program on the usage of lock mechanisms.

• Machine D is a Mac Studio, which has one Apple M1 
Ultra. This MPU comprises two chip dies directly con-
nected without the usual bonding wires. The proces-
sor core implements ARMv8 architecture and does not 
support SMT. The total number of cores is 20, and 16 
of them are high-performance cores, while the other 4 
are high-efficiency cores. We enforced the threads of 
the BST construction programs to run only on high-
performance cores. ARMv8 architecture employs 
release consistency as the memory ordering model, so 
explicit memory synchronization should sometimes 
be considered in multithread programming, similar to 
Machine C.

These machines’ main memory had enough capacity to store 
all the data in the source node list and the BST.

All machines were managed by the Linux operating sys-
tem, which dynamically controls the allocation of parallel 
threads to logical cores. In Machine D, we left the thread 
allocation among high-performance cores to the OS. We 
ran the BST construction program without any other user 

programs running simultaneously. Nevertheless, since we 
cannot eliminate the influence of daemon processes and the 
operating system, we measured the execution time more than 
thirty times. In this paper, we considered the actual execu-
tion time to be the shortest time measured.

We measured not only the execution time but also infor-
mation about the misspeculation. We inserted codes to 
count the number of occurred misspeculations to programs 
for measuring the execution time. For Spec, we counted the 
number of nodes to be reinserted after the abort—although 
the repair function of SSM can reduce the misspeculation 
penalty. For Rear, we counted the dynamic number of 
reinserted nodes after being removed once from the BST. 
One (same) node might be reinserted multiple times. This 
count does not include the number of retried insertions 
immediately after the cut-off of the walk-down path is 
detected. We measured the number of reinsertions more 
than 30 times and considered the average number of the 
measured as the actual reinsertion number. The difference 
in the number of reinsertions in the same program may 
give us helpful information. However, note that we cannot 
directly compare them between different programs, because 
the reinsertion cost is not the same.

We used GCC (version 8.3.1 for Xeon, 4.8.3 for 
POWER8, and 12.1.0 for ARM) with the -O2 option to com-
pile the BST construction programs and our SSM library. 
We used the Pthread library for multithreading.

5.2  Results

5.2.1  Basic Performance Modeling

Before discussing the experimental results, we here roughly 
model the potential for fundamental performance improve-
ment. Let T

w
 be the time it takes a thread to execute a task, 

and T
e
 be the time it takes to complete a work that should 

be performed exclusively after or before executing a task. 
In the cases of Par and Rear, such exclusive work includes 
the take-out of a task from the source node list. Note that T

e
 

does not include the waiting time to acquire a lock during 
the race with other threads. In the case of Spec, exclusive 
work includes detecting hazards (i.e., misspeculation) and 
committing speculative execution results while repairing 
misspeculation. T

e
 does not include the time to wait for pre-

ceding threads to finish their tasks.
While one thread performs the exclusive work above, 

other threads can execute their tasks. However, two or more 
threads must not perform the exclusive work simultaneously. 
Therefore, the total summation of T

e
 s is the lower bound of 

the construction time of a BST. For simplicity, assume that 
T
w
 and T

e
 are constant, and T

w
 is a multiple of T

e
 . Under such 
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an assumption, at most T
w
∕T

e
 threads can run practically 

in parallel, whereas other threads are waiting in the race to 
execute the exclusive work. Therefore, increasing the num-
ber N of parallel threads will improve performance when 
N < T

w
∕T

e
 . However, when N > T

w
∕T

e
 , we can not expect 

more performance improvement.

5.2.2  Results of One 24‑Thread Xeon and 8‑Node Task

Figure 2 shows the node reinsertion ratios to the total num-
ber of nodes when we ran them on machine A. The task 
size was 8.

It is natural that, as increasing the number of threads, 
misspeculation tends to occur more frequently. Figure 2 sup-
ports it. The number of reinsertions in SS and SR is more 
extensive than in MS and MR, respectively. The reason is 
threads using the spin lock mechanism are more active than 
those using the suspend lock, and the speculation tends to 
be deeper. In the case of using the suspend lock mechanism, 
the long suspending time limits the activity of threads, and 
the degree of speculation is reduced. As a result, it leads to 
less misspeculation. In Fig. 2, the reinsertion in the case of 
10,000 nodes looks remarkable compared with the case of 
1,000,000 or 100,000,000 nodes, but it is less than 5%.

Figure 3 shows the relative speedup ratios of parallel 
versions to the sequential version of the BST construction 
program.

In the case of 10,000 and 1,000,000 nodes shown in 
Fig. 3a, b, the performance of SP and SR degrades if the 
number of threads increases beyond some threshold. Such 
degradation suggests the number of parallel threads doing 
practical work decreased. The first reason can be explained 
based on the performance model described in Sect. 5.2.1. 
When the size of the BST is small, the depth of the BST 
is also not so deep, and so T

w
 is short. Since the number 

of practical parallel threads is limited by T
w
∕T

e
 , the per-

formance is saturated even with a comparatively small 
number of threads. What is worse, on the small size of the 
BST, multiple threads are prone to race frequently with one 
another to add their nodes to the same node. Another reason 
is load unbalancing. During some periods before the end of 
program execution, some threads finish their tasks, and the 
number of left threads still working decreases. This time 
appears relatively long, because the total execution time is 
short.

Figure 2a shows that the node reinsertion occurs rela-
tively many times in SS and SR, but we cannot read it affects 
dominantly the performance from Fig. 3a. In Fig. 3a, the 

Fig. 2  Reinsertion ratios in the 
case of one 24-thread Xeon, 
8-node task
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performance of SR degrades with more than 14 threads. The 
reinsertion of nodes may somewhat affect the performance, 
but we should understand the above reasons are dominant, 
because the performance of SP also degrades.

On the other hand, in the case of 100,000,000 nodes, 
Fig. 3c says the performances of SP and SR increase almost 
linearly in proportion to the number of threads. Enlarging 
the size of the BST makes its depth more profound, making 
T
w
 longer. Therefore, more threads can run practically in 

parallel. Moreover, since the number of leaf nodes increases 
approximately exponentially, the frequency of the races 
among threads to add their nodes to the same node is also 
reduced.

The computational complexity of SR is essentially larger 
than that of SP, because SR walks down twice in the BST 
to insert a node (although the second walk-down is merely 
for checking the cut-off of the path). What is more, the node 
reinsertion may occur in SR. The number of times SR tries 
to (re)insert nodes is more extensive than SP, and it also 
increases the occurrence of races among threads that add 
their nodes to the same node. Such performance differences 
are outstanding in the small size of BST, but as the size of 
the BST is larger, the frequency of the reinsertion decreases, 
because the insertion points may tend to be distributed 
(Fig. 3). In the case of 100,000,000 nodes, SR can generate 
the BST having the same structure as the sequential program 
with the sacrifice of less than 9.3% of the performance of SP.

When 10,000 nodes, SS is superior in performance to 
SR. On the other hand, when 1,000,000 and 100,000,000 
nodes, SS is generally inferior to SR. Therefore, we can see 
the effectiveness of inserting nodes out-of-order compared 
to in-order node insertion. However, we can also see an 
unexpected result in Fig. 3b. With 18–22 threads, the per-
formances of SP and SR are degrading, whereas that of SS 
is still increasing, eventually beyond the peak performances 
of SP and SR.

Naturally and generally, the performances of MP, MS, 
and MR are lower than those of SP, SS, and SR, respectively. 
When using the suspend lock, the waiting time to acquire a 
lock, including the suspending time, is significantly larger, 
in contrast to the case of spin lock which may disturb other 
working threads by pressuring the memory bandwidth 
caused by continuously repeated memory accesses. In 
the case of 10,000 and 1,000,000 nodes, we can see from 
Fig. 3a, b that the performances of MP and MR are almost 
saturated with more than 10 or 12 threads. This suggests 
that only 10 or 12 threads were doing practical work simul-
taneously and that other threads were suspended. We can 
interpret this saturation as the result that T

e
—which includes 

the time, since a suspended thread is signaled to be awoken 
until it is practically resumed—dramatically increased in the 
model described in Sect. 5.2.1. On the other hand, in the 
case of 100,000,000 nodes, Fig. 3c tells the performances 
of MP and MR increase almost linearly in proportion to the 
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Fig. 3  Speedups in the case of one 24-thread Xeon, 8-node task



99International Journal of Networked and Distributed Computing (2023) 11:88–111 

1 3

number of threads. This is because enlarging the BST size 
made T

w
 long. The performance of MR is less than that of 

MP by 22.4% at maximum in the case of 2 threads. How-
ever, the difference is more minor as the number of threads 
increases, and it is 9.4% in the case of 22 threads.

The performance of MS in the case of 10,000 and 
1,000,000 nodes is disastrous. In those cases, T

w
 is short, 

whereas T
e
 is long. Since the number of working threads is 

limited to T
w
∕T

e
 , we can not expect performance improve-

ment. Especially, in the case of MS with 10,000 nodes, T
e
 

cannot be entirely hidden with T
w
 , so the performance is less 

than single-thread performance. In the case of 100,000,000 
nodes, an increase in task size improves the performance of 
MS, but it is not enough to keep more than ten threads awake.

At last, Fig. 3c shows that parallel execution can some-
times achieve superlinear performance. We have no quanti-
tative data to explain this over-speedup. Still, we guess it is 
brought by the scheduling performed by the OS through our 
experience monitoring processor cores’ workloads (although 
we did not monitor when measuring the execution time, of 
course). The OS migrates a running thread from one proces-
sor core to another. Since the execution time of the single 
thread is relatively long, the thread is migrated many times. 
On the other hand, in the environment of parallel thread exe-
cution, the execution time is relatively short. And migration 
frequency seems small, perhaps because load unbalances 
among processor cores may also be improved. Therefore, 
we think that the migration overhead may enlarge the single-
thread execution time, increasing the relative speedup of 
parallel execution.

5.2.3  Results of Two 32‑Thread Xeon’s and 8‑Node Task

Figure 4 shows the speedup ratio when we ran the programs 
on machine B under a task size of 8. Machine B has two 
MPUs, and memory access is non-uniform. Therefore, 
thread allocation affects the performance more significantly 
than the case of machine A, tending to create various meas-
urement results on every measurement.

Where the number of threads is less than 20, speedup 
ratios of SP, SS, and SR have similar tendencies to those 
shown in Fig. 3. However, they cannot achieve as significant 
speedup ratios as those on machine A. Linux usually allo-
cates a new thread to as far processor core as possible, which 
may increase the distance between a thread and the memory 
bank storing necessary data for the thread. This may enlarge 
the data access delay or synchronization overhead. Thus, a 
machine with many MPUs cannot always greatly enhance 
the performance of practical parallel programs.

Figure 4 shows too many threads degrade the perfor-
mance of SP and SR, including the case of 100,000,000 
nodes. In Fig. 3c, such degradation was not observed, 
but on machine A, we should understand that 22-thread 
execution is still insufficient to degrade the performance. 
Increasing the number of threads may increase the fre-
quency of the race among threads that try to add their 
nodes to the same node. It may also make the race to take 
a task from the source node list hot. For either of the races, 
repeated memory accesses to acquire locks pressure the 
memory bandwidth, damaging the overall performance. 
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On that evidence, the performances of SP and SR are not 
always better or often worse than those of MP and MR.

Here, it is characteristic in Fig. 4b, c that SS is superior 
to SP and SR with more than 24 threads. This could also 
be interpreted that the performance degradations of SP 
and SR make the superiority of SS remarkable. However, 
in SS, a thread synchronizes one-to-one without using 
a lock and does not race against multiple other threads 
for synchronization. That is, it only tells the immediately 
succeeding thread that it has completed the commitment. 
Such lightweight synchronization helps to suppress the 
memory pressure brought by synchronization and saves 
the performance from degrading.

For the programs using the suspend lock, there are few 
new comments on the results. In Fig. 3c, the performances 
of MP and MR increase with the number of threads, which 
is almost the same in Fig. 4c. However, with more than 24 
threads, Fig. 4c tells that the performances degrade. The 
reasons are races in synchronization, similar to the case of 
SP and SR. The suspend lock mechanism does not pressure 

the memory bandwidth, unlike the spin lock mechanism, 
but instead, the race among much more threads enlarges 
the overhead of lock/unlock operations themselves.

For reference, the reinsertion ratios are shown in Fig. 5. 
Compared with Machine A, they are generally higher. But 
even in the highest case (10,000 nodes, SR, 60 threads), it 
is less than 17%.

5.2.4  Results of POWER8 and 8‑Node Task

Figure 6 shows the speedup ratio when we ran the programs 
on machine C under the task size of 8.

IIn many cases in Fig. 6, Par is superior in performance 
to Rear, which is superior to Spec. In Fig. 6b, SS is superior 
to SP or SR when more than 60 threads run. Similar supe-
riority of SS is also shown in Figs. 3b and 4b, c. But here, 
in Fig. 6b, the peak performance of SS is not higher than 
that of SP. We should understand that the reason lies in the 
degradation of SPs performance rather than that SS achieved 
a higher performance over SP.
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From Figs. 3, 4, and 6, we can model the performances 
outline as the following. The performance of the programs 
using the spin lock mechanism increases with increasing 
the number of threads and then degrades. SP achieves peak 
performance with a relatively small number of threads. SR 
does so with almost the same number or a slightly larger 
number of threads than SP. SS does so with a relatively 
large number of threads. The performances of MP and 
MR increase by increasing the number of threads and then 
become saturated or degrade. The performance of MS is 
saturated at a smaller number of threads than MP or MR. 
This means that T

e
 in MS is generally longer than T

e
 in MP/

MR, although it is an agreeable result.
Figure 7 shows the node reinsertion ratio. The reinser-

tion ratio of SR with 10,000 nodes looks remarkable. In 
Fig. 6a, as the number of threads increases from 20 to 40, 
the performance of SR degrades, while the performance 
of SP still increases. That is, the difference in the perfor-
mance between SR and SP becomes larger. We can infer 
that the node reinsertion affects the performance here, but 
the reinsertion ratio of SR is 8.0–19.9%. On the other hand, 
we can see that more than 40 threads are too many for the 
problem size of 10,000 nodes. However, when comparing 
with Fig. 14a, which is shown later, we can see that the 
performances of SP and SR degrade dominantly because 
of the reason concerning the task retrieval rather than the 

node (re)insertion. Therefore, we cannot discuss here the 
influence of the reinsertion ratio of more than 20%.

5.2.5  Results of M1 Ultla and 8‑Node Task

Figure 8 shows the speedup ratio when we ran the programs 
on machine D under the task size of 8. Figure 9 shows the 
node reinsertion ratio.

Except for SP/SS/SR in Fig. 8a, Par is superior in perfor-
mance to Rear, which is superior to Spec, similar to cases 
on many other machines. Figure 8c shows good scalability, 
which may be usual because of the execution with a few 
threads. When 100,000,000 nodes, SR achieves almost the 
same performance as SP. SR can build a BST with the same 
structure as the sequential construction with a 2.7–4.4% 
lower performance than SP.

5.2.6  Results of One 24‑Thread Xeon and 64‑Node Task

Figure 10 shows the relative speedup ratios of parallel ver-
sions to the sequential version of the BST construction pro-
gram when we ran them on machine A. The task size was 64.

From the comparison of Fig. 10 with Fig. 3, we can see 
that the performances of SP and MP under U = 68 are gen-
erally improved from that under U = 8. It is remarkable, 
especially in the case of 10,000 and 1,000,000 nodes. As 
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increasing U, T
e
 increases, and T

w
 also does but in a larger 

proportion than T
e
 . Therefore, T

w
∕T

e
 increases, and the per-

formance can be improved.
Figure 11 shows the node reinsertion ratio. Compared 

with Fig. 2, the reinsertion ratio dramatically increases in 
all cases. Especially, the reinsertion ratio of SR is outstand-
ing. In the case of 10,000 nodes and 22 threads, the total 
execution number of the function insert() is over 2.5 times.

The performance of SR is improved in Fig.  10b, c, 
whereas in Fig. 10a, it is crucially spoiled. By increasing 
U, the much later nodes in the sequential insertion order 
are inserted earlier, causing more reinsertion, as shown in 
Fig. 11a. Figure 10 tells the performance damage due to 
such a penalty of reinsertion may be recovered for a large 
BST, but it is impossible for a small BST. For SS, similar 
results to SR are shown in Fig. 10, too. Therefore, increas-
ing U is not profitable for speculation in the case of small 
BST.

In Fig. 10b, c, SP is superior in performance to SR, which 
is superior to SS, as is the usual cases under U = 8. However, 
for the programs using the suspend lock mechanism, we got 
unexpected results. Increasing U generally increases the fre-
quency of misspeculation in SS (and SR, too). Therefore, it 
must make T

e
 longer, even when our repair mechanism of 

SSM alleviates the misspeculation penalty. Therefore, we 
thought that enlarging the task size was not preferable for 
speculative execution. However, Fig. 10b shows that MS is 
superior to MP in the range of up to 12 threads, and Fig. 10c 
shows that the performance of MS is almost the same as MP. 
Because the performance of MS is also almost the same as 
SS in Fig. 10c, we can understand that there were practically 
few threads suspended in MS. Thus, in situations with no 
suspended threads, MS can achieve excellent performance. 
That is, MS can build a BST with the same structure as the 
sequentially generated one without performance loss com-
pared to the purely parallel construction.
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5.2.7  Results of Two 32‑Thread Xeon’s and 64‑Node Task

Figure 12 shows the relative speedup ratios of parallel ver-
sions to the sequential version of the BST construction pro-
gram when we ran them on machine B. The task size was 64. 
Where the number of threads is less than 20, Fig. 12 shows 
a similar tendency to Fig. 10, as in the relation between 
Figs. 4 and 3.

Performance improvement of SP is remarkable compared 
with the case of U = 8. It is due to an improvement of T

w
∕T

e
 

first. Besides, by increasing U, the times a thread takes out 
its tasks from the source node list is reduced, and it helps 
to alleviate the race. Therefore, memory bandwidth pres-
sure brought by the spin lock is lessened. Consequently, the 
performance degradation of SP, which was remarkable in 
Fig. 4, is alleviated in Fig. 12.

Figure 13 shows the node reinsertion ratio. The reinser-
tion ratios in Fig. 13 are still higher than those of Fig. 2. The 
reinsertion ratios of SR are outstanding not only in Fig. 13a 
but also in Fig. 13b. In the case of 1,000,000 nodes, the 
workload of SR is over 2 times with more than 16 threads 
and about 5.2 times with 60 threads. The workload of MR 
is also over 2 times with more than 36 threads.

The performance of SR is sensitive to U, because a 
large U tends to cause reinsertions. In the case of 10,000 
nodes, the performance of SR is disastrous, and in the case 
of 1,000,000 nodes, it is improved with a small number 
of threads but degrades with many threads. The reason 
for these performance degradations is supported by high 
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reinsertion ratios shown in Fig. 13a, b. However, in the case 
of 100,000,000 nodes, with 60 threads, it is almost the same 
as SP.

In contrast to SP, the performance of MP is not so good. 
The superiority between MS and MR is not also determin-
istic. Especially the curves in Fig. 12 are not smooth, and it 
is not easy to read the tendency of performances. It may be 
because differences in the distances between the processor 
core on which the thread is running and the memory bank 
storing node data affect the performance.

5.2.8  Results of POWER8 and and 64‑Node Task

Figure 14 shows the speedup ratio when we ran the programs 
on machine C under task size U = 64. And Fig. 15 shows the 
node reinsertion ratio.

From comparing Fig. 14a with Fig. 6a, we can see a large 
U spoils the performance of Spec and Rear, especially for 
a small size of BST. It was also true in the cases of the 
Xeon (machines A and B). The reason is supported by too 
high reinsertion ratios shown in Fig. 15a. In Fig. 15a, b, the 
reinsertion ratios not only of SR but also of MR are out-
standingly high. On the other hand, from the comparison of 
Fig. 14c with Fig. 6c, we can see the performances of SP/
SS/SR in the case of 100,000,000 nodes which are merely a 
little improved. There are no such dramatic changes as seen 
on the Xeon Silver (machine B).

In the case of 10,000 nodes, Par performs better than 
Spec, which does better than Rear, independently from the 
difference of used lock mechanisms. By enlarging the BST 
size, the performance of Rear is improved to be better than 
Spec, and in the case of 100,000,000 nodes, Par performs 
better than Rear, which does better than Spec. This perfor-
mance ranking is different from the cases of Xeon, while 
the performance of MS is almost the same as MR. Since 
the performance of MS is also almost the same as SS, we 
can guess threads in MS were rarely suspended. Thus, MS 
can build a BST with the same structure as the sequentially 
generated one with 3.6–23.9% lower performance than MP.

5.2.9  Results of M1 Ultla and 64‑Node Task

Figure 16 shows the speedup ratio when we ran the programs 
on machine D under task size U = 64. And Fig. 17 shows the 
node reinsertion ratio.

From the comparison between Figs. 8a and 16a, in the 
case of 10,000 nodes, we can see that increasing U improves 
the performances of Par and Spec and worsens the perfor-
mance of Rear (SR greatly but MR slightly). This is simi-
lar to the cases on other machines. On the other hand, the 
reinsertion ratios shown in Fig. 17 are all higher than those 
shown in Fig. 9 in the respective case. This is consistent with 
the fact that increasing U causes the performance to degrade, 
but it cannot explain why the performance improves. Conse-
quently, we cannot discuss (or analyze) the performance only 
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Fig. 11  Reinsertion ratios in 
the case of one 24-thread Xeon, 
64-node task
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in the aspect of computational complexity. The efficiency of 
the synchronization, or removal of the waiting time, is also 
important, but it is not easy to measure the actual waiting 
time of the threads in practice.

In Fig. 16b, c, the performances of all programs are 
improved by enlarging the BST size. SP performs better than 
SR, and SR does than SS. However, the performance ranking 
in programs using suspend lock mechanism is different from 
those using the spin lock mechanism. MP performs better 
than MS, and MS does than MR. Such a difference in the 
ranking order between programs using different lock mecha-
nisms was also shown in the cases of machines A and B.

Figure 16c shows that the performance of MS is slightly 
lower than SS. It suggests that threads were sometimes sus-
pended to wait for their preceding threads. Nevertheless, 
consequently, MS achieves a very slightly higher perfor-
mance than MP in Fig. 16c.

5.3  Discussion

We measured on some shared-memory types of multiproces-
sors. Still, the results differed depending on the machines 
because of the differences in the balance between processor 
speed and memory speed, memory bank organizations on 
NUMA, synchronization mechanisms, and resource utiliza-
tion under SMT. This suggests that it is difficult to under-
stand the universal superiority of algorithms (or parallel 
execution strategy) from a result measured on one machine. 
However, we can roughly summarize the results we obtained 
as the following.

• In most cases other than the small size of BSTs, SP is 
superior in performance to SR, and SR is superior to SS.

• However, SS sometimes achieves better peak perfor-
mance than SP and SR.

• When the task size is small, MP is superior in perfor-
mance to MR, and MR is superior to MS.
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• Except for POWER8, however, when the task size is 
increased, the performance of MS is improved. For 
enough large-size of BST, MS is faster than MR and, 
sometimes, has equal speeds to MP.

• With a small size of BST, increasing the task size 
degrades the performances of SR and MR. On the other 
hand, with a large size of BST, increasing the task size 
improves the performances of SR and MR.

• Increasing the task size provokes misspeculation. In our 
experiment, the number of node (re)insertions grows 
nearly seven times at maximum with many threads and 
a small size of BST. An increase in the task size is most 
influential on SR among the speculation-based schemes. 
In contrast, with a small task size and a small size of 
BST, MR presents a smaller number of node (re)inser-
tions than any other scheme.

• Even in the case of a large size of BST, misspeculation 
occurs, of course, and increasing the task size increases 
the number of reinsertions. However, they are often small 
(less than 1%) and seem ignorable.

• We measured the amount of node (re)insertions as one 
indicator concerning the computational complexity, but 
it does not always dominate the performance. What is 
more, it may be helpful to optimize a scheme, but it is not 

suitable to compare the performances between different 
schemes.

We evaluated both cases of using the spin and suspend lock 
mechanisms in this paper. The waiting overhead of lock 
operation primitives in the spin lock is smaller than in the 
suspend lock, and the program characteristics can be more 
easily reflectable in the performance measurement results. 
Since it helps us analyze the results by associating with the 
program behavior, it is significant to evaluate the case of 
using the spin lock mechanism experimentally. But gen-
erally, we should use the suspend lock in userland rather 
than the spin lock. Therefore, the result of programs using 
the suspend lock mechanism is more significant in practice 
than those using the spin lock mechanism, even if the per-
formance superiority between them is reversed in the ideal 
environment.

We had believed a priori that Par is essentially superior 
in performance to Spec and Rear. It is indeed true in many 
cases of our evaluation results. But even, Par suffers from the 
overhead for mutual exclusion control. Therefore, in some 
cases, MS overcame MP in performance, being unexpected 
for us. Deep (excess) speculation increases the frequency 
of misspeculation. However, from our experimental results, 
we can see that deeper speculation does not always directly 
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bring performance degradation. Of course, the repair mecha-
nism of our SSM library contributes to reducing the mis-
speculation penalty. Instead, the waiting time to commit is 
a bigger problem for MS. When we can enable threads to 
begin to commit without being suspended by increasing the 
task size, MS can achieve good performance. Consequently, 
MS can generate a BST with the same structure as sequential 
construction, taking an equal or shorter time to or than MP. 
But unfortunately, we do not yet have a technique to decide 
the optimum task size to maximize the performance of MS.

On the other hand, when the task size is small, it was 
shown that MR outperforms MS, because MR does not suf-
fer from the waiting time to commit. However, MR is more 
sensitive to misspeculation than MS. Simply increasing the 
task sizes based on the loop unrolling fashion leads to deep-
ening speculation and, as a result, increasing the frequency 
of misspeculation, so the performance of MR will either 
degrade or be enhanced slightly at best.

In conclusion, MR with a small task size is better for a 
small BST, and MS with a larger one is better for a large 
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BST. In other words, for the case that misspeculation is 
likely to occur in high frequency, we had better employ 
MR with a small task size rather than MS. On the other 
hand, when the frequency of misspeculation is relatively 
low, increasing the task size will improve the performance 
of MS beyond MR. In some cases, MS may achieve almost 
the same performance as MP.

6  Conclusion

This paper presented new parallel construction schemes of 
a BST with the same structure as the sequential construc-
tion and evaluated their performances on several types of 
shared-memory multiprocessors. For the large enough size 

of BST, our new parallel programs can construct a BST 
with always the same structure on a little lower or some-
times higher performance than the program that makes a 
BST with a different structure on every execution. And in 
contrast with the general expectation that enlarging the 
task size increases misspeculation and damages the perfor-
mance, we found it sometimes enhances the performance 
of speculatively parallel execution.

We had intended to improve the performance of the first 
scheme (Spec) and developed the second (Rear). How-
ever, from our experiments in this paper, we saw that one 
does not always perform better than the other and that 
the superiority of one to the other changes depending on 
different conditions. Therefore, our future work is to inte-
grate the two schemes to achieve the best performance 
always. Moreover, our further work is the development of 
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instruments to make our TLS-based technique applicable 
for applications other than constructing a BST.
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