
Vol:.(1234567890)

International Journal of Networked and Distributed Computing (2023) 11:88–111
https://doi.org/10.1007/s44227-023-00013-w

1 3

RESEARCH ARTICLE

Performance Evaluation on Parallel Speculation‑Based Construction
of a Binary Search Tree

Hiroaki Hirata1 · Atsushi Nunome1

Received: 22 June 2023 / Accepted: 6 October 2023 / Published online: 8 November 2023
© The Author(s) 2023

Abstract
Binary search trees (BSTs) are one of the most important data structures in the field of computer science. We may easily
write a parallel construction program of a BST by extending the sequential algorithm straightly. However, in such conven-
tional approaches, the order of nodes inserted into a BST is determined dynamically, depending on the occasional state of
the parallel thread execution. It results in a BST with a different structure (node position) generated on every execution of
the parallel program. On the other hand, we have been developing parallel construction schemes of the BST with the same
structure as a BST generated by the sequential algorithm. One is the speculatively parallel construction of a BST. And another
is the purely (non-speculatively) parallel construction, but it was derived through the concept of thread-level speculation.
This paper evaluates the performances of those construction schemes on several types of shared-memory multiprocessors.
For the large enough size of BST, our new parallel programs can construct a BST with always the same structure on a little
lower or sometimes higher performance than the program that makes a BST with a different structure on every execution.
And in contrast with the general expectation that simply enlarging the size of parallel tasks increases misspeculation and
damages the performance, we found that it sometimes enhances the performance of speculatively parallel execution.

Keywords Binary search tree · Thread-level speculation · Parallel algorithm · Speculative memory

1 Introduction

Binary search trees (BSTs) are one of the most important
data structures in the field of computer science. They are
often used for data sorting or implementation of priority
queues, which many usual applications require. They are
also used to implement abstract data structures, such as sets/
multisets and associative arrays.

A parallel construction algorithm of a BST can be easily
derived from the sequential algorithm. However, since the
structure of a generated BST depends on the order of inserted
nodes, such a parallel algorithm cannot create a BST with the
same structure (node position) as a BST constructed by the
sequential algorithm. That is, the structure of the generated BST

will be different for every time of program execution. When we
use BSTs only as an intermediate data representation for data
sorting and do not require sorting stability, we may not need to
care about the uniqueness of the tree structure. Here, sorting
stability means that the order of data elements with the same
key is preserved before and after sorting.

On the other hand, for example, if we would like to per-
form a read or modification for data in the nodes after generat-
ing the BST, the occasional difference in the BST structure
makes the verification or the debugging of the program more
complex. Therefore, we have been challenged to develop par-
allel construction schemes to create a BST having the same
structure as a BST generated by the sequential algorithm. The
first scheme is based on speculatively parallel execution, and
we presented it in the previous literature [1]. It is not a simple
speculative execution version, and we enhanced it by embed-
ding the checkpoint restart mechanism to reduce the repair time
from the misspeculation. And the second scheme we presented
in [2] is purely parallel and no longer speculative, although we
have developed it through the concept of speculative execution.
It is an outcome of optimizing a speculatively parallel execu-
tion model. Such conceptual flow from the sequential execution

 * Hiroaki Hirata
 hrt@kit.ac.jp

 Atsushi Nunome
 nunome@kit.ac.jp

1 Faculty of Information and Human Sciences, Kyoto
Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto-shi,
Kyoto 606-8585, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s44227-023-00013-w&domain=pdf
http://orcid.org/0000-0002-1382-4928
https://orcid.org/0000-0003-1911-3075

89International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

through the speculative execution to the purely parallel execu-
tion is a novel methodology in parallel processing.

Our mainstream research on speculative execution is the
development of a general-purpose system based on thread-level
parallel speculation [1, 3–6], and the construction of a BST is
one of the applications we picked up often in our past papers.
Those studies provide two contributions to computer engineer-
ing. One is the parallel construction scheme as a deliverable to
create the BST with the same structure as the sequential con-
struction. And the other is the expectation that our speculation-
based approach may lead to a new methodology for developing
parallel algorithms for other objectives too.

In this paper, we evaluate the performance of those parallel
schemes on several types of shared-memory machines, investi-
gate their relationship with machine memory models, and ver-
ify the effectiveness of the speculation-based BST construction.

The rest of the paper is organized as follows. Section 2
summarizes the conventional purely parallel construction
of a BST. The structure of the constructed BST here is not
unique. Section 3 summarizes the speculative construction
of a BST. The described algorithm here is not an ordinary
speculative and is enhanced to improve the performance.

Section 4 summarizes the non-speculative but conceptu-
ally speculation-based construction of a BST. BSTs con-
structed in Sects. 3 and 4 have the same structure as those
constructed sequentially. The ideas described in Sects. 3 and
4 are already published [1, 2], and Sect. 5 newly evaluates
and analyzes the performance of them in detail. Section 6
concludes the evaluation results and future works.

2 Background

Program 1 is a simply parallelized version of constructing
the BST. The data structure of nodes of the BST is defined
as NODE at lines 1 and 7–10. To resolve conflicts among
threads willing to add their nodes to the same location in the
BST, each pointer to a child node (the member ptr in Link)
is coupled with a lock variable (the member lock in Link).
Each parallel thread executes the function insert() to insert a
new node—which is assigned to the argument of insert()—to
a BST. It walks down in the BST to search for the insertion
point while dereferencing links to child nodes and then adds
a new node to the insertion point found.

90 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

At line 29 of Program 1, the member ptr of the structure
Node pointed to by the variable cur points to the current
node in the BST. If the value of ptr is NULL, the thread
acquires the lock for it (at line 30) and re-reads it (at line
31) using the macro MR(). This macro, defined in line 21,
prevents the optimizing compiler from using the already-
read value and enforces re-reading from memory. And
if it is still NULL after re-reading, the thread writes the
address of a new node there (at line 34) after initializing
the new node (at line 32). When the value of ptr is not
NULL at lines 29 or 31, the thread walks down to the next
child node (at lines 41–44).

Thus, the thread acquires the lock only when adding
a new node and does not while merely walking down
through intermediate nodes of the BST. This strategy can
significantly improve the performance compared to the
case that the thread acquires locks to access every node
link it passes by on its walk-down. On the other hand, how-
ever, this strategy is also hazardous in parallel program-
ming. Feng et al. [7] presented almost the same strategy
as Program 1, and Howley et al. [8] proposed a lock-free
algorithm for a BST. However, they said nothing about a
critical situation on parallel execution.

When we attempt to optimize programs by bypassing
mutual exclusion controls, we should take care of the mem-
ory ordering models of the machines on which the programs
run. In the case that Program 1 runs on processors imple-
menting x86 architecture, it works well as we expected, even
if the memory fence [9] at line 33 is omitted. x86 archi-
tecture uses the total store ordering model (TSO) [10], so
writes performed by one processor are observed from other
processors in the original order of the writes. Therefore,
when another thread can observe the results of the assign-
ment of line 34, it can also observe the result of line 32 (that
is, lines 15–18).

On the other hand, when we execute Program 1 without
the memory fence at line 33 on processors which use more
relaxed memory ordering models, it may abnormally termi-
nate. For example, IBM POWER/PowerPC uses the weak
consistency model [11], and MIPS/RISC-V and ARMv8
use the release consistency model [12]. In these ordering
models, the writes from one processor may be observed by
other processors in a different order from the original. For
example, suppose a thread has modified data X and then data
Y. Another parallel thread cannot always read the modified
value of data X even after reading the modified value of data
Y. It may read the old value of data X before modification.

Here is a concrete scenario explaining a critical situation
in constructing a BST. Assume a thread P added a node X as
a child of a node Y. Thread P initialized the link pointers A
and B of node X to NULL (at line 32) and then set the link
pointer C of node Y to point to node X (at line 34). Even

when another thread, Q here, can observe that C points to
node X (at line 29), Q may not yet observe that A or B is
NULL (at line 29, but in the next loop iteration). Therefore,
to guarantee that thread Q can always read NULL from A/B
if Q has read the address of node X stored in C, a program-
mer must put a memory fence (or memory barrier) operation
at line 33. When using the GNU C compiler or others, we
can perform the memory fence by calling the built-in func-
tion __sync_synchronize().

Program 1 supports an internal BST, in which every node
stores an actual key (or data). There were also lock-free or
wait-free algorithms [13–15] presented for an external (or
leaf-oriented) BST. In external BSTs, only the leaf nodes
store actual keys, and other intermediate nodes are used
merely for routing purposes. Of course, those algorithms
are all for concurrent manipulations of a BST, and the struc-
ture of a constructed BST is not unique. On the other hand,
this paper discusses only parallel algorithms to construct
an internal BST with the same structure as a sequentially
constructed BST.

3 Speculatively Parallel Construction

3.1 Speculative Memory

Thread-Level Speculation (TLS) [16–34] is one easy way
to parallelize a sequential program, even if there may be
unknown dependencies among parallel tasks generated
from the program. Of course, the practical performance
gain depends on the parallelism inherent in the program. We
have been developing a Software-based Speculative Memory
(SSM) system [1, 4–6] as an aid oriented for both specula-
tive and non-speculative parallelization.

Our SSM system implicitly provides each thread with a
Speculation Buffer (SB), which is the private buffer to log
the history of the speculative memory accesses. The SSM
system employs the lazy versioning policy. When a thread
writes speculatively to memory, the SSM system adds the
pair of the memory location and the write value to the SB,
and memory remains unchanged. When a thread reads spec-
ulatively from memory, it gets the value from the SB if the
required data are stored in the SB. Otherwise, the thread
reads from memory and then adds the memory location and
the copy of the read value from memory to the SB. The
contents of the SB are invisible from other threads.

At the end of the task, a thread waits until all of the
threads preceding in the program order of the original
sequential program finish their tasks. And then, the thread
tries to detect the memory hazard by comparing the read val-
ues stored in the SB and the memory values. The mismatch
between them shows the hazard, which means that after the

91International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

thread read the data, some preceding threads modified it.
If no hazards are detected, the thread commits. That is, the
thread writes back all of the write values buffered in its SB
to memory.

If a hazard is detected, the thread aborts. Concretely, it
flushes its SB and re-executes its task from the beginning.
However, the SSM system supports the so-called check-
point-repair mechanism. Therefore, the SSM system does
not constantly enforce the thread to re-execute from the
beginning of the task and can make it roll back to the point
of reading the data that caused the hazard.

3.2 Speculative Node‑Insertion Algorithm

Program 2 is a part of the speculatively parallel version
using the SSM library. This paper roughly summarizes the
program’s behavior. More details, such as implementations
of the SSM library functions and speculative execution
mechanism, were described in [1]. Each thread executes
the function insert() to add a new node to the BST.

92 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

A tree node contains a serial number (at line 8), repre-
senting the logical order if the BST is sequentially con-
structed. Before a thread calls the function insert(), the
serial number of the node assigned for its argument must
have already been set. A node-link has two pointers to
nodes (at lines 4–5). One is the “fixed” pointer ptr, point-
ing to the correct child node. Another is a provisional
pointer prov, pointing to the node that may be a child. A
pointer written speculatively to ptr by a thread is merely
buffered to its SB and remains invisible from other threads
until the thread commits. Therefore, a succeeding thread
may attempt to add its node here without knowing that the
preceding thread has already modified ptr. This failure to
find the correct insertion point leads to misspeculation.
Therefore, we make a thread write a pointer into prov
before it commits, which helps the succeeding threads
walk down to deeper levels in the BST.

A thread (P here) checks whether the current pointer is
NULL (at line 28). Even if it is NULL, another thread (Q
here) that has not yet committed might have modified it specu-
latively. So next, P checks the provisional pointer (at line 29).
If it is also NULL, P speculatively adds its node here (at lines
30–34). Otherwise, P checks whether Q is P’s preceding or
succeeding thread by comparing their node’s serial number (at
line 29). If Q is P’s preceding thread, P behaves as if Q’s node
has already been added here (and goes to line 38). However, if
Q is P’s succeeding thread, P speculatively adds its node here
(at lines 30–34).

Function sm_readed_chkpt() is an SSM library function
that adds a speculative read history to the SB and puts a check-
point. When called at line 30, it records that the value of cur|-
>|ptr was NULL. When called at line 38, it records that the
value of cur|->|ptr was the value stored in variable t. Here, we
do not care what the actual content of cur|->|ptr is. We merely
pretend that the content of cur|->|ptr was so. Before the thread
tries to commit, it checks the content at the memory location
specified by cur|->|ptr. If the actual content on memory is not
the same as the value recorded by function sm_readed_chkpt(),
the thread re-reads from that memory location and re-executes
the posterior part of the task.

A thread adds its node to a BST by calling an SSM library
function sm_write(). At line 33, it speculatively writes the
address of its node to cur|->|ptr. The result of this speculative
write is invisible from other threads until the thread commits.
Therefore, to make its node addition visible immediately from
other threads, the thread also writes directly to cur|->|prov
(at line 34). When we execute this program on the machine
using relaxed memory ordering models, the memory fence is
necessary between the call of init_node_link() (at line 31) and
the write to cur|->|prov (at line 34).

After a thread finishes the execution of insert(), it tries to
commit. It scans its SB to verify the read histories, and if no

hazard is detected, it commits. For Program 2, only the read
histories recorded by function sm_readed_chkpt() should be
verified. If the thread detects a hazard, it calls a repair func-
tion. It must find the correct insertion point by walking down
in the BST from not the root node but the faulted node link. Of
course, besides insert(), a programmer must provide a repair
function that starts the walk-down from a given (faulted) node.
As described above, the SSM system passes the memory loca-
tion to be re-read as the faulted node-link information to that
repair function.

4 TLS‑Inspired Parallel Construction

4.1 Development Insight for a New Parallel
Algorithm

TLS requires commitment, which causes the serializa-
tion among parallel threads. This serialization essentially
comes with two overheads. First, every thread trying to
commit must wait for all its preceding threads to commit.
Second, the hazard detection, the re-execution on abort
(or the repair from misspeculation), and the write-back on
commitment should be performed exclusively from other
threads. Therefore, the time it took for those cannot be
hidden.

Our further step in TLS system development was to
reduce (or remove, if possible) the overhead for the com-
mitment in TLS. To enable each thread to add a node with-
out waiting for its preceding threads, first, we must employ
the eager versioning policy instead of the lazy versioning
one, which SSM uses. However, in this case, the following
two issues arise. One is managing the multiple versions of
data as visible from all threads. In general, this creates a
fatal overhead. However, when inserting a new node into
a BST, a link pointer is modified only once from NULL to
the new node’s address and not modified multiple times by
multiple threads. We can make use of this characteristic to
reduce the version management overhead.

The other and more significant issue is who and how
to resolve a detected hazard. With lazy versioning, it is
natural for each thread to be responsible for detecting and
resolving a hazard on the nodes it inserted by itself. With
eager versioning, however, it may be natural for a thread
to detect another thread’s misspeculation result. Conse-
quently, as presented in [2], we finally gave a thread that
found a hazard during its walk-down (not the thread itself
that caused a hazard) the role of repairing the misspecu-
lated node insertion.

93International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

4.2 TLS‑Inspired Parallel Node‑Insertion Algorithm

Program 3 implements our new parallel algorithm. Each
thread rearranges nodes when it detects another thread’s
misspeculation. While the program involves such analo-
gous features with TLS, such as logging of speculative
reads, hazard detection, and checkpoint repair, it is written
as a purely parallel program directly using the standard

lock primitives. Each node has a serial number (at line 8),
and the locking granularity is the link pointer (lines 3–6
and 10). Each thread executes function insert() to insert
a new node to a BST or reinsert a node once inserted but
removed because of a hazard detected. When function
insert() is called, structure member left.ptr/right.ptr of the
node assigned for the argument of function insert() must
be NULL or point to another node.

94 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

The outline of the node insertion is as the followings. A
thread walks down in the BST to find the insertion point.
When it encounters the NULL pointer or a pointer to the
node that any succeeding thread has already added, it rec-
ognizes here is the insertion point. If another node has been
added by a succeeding thread, the thread removes it and its
subtrees from the BST and adds a new node here. Note that
other threads may be walking down in the subtree being
removed. Therefore, at this time, we had better remove nodes
with a unit of a subtree and never decompose the subtree to
nodes. On the other hand, when a thread tries to add a new
node at an insertion point, it should verify that its insertion
point is not included in a removed subtree. For this verifica-
tion, a thread walks down with logging the nodes it passed
by. This log is also helpful for restarting the walk-down not
from the root node of the BST but from the cut-off point
after the subtree is removed.

Now, we trace the behavior of a thread using Program 3.
A thread starts the walk-down of the BST after clearing the
logs of nodes on the walk-down path by calling the func-
tion reset_history() at line 21. This log is the private data
structure for each thread and is implemented with a linear
list containing the pairs of the pointer to the link field (left
or right) in a node and its content (left.ptr or right.ptr). The
function add_history() at line 51 adds a new pair of cur and
t to the log.

If the current pointer (cur|->|ptr) is NULL or points to a
node with a later serial number (at line 23), this place may
be the insertion point. Therefore, the thread acquires the lock
for this link (at line 24) and then re-reads the current pointer
from memory (at line 25) to confirm this place is undoubt-
edly the insertion point. When the current pointer (cur|-
>|ptr) is still NULL, and this insertion point is not included
in a removed subtree, the thread executes the codes in lines
31–35. The function reset_node_link() removes the node
pointed to by the link assigned as its argument and inserts
it into the list of removed subtrees (LRST). Here, note that
the new node to be inserted may be a node removed from
the BST before. And then, the function reset_node_link()

initializes the link to NULL. After that, the thread adds the
new node to this insertion point (at line 33).

When another node has already been added to the
insertion point, and this insertion point is not included in
a removed subtree, the thread executes the codes in lines
43–47. The function substitute() removes the already added
node and adds a new node. Before, we said we remove nodes
with the unit of a subtree, but it is better to retain the result
of the already performed insertion as possible. Figure 1
shows an example of restructuring the BST. Figure 1a illus-
trates the BST before a thread adds a new node X as the
left child of node A. A succeeding thread already added
node B here, and node B has its child subtrees C and D. The
function substitute() inserts node X between nodes A and
B instead of replacing a subtree whose root is node B with
node X. If node B’s key is less than node X’s, substitute()
removes subtree D and restructures the BST to one shown
in Fig. 1b. Otherwise, it removes subtree C and restructures
the BST to one shown in Fig. 1c. The function substitute()
returns the pointer to the root node of the removed subtree
(C or D in the case of Fig. 1) (at line 43). Therefore, the
thread inserts the removed subtree into the LRST by calling
push_removed() (at line 46). Multiple locks are required for
the manipulation in substitute(), and we must consider the
case that other threads pass through the restructuring region
in the BST. Therefore, the manipulation in substitute() must
be implemented carefully. Details of substitute() [and other
functions called from the inside of insert()] and the critical
cases to be considered to guarantee the correctness of the
program are described in [2].

When the insertion point is included in a removed sub-
tree, the thread executes the codes in lines 27–29 or 39–41.
The thread executes the function verify() (at lines 26 or 38)
to check whether the found insertion point is included in a
removed subtree. The function verify() scans the walk-down
log and confirms the path from the root node to the inser-
tion point is still connected. If it detects the path is cut off,
it discards information from the cut-off point to the inser-
tion point in the log and returns the pointer to the terminal
node of the cut-off path. Thus, the thread can restart the
walk-down from the cut-off point, reducing the repairing
cost compared to restarting from the root node of the BST.
Between the time when a thread has finished the execution
of the function verify() and the time when it adds a new
node to the insertion point, another thread may cut off the
walk-down path. Therefore, even if verify() did not detect
that the walk-down path is cut off, it is not always guaranteed
that the found insertion point is correct. This rare case is not
preferable in performance. Still, it does not pollute the cor-
rectness of the BST construction, because nodes inserted in
a removed subtree are reinserted into the BST later.

B

C D

A
X

B

C

A

X

D

A

X

B

DC

current pointer

or

(a) (b) (c)

Fig. 1 Example of restructuring the BST on the node insertion

95International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

5 Performance Evaluation

5.1 Evaluation Setting

5.1.1 Evaluated Programs

We measured the time each program described above took
to construct a BST. As the search key, we used a randomly
generated 29-character string. We started the measurement
from the state where input data were already loaded to the
main memory. The resulting time excludes the time spent on
actual I/O, memory allocation of input data, key generation,
and so on.

In our discussion below about the performance, we use
labels consisting of two characters; the first character rep-
resents the lock implementation, and the second character
represents the program (algorithm). For the lock implemen-
tation, we used either of the following two mechanisms for
all inter-thread synchronization in a program;

• M(Mutex): the suspend lock mechanism, which puts a
thread that could not acquire a lock to the sleeping state
at the OS level, and

• S(Spin): the spin-lock mechanism, which lets a thread
trying to acquire a lock check repeatedly whether it is
available.

The second character of the labels represents one of the fol-
lowing three types of programs:

• P (Par: parallel) represents the purely parallel program
shown as Program 1. It acquires a lock only for a leaf
node when adding a new node. The structure of the gen-
erated BST is usually different every time of program
execution.

• S (Spec: speculative) represents our speculatively parallel
program shown as Program 2. It is implemented using
our SSM library based on the lazy versioning policy. It
creates a BST having the same structure as a BST gener-
ated by the sequential algorithm.

• R (Rear: rearranging) represents our purely parallel program
developed with inspiration from TLS. It is shown as Pro-
gram 3 and rearranges nodes in the BST on detecting a node
inserted differently from the sequential insertion order.

Par is not a primary target for our discussion in this paper,
but we evaluated it for comparison.

5.1.2 Problem Size and Task Granularity

For the data size of a BST, we evaluated the three cases:
10,000, 1,000,000, and 100,000,000 nodes.

About the task size, we took the two cases of U = 8 and
U = 64, where U is the number of nodes included in a task.
By increasing U, we can reduce the overhead of the task
allocation. On the other hand, a large U may unbalance loads
of threads (in Par and Rear) and increase the time spent for
hazard detection, commitment, and repair from misspecula-
tion (in Spec).

Each data node is initially included as an element of a lin-
early linked list, named the source node list, shared among
parallel threads. A thread in parallel versions of the program
(Par and Rear) acquires the lock and then takes out U nodes
at once from the list. On the other hand, since threads in the
speculative version (Spec) are logically ordered, each thread
traverses the linked list independently from other threads and
gets U nodes from the list while skipping the nodes allocated
to other threads. So the pressure on the total memory access
bandwidth is higher than that in the parallel versions, but
instead, the threads don’t suffer from waiting to acquire the
lock to get their task.

The task allocation unit is U nodes, but in the case of
Spec, the repair from misspeculation is performed for each
node insertion, not each task. Assume the case of U = 3 for
simplicity, and a thread inserts nodes A, B, and C in this
order. After inserting them speculatively, the thread checks
for hazards. When a hazard is detected only on the insertion
of node B, the thread commits the result of the speculative
insertion of node A, repairs from misspeculation on node B,
and commits on node C. For node B, the thread restarts the
walk-down not from the root node of the BST but from the
faulted point. Note that misspeculation on node B does not
involve reinserting node C.

5.1.3 List of Removed Subtrees

In Rear, each thread acquires the lock to get a task of U new
nodes, as described before. Besides that, nodes included in
the LRST must be reinserted. Therefore, a thread checks
whether any subtree remains in the LRST every time after
inserting a node into the BST. If any subtree does, the thread
inserts them until the LRST becomes empty, then inserts
the next node of a task. Here, an implementation issue of
the LRST arises. In this paper, as the principle, all threads
share one global LRST, which is implemented as a stack
with a linear linked list structure. Therefore, mutual exclu-
sion control is needed when a subtree is pushed to or popped
from the LRST. Therefore, we enable each thread to keep up
to L removed subtrees locally. A thread can add a removed
subtree to the global LRST only if it keeps L subtrees locally.
And a thread takes out a subtree from the global LRST only
if it keeps no subtrees locally. Thus, we can alleviate the
frequency of access racing to the global LRST.

96 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

We ran the program of Rear with several values of L and
examined the optimal value of L. As a result, when L = 2,
we could, in many cases, but not always, get the shortest
execution time of the program. Therefore, we use L = 2 in
this paper.

5.1.4 Execution Environment

We ran the BST construction programs on the following four
types of server machines:

• Machine A has one Intel Xeon Gold 6126, which consists
of 12 processor cores with 2-way SMT [34, 35]. The total
number of logical processor cores is 24.

• Machine B has two Intel Xeon Silver 4216s, each con-
sisting of 16 processor cores with 2-way SMT. The total
number of logical processor cores is 64. The connection
between two MPU chips and multiple memory banks
causes non-uniform memory access time. Therefore,
execution time may vary depending on which thread ran
on which processor core.

• Machine C is an IBM Power S812L which has one
POWER8 MPU. This MPU comprises two chip dies,
each including five physical processor cores with 8-way
SMT. The total number of logical processor cores is 80.
POWER8 uses the weak consistency model, so explicit
memory synchronization, such as memory fence opera-
tion, may be required when we write a non-conservative
program on the usage of lock mechanisms.

• Machine D is a Mac Studio, which has one Apple M1
Ultra. This MPU comprises two chip dies directly con-
nected without the usual bonding wires. The proces-
sor core implements ARMv8 architecture and does not
support SMT. The total number of cores is 20, and 16
of them are high-performance cores, while the other 4
are high-efficiency cores. We enforced the threads of
the BST construction programs to run only on high-
performance cores. ARMv8 architecture employs
release consistency as the memory ordering model, so
explicit memory synchronization should sometimes
be considered in multithread programming, similar to
Machine C.

These machines’ main memory had enough capacity to store
all the data in the source node list and the BST.

All machines were managed by the Linux operating sys-
tem, which dynamically controls the allocation of parallel
threads to logical cores. In Machine D, we left the thread
allocation among high-performance cores to the OS. We
ran the BST construction program without any other user

programs running simultaneously. Nevertheless, since we
cannot eliminate the influence of daemon processes and the
operating system, we measured the execution time more than
thirty times. In this paper, we considered the actual execu-
tion time to be the shortest time measured.

We measured not only the execution time but also infor-
mation about the misspeculation. We inserted codes to
count the number of occurred misspeculations to programs
for measuring the execution time. For Spec, we counted the
number of nodes to be reinserted after the abort—although
the repair function of SSM can reduce the misspeculation
penalty. For Rear, we counted the dynamic number of
reinserted nodes after being removed once from the BST.
One (same) node might be reinserted multiple times. This
count does not include the number of retried insertions
immediately after the cut-off of the walk-down path is
detected. We measured the number of reinsertions more
than 30 times and considered the average number of the
measured as the actual reinsertion number. The difference
in the number of reinsertions in the same program may
give us helpful information. However, note that we cannot
directly compare them between different programs, because
the reinsertion cost is not the same.

We used GCC (version 8.3.1 for Xeon, 4.8.3 for
POWER8, and 12.1.0 for ARM) with the -O2 option to com-
pile the BST construction programs and our SSM library.
We used the Pthread library for multithreading.

5.2 Results

5.2.1 Basic Performance Modeling

Before discussing the experimental results, we here roughly
model the potential for fundamental performance improve-
ment. Let T

w
 be the time it takes a thread to execute a task,

and T
e
 be the time it takes to complete a work that should

be performed exclusively after or before executing a task.
In the cases of Par and Rear, such exclusive work includes
the take-out of a task from the source node list. Note that T

e

does not include the waiting time to acquire a lock during
the race with other threads. In the case of Spec, exclusive
work includes detecting hazards (i.e., misspeculation) and
committing speculative execution results while repairing
misspeculation. T

e
 does not include the time to wait for pre-

ceding threads to finish their tasks.
While one thread performs the exclusive work above,

other threads can execute their tasks. However, two or more
threads must not perform the exclusive work simultaneously.
Therefore, the total summation of T

e
 s is the lower bound of

the construction time of a BST. For simplicity, assume that
T
w
 and T

e
 are constant, and T

w
 is a multiple of T

e
 . Under such

97International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

an assumption, at most T
w
∕T

e
 threads can run practically

in parallel, whereas other threads are waiting in the race to
execute the exclusive work. Therefore, increasing the num-
ber N of parallel threads will improve performance when
N < T

w
∕T

e
 . However, when N > T

w
∕T

e
 , we can not expect

more performance improvement.

5.2.2 Results of One 24‑Thread Xeon and 8‑Node Task

Figure 2 shows the node reinsertion ratios to the total num-
ber of nodes when we ran them on machine A. The task
size was 8.

It is natural that, as increasing the number of threads,
misspeculation tends to occur more frequently. Figure 2 sup-
ports it. The number of reinsertions in SS and SR is more
extensive than in MS and MR, respectively. The reason is
threads using the spin lock mechanism are more active than
those using the suspend lock, and the speculation tends to
be deeper. In the case of using the suspend lock mechanism,
the long suspending time limits the activity of threads, and
the degree of speculation is reduced. As a result, it leads to
less misspeculation. In Fig. 2, the reinsertion in the case of
10,000 nodes looks remarkable compared with the case of
1,000,000 or 100,000,000 nodes, but it is less than 5%.

Figure 3 shows the relative speedup ratios of parallel
versions to the sequential version of the BST construction
program.

In the case of 10,000 and 1,000,000 nodes shown in
Fig. 3a, b, the performance of SP and SR degrades if the
number of threads increases beyond some threshold. Such
degradation suggests the number of parallel threads doing
practical work decreased. The first reason can be explained
based on the performance model described in Sect. 5.2.1.
When the size of the BST is small, the depth of the BST
is also not so deep, and so T

w
 is short. Since the number

of practical parallel threads is limited by T
w
∕T

e
 , the per-

formance is saturated even with a comparatively small
number of threads. What is worse, on the small size of the
BST, multiple threads are prone to race frequently with one
another to add their nodes to the same node. Another reason
is load unbalancing. During some periods before the end of
program execution, some threads finish their tasks, and the
number of left threads still working decreases. This time
appears relatively long, because the total execution time is
short.

Figure 2a shows that the node reinsertion occurs rela-
tively many times in SS and SR, but we cannot read it affects
dominantly the performance from Fig. 3a. In Fig. 3a, the

Fig. 2 Reinsertion ratios in the
case of one 24-thread Xeon,
8-node task

0
2 61218 220281410164

of threads

0.001

0.002

Reinsertion (%)

(c) 100,000,000 nodes

0
2 61218 220281410164

of threads

0.10

0.05

Reinsertion (%)

(b) 1,000,000 nodes

0
2 61218 220281410164

of threads

(a) 10,000 nodes

1

2

3

4

5

Reinsertion (%)

MS

SS

SR

MR

98 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

performance of SR degrades with more than 14 threads. The
reinsertion of nodes may somewhat affect the performance,
but we should understand the above reasons are dominant,
because the performance of SP also degrades.

On the other hand, in the case of 100,000,000 nodes,
Fig. 3c says the performances of SP and SR increase almost
linearly in proportion to the number of threads. Enlarging
the size of the BST makes its depth more profound, making
T
w
 longer. Therefore, more threads can run practically in

parallel. Moreover, since the number of leaf nodes increases
approximately exponentially, the frequency of the races
among threads to add their nodes to the same node is also
reduced.

The computational complexity of SR is essentially larger
than that of SP, because SR walks down twice in the BST
to insert a node (although the second walk-down is merely
for checking the cut-off of the path). What is more, the node
reinsertion may occur in SR. The number of times SR tries
to (re)insert nodes is more extensive than SP, and it also
increases the occurrence of races among threads that add
their nodes to the same node. Such performance differences
are outstanding in the small size of BST, but as the size of
the BST is larger, the frequency of the reinsertion decreases,
because the insertion points may tend to be distributed
(Fig. 3). In the case of 100,000,000 nodes, SR can generate
the BST having the same structure as the sequential program
with the sacrifice of less than 9.3% of the performance of SP.

When 10,000 nodes, SS is superior in performance to
SR. On the other hand, when 1,000,000 and 100,000,000
nodes, SS is generally inferior to SR. Therefore, we can see
the effectiveness of inserting nodes out-of-order compared
to in-order node insertion. However, we can also see an
unexpected result in Fig. 3b. With 18–22 threads, the per-
formances of SP and SR are degrading, whereas that of SS
is still increasing, eventually beyond the peak performances
of SP and SR.

Naturally and generally, the performances of MP, MS,
and MR are lower than those of SP, SS, and SR, respectively.
When using the suspend lock, the waiting time to acquire a
lock, including the suspending time, is significantly larger,
in contrast to the case of spin lock which may disturb other
working threads by pressuring the memory bandwidth
caused by continuously repeated memory accesses. In
the case of 10,000 and 1,000,000 nodes, we can see from
Fig. 3a, b that the performances of MP and MR are almost
saturated with more than 10 or 12 threads. This suggests
that only 10 or 12 threads were doing practical work simul-
taneously and that other threads were suspended. We can
interpret this saturation as the result that T

e
—which includes

the time, since a suspended thread is signaled to be awoken
until it is practically resumed—dramatically increased in the
model described in Sect. 5.2.1. On the other hand, in the
case of 100,000,000 nodes, Fig. 3c tells the performances
of MP and MR increase almost linearly in proportion to the

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

Speedup ratio

2 4 6 8 10 12 14 16 18 20 22
of threads

2

4

6

8

10

12

14

16

18

20

(c) 100,000,000 nodes

0

Speedup ratio

2 4 6 8 10 12 14 16 18 20 22
of threads

2

4

6

8

10

(b) 1,000,000 nodes

0

Speedup ratio

2 4 6 8 10 12 14 16 18 20 22
of threads

(a) 10,000 nodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 3 Speedups in the case of one 24-thread Xeon, 8-node task

99International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

number of threads. This is because enlarging the BST size
made T

w
 long. The performance of MR is less than that of

MP by 22.4% at maximum in the case of 2 threads. How-
ever, the difference is more minor as the number of threads
increases, and it is 9.4% in the case of 22 threads.

The performance of MS in the case of 10,000 and
1,000,000 nodes is disastrous. In those cases, T

w
 is short,

whereas T
e
 is long. Since the number of working threads is

limited to T
w
∕T

e
 , we can not expect performance improve-

ment. Especially, in the case of MS with 10,000 nodes, T
e

cannot be entirely hidden with T
w
 , so the performance is less

than single-thread performance. In the case of 100,000,000
nodes, an increase in task size improves the performance of
MS, but it is not enough to keep more than ten threads awake.

At last, Fig. 3c shows that parallel execution can some-
times achieve superlinear performance. We have no quanti-
tative data to explain this over-speedup. Still, we guess it is
brought by the scheduling performed by the OS through our
experience monitoring processor cores’ workloads (although
we did not monitor when measuring the execution time, of
course). The OS migrates a running thread from one proces-
sor core to another. Since the execution time of the single
thread is relatively long, the thread is migrated many times.
On the other hand, in the environment of parallel thread exe-
cution, the execution time is relatively short. And migration
frequency seems small, perhaps because load unbalances
among processor cores may also be improved. Therefore,
we think that the migration overhead may enlarge the single-
thread execution time, increasing the relative speedup of
parallel execution.

5.2.3 Results of Two 32‑Thread Xeon’s and 8‑Node Task

Figure 4 shows the speedup ratio when we ran the programs
on machine B under a task size of 8. Machine B has two
MPUs, and memory access is non-uniform. Therefore,
thread allocation affects the performance more significantly
than the case of machine A, tending to create various meas-
urement results on every measurement.

Where the number of threads is less than 20, speedup
ratios of SP, SS, and SR have similar tendencies to those
shown in Fig. 3. However, they cannot achieve as significant
speedup ratios as those on machine A. Linux usually allo-
cates a new thread to as far processor core as possible, which
may increase the distance between a thread and the memory
bank storing necessary data for the thread. This may enlarge
the data access delay or synchronization overhead. Thus, a
machine with many MPUs cannot always greatly enhance
the performance of practical parallel programs.

Figure 4 shows too many threads degrade the perfor-
mance of SP and SR, including the case of 100,000,000
nodes. In Fig. 3c, such degradation was not observed,
but on machine A, we should understand that 22-thread
execution is still insufficient to degrade the performance.
Increasing the number of threads may increase the fre-
quency of the race among threads that try to add their
nodes to the same node. It may also make the race to take
a task from the source node list hot. For either of the races,
repeated memory accesses to acquire locks pressure the
memory bandwidth, damaging the overall performance.

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

Speedup ratio

65840442 23618 062544638202214
of threads

3

6

9

12

15

18

(c) 100,000,000 nodes

0

Speedup ratio

65840442 23618 062544638202214
of threads

(b) 1,000,000 nodes

2

3

4

5

6

7

8

1

Speedup ratio

65840442 23618 062544638202214

0.5

1.0

1.5

2.0

2.5

(a) 10,000 nodes
of threads

0.0

Fig. 4 Speedups in the case of two 32-thread Xeon’s, 8-node task

100 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

On that evidence, the performances of SP and SR are not
always better or often worse than those of MP and MR.

Here, it is characteristic in Fig. 4b, c that SS is superior
to SP and SR with more than 24 threads. This could also
be interpreted that the performance degradations of SP
and SR make the superiority of SS remarkable. However,
in SS, a thread synchronizes one-to-one without using
a lock and does not race against multiple other threads
for synchronization. That is, it only tells the immediately
succeeding thread that it has completed the commitment.
Such lightweight synchronization helps to suppress the
memory pressure brought by synchronization and saves
the performance from degrading.

For the programs using the suspend lock, there are few
new comments on the results. In Fig. 3c, the performances
of MP and MR increase with the number of threads, which
is almost the same in Fig. 4c. However, with more than 24
threads, Fig. 4c tells that the performances degrade. The
reasons are races in synchronization, similar to the case of
SP and SR. The suspend lock mechanism does not pressure

the memory bandwidth, unlike the spin lock mechanism,
but instead, the race among much more threads enlarges
the overhead of lock/unlock operations themselves.

For reference, the reinsertion ratios are shown in Fig. 5.
Compared with Machine A, they are generally higher. But
even in the highest case (10,000 nodes, SR, 60 threads), it
is less than 17%.

5.2.4 Results of POWER8 and 8‑Node Task

Figure 6 shows the speedup ratio when we ran the programs
on machine C under the task size of 8.

IIn many cases in Fig. 6, Par is superior in performance
to Rear, which is superior to Spec. In Fig. 6b, SS is superior
to SP or SR when more than 60 threads run. Similar supe-
riority of SS is also shown in Figs. 3b and 4b, c. But here,
in Fig. 6b, the peak performance of SS is not higher than
that of SP. We should understand that the reason lies in the
degradation of SPs performance rather than that SS achieved
a higher performance over SP.

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

of threads

(a) 10,000 nodes

Reinsertion (%)

100

200

300

400

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

of threads

(b) 1,000,000 nodes

Reinsertion (%)

2
4
6
8

10

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

of threads

(c) 100,000,000 nodes

Reinsertion (%)

0.01
0.02
0.03

MS

SS

SR

MR

Fig. 5 Reinsertion ratios in the case of two 32-thread Xeon’s, 8-node task

101International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

From Figs. 3, 4, and 6, we can model the performances
outline as the following. The performance of the programs
using the spin lock mechanism increases with increasing
the number of threads and then degrades. SP achieves peak
performance with a relatively small number of threads. SR
does so with almost the same number or a slightly larger
number of threads than SP. SS does so with a relatively
large number of threads. The performances of MP and
MR increase by increasing the number of threads and then
become saturated or degrade. The performance of MS is
saturated at a smaller number of threads than MP or MR.
This means that T

e
 in MS is generally longer than T

e
 in MP/

MR, although it is an agreeable result.
Figure 7 shows the node reinsertion ratio. The reinser-

tion ratio of SR with 10,000 nodes looks remarkable. In
Fig. 6a, as the number of threads increases from 20 to 40,
the performance of SR degrades, while the performance
of SP still increases. That is, the difference in the perfor-
mance between SR and SP becomes larger. We can infer
that the node reinsertion affects the performance here, but
the reinsertion ratio of SR is 8.0–19.9%. On the other hand,
we can see that more than 40 threads are too many for the
problem size of 10,000 nodes. However, when comparing
with Fig. 14a, which is shown later, we can see that the
performances of SP and SR degrade dominantly because
of the reason concerning the task retrieval rather than the

node (re)insertion. Therefore, we cannot discuss here the
influence of the reinsertion ratio of more than 20%.

5.2.5 Results of M1 Ultla and 8‑Node Task

Figure 8 shows the speedup ratio when we ran the programs
on machine D under the task size of 8. Figure 9 shows the
node reinsertion ratio.

Except for SP/SS/SR in Fig. 8a, Par is superior in perfor-
mance to Rear, which is superior to Spec, similar to cases
on many other machines. Figure 8c shows good scalability,
which may be usual because of the execution with a few
threads. When 100,000,000 nodes, SR achieves almost the
same performance as SP. SR can build a BST with the same
structure as the sequential construction with a 2.7–4.4%
lower performance than SP.

5.2.6 Results of One 24‑Thread Xeon and 64‑Node Task

Figure 10 shows the relative speedup ratios of parallel ver-
sions to the sequential version of the BST construction pro-
gram when we ran them on machine A. The task size was 64.

From the comparison of Fig. 10 with Fig. 3, we can see
that the performances of SP and MP under U = 68 are gen-
erally improved from that under U = 8. It is remarkable,
especially in the case of 10,000 and 1,000,000 nodes. As

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

Speedup ratio

8 16 24 32 40 48 56 64 72
of threads

3

6

9

12

15

18

21

(c) 100,000,000 nodes

0

Speedup ratio

8 16 24 32 40 48 56 64 72
of threads

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

(b) 1,000,000 nodes

0.0

Speedup ratio

8 16 24 32 40 48 56 64 72
of threads

(a) 10,000 nodes

1

2

3

4

5

6

7

8

Fig. 6 Speedups in the case of POWER8, 8-node task

102 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

increasing U, T
e
 increases, and T

w
 also does but in a larger

proportion than T
e
 . Therefore, T

w
∕T

e
 increases, and the per-

formance can be improved.
Figure 11 shows the node reinsertion ratio. Compared

with Fig. 2, the reinsertion ratio dramatically increases in
all cases. Especially, the reinsertion ratio of SR is outstand-
ing. In the case of 10,000 nodes and 22 threads, the total
execution number of the function insert() is over 2.5 times.

The performance of SR is improved in Fig. 10b, c,
whereas in Fig. 10a, it is crucially spoiled. By increasing
U, the much later nodes in the sequential insertion order
are inserted earlier, causing more reinsertion, as shown in
Fig. 11a. Figure 10 tells the performance damage due to
such a penalty of reinsertion may be recovered for a large
BST, but it is impossible for a small BST. For SS, similar
results to SR are shown in Fig. 10, too. Therefore, increas-
ing U is not profitable for speculation in the case of small
BST.

In Fig. 10b, c, SP is superior in performance to SR, which
is superior to SS, as is the usual cases under U = 8. However,
for the programs using the suspend lock mechanism, we got
unexpected results. Increasing U generally increases the fre-
quency of misspeculation in SS (and SR, too). Therefore, it
must make T

e
 longer, even when our repair mechanism of

SSM alleviates the misspeculation penalty. Therefore, we
thought that enlarging the task size was not preferable for
speculative execution. However, Fig. 10b shows that MS is
superior to MP in the range of up to 12 threads, and Fig. 10c
shows that the performance of MS is almost the same as MP.
Because the performance of MS is also almost the same as
SS in Fig. 10c, we can understand that there were practically
few threads suspended in MS. Thus, in situations with no
suspended threads, MS can achieve excellent performance.
That is, MS can build a BST with the same structure as the
sequentially generated one without performance loss com-
pared to the purely parallel construction.

0

Reinsertion (%)

10

20

30

40

50

60

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
of threads

(a) 10,000 nodes

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

of threads

Reinsertion (%)

0.1
0.2
0.3
0.4
0.5

(b) 1,000,000 nodes

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

of threads

Reinsertion (%)

0.001
0.002
0.003
0.004
0.005

(c) 100,000,000 nodes

MS

SS

SR

MR

Fig. 7 Reinsertion ratios in the case of POWER8, 8-node task

103International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

5.2.7 Results of Two 32‑Thread Xeon’s and 64‑Node Task

Figure 12 shows the relative speedup ratios of parallel ver-
sions to the sequential version of the BST construction pro-
gram when we ran them on machine B. The task size was 64.
Where the number of threads is less than 20, Fig. 12 shows
a similar tendency to Fig. 10, as in the relation between
Figs. 4 and 3.

Performance improvement of SP is remarkable compared
with the case of U = 8. It is due to an improvement of T

w
∕T

e

first. Besides, by increasing U, the times a thread takes out
its tasks from the source node list is reduced, and it helps
to alleviate the race. Therefore, memory bandwidth pres-
sure brought by the spin lock is lessened. Consequently, the
performance degradation of SP, which was remarkable in
Fig. 4, is alleviated in Fig. 12.

Figure 13 shows the node reinsertion ratio. The reinser-
tion ratios in Fig. 13 are still higher than those of Fig. 2. The
reinsertion ratios of SR are outstanding not only in Fig. 13a
but also in Fig. 13b. In the case of 1,000,000 nodes, the
workload of SR is over 2 times with more than 16 threads
and about 5.2 times with 60 threads. The workload of MR
is also over 2 times with more than 36 threads.

The performance of SR is sensitive to U, because a
large U tends to cause reinsertions. In the case of 10,000
nodes, the performance of SR is disastrous, and in the case
of 1,000,000 nodes, it is improved with a small number
of threads but degrades with many threads. The reason
for these performance degradations is supported by high

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

of threads
2 4 6 8 10 12 14

Speedup ratio

(c) 100,000,000 nodes

1

3

5

7

9

11

of threads
2 4 6 8 10 12 14

Speedup ratio

5

(b) 1,000,000 nodes

1

2

3

4

6

7

of threads

(a) 10,000 nodes

2 4 6 8 10 12 14

Speedup ratio

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Fig. 8 Speedups in the case of M1 Ultra, 8-node task

0

1

2

2 218 410164

Reinsertion (%)

of threads

(a) 10,000 nodes

0
2 218 410164

of threads

Reinsertion (%)

0.01

0.02

0.03

(b) 1,000,000 nodes

0
2 218 410164

of threads

Reinsertion (%)

0.0006
0.0004
0.0002

(c) 100,000,000 nodes

MS

SS

SR

MR

Fig. 9 Reinsertion ratios in the case of M1 Ultra, 8-node task

104 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

reinsertion ratios shown in Fig. 13a, b. However, in the case
of 100,000,000 nodes, with 60 threads, it is almost the same
as SP.

In contrast to SP, the performance of MP is not so good.
The superiority between MS and MR is not also determin-
istic. Especially the curves in Fig. 12 are not smooth, and it
is not easy to read the tendency of performances. It may be
because differences in the distances between the processor
core on which the thread is running and the memory bank
storing node data affect the performance.

5.2.8 Results of POWER8 and and 64‑Node Task

Figure 14 shows the speedup ratio when we ran the programs
on machine C under task size U = 64. And Fig. 15 shows the
node reinsertion ratio.

From comparing Fig. 14a with Fig. 6a, we can see a large
U spoils the performance of Spec and Rear, especially for
a small size of BST. It was also true in the cases of the
Xeon (machines A and B). The reason is supported by too
high reinsertion ratios shown in Fig. 15a. In Fig. 15a, b, the
reinsertion ratios not only of SR but also of MR are out-
standingly high. On the other hand, from the comparison of
Fig. 14c with Fig. 6c, we can see the performances of SP/
SS/SR in the case of 100,000,000 nodes which are merely a
little improved. There are no such dramatic changes as seen
on the Xeon Silver (machine B).

In the case of 10,000 nodes, Par performs better than
Spec, which does better than Rear, independently from the
difference of used lock mechanisms. By enlarging the BST
size, the performance of Rear is improved to be better than
Spec, and in the case of 100,000,000 nodes, Par performs
better than Rear, which does better than Spec. This perfor-
mance ranking is different from the cases of Xeon, while
the performance of MS is almost the same as MR. Since
the performance of MS is also almost the same as SS, we
can guess threads in MS were rarely suspended. Thus, MS
can build a BST with the same structure as the sequentially
generated one with 3.6–23.9% lower performance than MP.

5.2.9 Results of M1 Ultla and 64‑Node Task

Figure 16 shows the speedup ratio when we ran the programs
on machine D under task size U = 64. And Fig. 17 shows the
node reinsertion ratio.

From the comparison between Figs. 8a and 16a, in the
case of 10,000 nodes, we can see that increasing U improves
the performances of Par and Spec and worsens the perfor-
mance of Rear (SR greatly but MR slightly). This is simi-
lar to the cases on other machines. On the other hand, the
reinsertion ratios shown in Fig. 17 are all higher than those
shown in Fig. 9 in the respective case. This is consistent with
the fact that increasing U causes the performance to degrade,
but it cannot explain why the performance improves. Conse-
quently, we cannot discuss (or analyze) the performance only

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

Speedup ratio

2 4 6 8 10 12 14 16 18 20 22
of threads

4

8

12

16

20

(c) 100,000,000 nodes

0

Speedup ratio

2 4 6 8 10 12 14 16 18 20 22
of threads

2

4

6

8

10

12

14

16

18

(b) 1,000,000 nodes

0

Speedup ratio

2 4 6 8 10 12 14 16 18 20 22
of threads

(a) 10,000 nodes

1

2

3

4

5

6

7

8

9

0

Fig. 10 Speedups in the case of one 24-thread Xeon, 64-node task

105International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

Fig. 11 Reinsertion ratios in
the case of one 24-thread Xeon,
64-node task

0
2 61218 220281410164

of threads

(a) 10,000 nodes

100

Reinsertion (%)

20

40

60

80

120

140
MS

SS

SR

MR

0
2 61218 220281410164

of threads

Reinsertion (%)

(b) 1,000,000 nodes

1

2

0
2 61218 220281410164

of threads

(c) 100,000,000 nodes

0.010

0.005

0.015

Reinsertion (%)

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

Speedup ratio

65840442 23618 062544638202214
of threads

(c) 100,000,000 nodes

12

4

8

16

20

24

28

32

36

0

Speedup ratio

65840442 23618 062544638202214
of threads

3

6

9

12

15

18

21

24

(b) 1,000,000 nodes

0

Speedup ratio

65840442 23618 062544638202214

(a) 10,000 nodes
of threads

1

2

3

4

7

6

5

0

Fig. 12 Speedups in the case of two 32-thread Xeon’s, 64-node task

106 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

in the aspect of computational complexity. The efficiency of
the synchronization, or removal of the waiting time, is also
important, but it is not easy to measure the actual waiting
time of the threads in practice.

In Fig. 16b, c, the performances of all programs are
improved by enlarging the BST size. SP performs better than
SR, and SR does than SS. However, the performance ranking
in programs using suspend lock mechanism is different from
those using the spin lock mechanism. MP performs better
than MS, and MS does than MR. Such a difference in the
ranking order between programs using different lock mecha-
nisms was also shown in the cases of machines A and B.

Figure 16c shows that the performance of MS is slightly
lower than SS. It suggests that threads were sometimes sus-
pended to wait for their preceding threads. Nevertheless,
consequently, MS achieves a very slightly higher perfor-
mance than MP in Fig. 16c.

5.3 Discussion

We measured on some shared-memory types of multiproces-
sors. Still, the results differed depending on the machines
because of the differences in the balance between processor
speed and memory speed, memory bank organizations on
NUMA, synchronization mechanisms, and resource utiliza-
tion under SMT. This suggests that it is difficult to under-
stand the universal superiority of algorithms (or parallel
execution strategy) from a result measured on one machine.
However, we can roughly summarize the results we obtained
as the following.

• In most cases other than the small size of BSTs, SP is
superior in performance to SR, and SR is superior to SS.

• However, SS sometimes achieves better peak perfor-
mance than SP and SR.

• When the task size is small, MP is superior in perfor-
mance to MR, and MR is superior to MS.

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

of threads

(a) 10,000 nodes

Reinsertion (%)

100

200

300

400

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

of threads

(b) 1,000,000 nodes

Reinsertion (%)

2
4
6
8

10

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

of threads

(c) 100,000,000 nodes

Reinsertion (%)

0.01
0.02
0.03

MS

SS

SR

MR

Fig. 13 Reinsertion ratios in the case of two 32-thread Xeon’s, 64-node task

107International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

• Except for POWER8, however, when the task size is
increased, the performance of MS is improved. For
enough large-size of BST, MS is faster than MR and,
sometimes, has equal speeds to MP.

• With a small size of BST, increasing the task size
degrades the performances of SR and MR. On the other
hand, with a large size of BST, increasing the task size
improves the performances of SR and MR.

• Increasing the task size provokes misspeculation. In our
experiment, the number of node (re)insertions grows
nearly seven times at maximum with many threads and
a small size of BST. An increase in the task size is most
influential on SR among the speculation-based schemes.
In contrast, with a small task size and a small size of
BST, MR presents a smaller number of node (re)inser-
tions than any other scheme.

• Even in the case of a large size of BST, misspeculation
occurs, of course, and increasing the task size increases
the number of reinsertions. However, they are often small
(less than 1%) and seem ignorable.

• We measured the amount of node (re)insertions as one
indicator concerning the computational complexity, but
it does not always dominate the performance. What is
more, it may be helpful to optimize a scheme, but it is not

suitable to compare the performances between different
schemes.

We evaluated both cases of using the spin and suspend lock
mechanisms in this paper. The waiting overhead of lock
operation primitives in the spin lock is smaller than in the
suspend lock, and the program characteristics can be more
easily reflectable in the performance measurement results.
Since it helps us analyze the results by associating with the
program behavior, it is significant to evaluate the case of
using the spin lock mechanism experimentally. But gen-
erally, we should use the suspend lock in userland rather
than the spin lock. Therefore, the result of programs using
the suspend lock mechanism is more significant in practice
than those using the spin lock mechanism, even if the per-
formance superiority between them is reversed in the ideal
environment.

We had believed a priori that Par is essentially superior
in performance to Spec and Rear. It is indeed true in many
cases of our evaluation results. But even, Par suffers from the
overhead for mutual exclusion control. Therefore, in some
cases, MS overcame MP in performance, being unexpected
for us. Deep (excess) speculation increases the frequency
of misspeculation. However, from our experimental results,
we can see that deeper speculation does not always directly

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

Speedup ratio

8 16 24 32 40 38 56 64 72
of threads

(c) 100,000,000 nodes

12

4

8

16

20

0

Speedup ratio

8 16 24 32 40 48 56 64 72
of threads

(b) 1,000,000 nodes

3

6

9

12

15

0

Speedup ratio

8 16 24 32 40 48 56 64 72
of threads

(a) 10,000 nodes

1.5

3.0

4.5

6.0

7.5

9.0

10.5

0.0

Fig. 14 Speedups in the case of POWER8, 64-node task

108 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

bring performance degradation. Of course, the repair mecha-
nism of our SSM library contributes to reducing the mis-
speculation penalty. Instead, the waiting time to commit is
a bigger problem for MS. When we can enable threads to
begin to commit without being suspended by increasing the
task size, MS can achieve good performance. Consequently,
MS can generate a BST with the same structure as sequential
construction, taking an equal or shorter time to or than MP.
But unfortunately, we do not yet have a technique to decide
the optimum task size to maximize the performance of MS.

On the other hand, when the task size is small, it was
shown that MR outperforms MS, because MR does not suf-
fer from the waiting time to commit. However, MR is more
sensitive to misspeculation than MS. Simply increasing the
task sizes based on the loop unrolling fashion leads to deep-
ening speculation and, as a result, increasing the frequency
of misspeculation, so the performance of MR will either
degrade or be enhanced slightly at best.

In conclusion, MR with a small task size is better for a
small BST, and MS with a larger one is better for a large

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

of threads

Reinsertion (%)

100

200

300

400

500

600

(a) 10,000 nodes

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

of threads

(b) 1,000,000 nodes

Reinsertion (%)

5

10

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

of threads

(c) 100,000,000 nodes

0.10

0.05

Reinsertion (%)

MS

SS

SR

MR

Fig. 15 Reinsertion ratios in the case of POWER8, 64-node task

109International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

BST. In other words, for the case that misspeculation is
likely to occur in high frequency, we had better employ
MR with a small task size rather than MS. On the other
hand, when the frequency of misspeculation is relatively
low, increasing the task size will improve the performance
of MS beyond MR. In some cases, MS may achieve almost
the same performance as MP.

6 Conclusion

This paper presented new parallel construction schemes of
a BST with the same structure as the sequential construc-
tion and evaluated their performances on several types of
shared-memory multiprocessors. For the large enough size

of BST, our new parallel programs can construct a BST
with always the same structure on a little lower or some-
times higher performance than the program that makes a
BST with a different structure on every execution. And in
contrast with the general expectation that enlarging the
task size increases misspeculation and damages the perfor-
mance, we found it sometimes enhances the performance
of speculatively parallel execution.

We had intended to improve the performance of the first
scheme (Spec) and developed the second (Rear). How-
ever, from our experiments in this paper, we saw that one
does not always perform better than the other and that
the superiority of one to the other changes depending on
different conditions. Therefore, our future work is to inte-
grate the two schemes to achieve the best performance
always. Moreover, our further work is the development of

SP (Spin, Par.)
MP (Mutex, Par.) MS (Mutex, Spec.)

SS (Spin, Spec.)
MR (Mutex, Rearranging)
SR (Spin, Rearranging)

of threads
2 4 6 8 10 12 14

Speedup ratio

10

(c) 100,000,000 nodes

2

4

6

8

12

14

1

3

5

7

9

11

13

of threads
2 4 6 8 10 12 14

Speedup ratio

(b) 1,000,000 nodes

2

4

6

8

10

1

3

5

7

9

11

of threads
2 4 6 8 10 12 14

Speedup ratio

(a) 10,000 nodes

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 16 Speedups in the case of M1 Ultra, 64-node task

110 International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

instruments to make our TLS-based technique applicable
for applications other than constructing a BST.

Funding This article was funded by the Japan Society for the Promo-
tion of Science (JSPS) KAKENHI (Grant No. JP21K11806), and the
JSPS Core-to-Core program (Grant No. JPJSCCB2023005).

Data availability Raw data were generated at Kyoto Institute of Tech-
nology. Derived data supporting the findings of this study are available
from the corresponding author on request.

Declarations

Conflict of interest The authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Hirata H, Nunome A (2021) Reducing the repairing penalty on
misspeculation in thread-level speculation. In: Proceedings of the
8th international virtual conference on applied computing & infor-
mation technology (ACIT 2021). ACM, pp 39–45. https:// doi. org/
10. 1145/ 34680 81. 34711 20

 2. Hirata H, Nunome A (2022) Parallel binary search tree construc-
tion inspired by thread-level speculation. In: Proceedings of the
23rd ACIS international summer virtual conference on software
engineering, artificial intelligence, networking and parallel/dis-
tributed computing (SNPD 2022-Summer). IEEE, pp 74–81.
https:// doi. org/ 10. 1109/ SNPD- Summe r57817. 2022. 00021

 3. Hirata H, Nunome A, Shibayama K (2016) Speculative memory:
an architectural support for explicit speculations in multithreaded
programming. In: Proceedings of the 15th international confer-
ence on computer and information science (ICIS 2016). IEEE, pp
715–721. https:// doi. org/ 10. 1109/ ICIS. 2016. 75508 43

 4. Fujisawa K, Nunome A, Shibayama K, Hirata H (2017) A soft-
ware implementation of speculative memory. In: Proceedings of
the 18th international conference on software engineering, artifi-
cial intelligence, networking and parallel/distributed computing
(SNPD 2017). IEEE, pp 437–443. https:// doi. org/ 10. 1109/ SNPD.
2017. 80227 59

 5. Matsunaga D, Nunome A, Hirata H (2019) Shelving a code block
for thread-level speculation. In: Proceedings of the 20th interna-
tional conference on software engineering, artificial intelligence,
networking and parallel/distributed computing (SNPD 2019).
IEEE, pp 427–434. https:// doi. org/ 10. 1109/ SNPD. 2019. 89357 51

 6. Hirata H, Nunome A (2020) Decoupling computation and result
write-back for thread-level parallelization. Int J Softw Innov (IJSI)
8(3):19–34. https:// doi. org/ 10. 4018/ IJSI. 20200 70102

 7. Feng J, Naiman DQ, Cooper B (2011) A parallelized binary search
tree. J Inf Technol Softw Eng 1(1):1–5. https:// doi. org/ 10. 4172/
2165- 7866. 10001 03

 8. Howley SV, Jones J (2012) A non-blocking internal binary search
tree. In: Proceedings of the 24th symposium on parallelism in
algorithms and architectures. ACM, pp 161–171. https:// doi. org/
10. 1145/ 23120 05. 23120 36

 9. McKenney PE (2010) Memory barriers: a hardware view for
software hackers. Preprint at https:// www. resea rchga te. net/ publi
cation/ 22882 4849_ Memory_ Barri ers_a_ Hardw are_ View_ for_
Softw are_ Hacke rs. Accessed 25 Mar 2023

 10. Sewell P, Sarkar S, Owens S, Nardelli FZ, Myreen MO (2010)
x86-TSO: a rigorous and usable programmer’s model for x86
multiprocessors. Commun ACM 53(7):89–97. https:// doi. org/ 10.
1145/ 17854 14. 17854 43

 11. Adve SV, Hill MD (1990) Weak ordering: a new definition. In:
Proceedings of the 17th international symposium on computer
architecture (ISCA ’17). ACM, pp 2–14. https:// doi. org/ 10.
1145/ 325096. 325100

 12. Gharachorloo K, Lenoski D, Laudon J, Gibbons P, Gupta A,
Hennessy J (1990) Memory consistency and event ordering in
scalable shared-memory multiprocessors. In: Proceedings of the
17th international symposium on computer architecture (ISCA
’17). ACM, pp 15–26. https:// doi. org/ 10. 1145/ 325096. 325102

0
2 218 410164

of threads

(a) 10,000 nodes

Reinsertion (%)

20

40

60

0
2 218 410164

of threads

Reinsertion (%)

(b) 1,000,000 nodes

0.2
0.4
0.6

0
2 218 410164

Reinsertion (%)

0.002
0.004
0.006

of threads

(c) 100,000,000 nodes

MS

SS

SR

MR

Fig. 17 Reinsertion ratios in the case of M1 Ultra, 64-node task

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3468081.3471120
https://doi.org/10.1145/3468081.3471120
https://doi.org/10.1109/SNPD-Summer57817.2022.00021
https://doi.org/10.1109/ICIS.2016.7550843
https://doi.org/10.1109/SNPD.2017.8022759
https://doi.org/10.1109/SNPD.2017.8022759
https://doi.org/10.1109/SNPD.2019.8935751
https://doi.org/10.4018/IJSI.2020070102
https://doi.org/10.4172/2165-7866.1000103
https://doi.org/10.4172/2165-7866.1000103
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/2312005.2312036
https://www.researchgate.net/publication/228824849_Memory_Barriers_a_Hardware_View_for_Software_Hackers
https://www.researchgate.net/publication/228824849_Memory_Barriers_a_Hardware_View_for_Software_Hackers
https://www.researchgate.net/publication/228824849_Memory_Barriers_a_Hardware_View_for_Software_Hackers
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/325096.325100
https://doi.org/10.1145/325096.325100
https://doi.org/10.1145/325096.325102

111International Journal of Networked and Distributed Computing (2023) 11:88–111

1 3

 13. Ellen F, Fatourou P, Ruppert E, Breugel F (2010) Non-blocking
binary search trees. In: Proceedings of the 29th symposium on
principles of distributed computing (PODC ’10). ACM, pp
131–140. https:// doi. org/ 10. 1145/ 18356 98. 18357 36

 14. Natarajan A, Mittal N (2014) Fast concurrent lock-free binary
search trees. In: Proceedings of the 19th ACM SIGPLAN sym-
posium on principles and practice of parallel programming
(PPoPP ’14). ACM, pp 317–328. https:// doi. org/ 10. 1145/ 25552
43. 25552 56

 15. Fatourou P, Papavasileiou E, Ruppert E (2019) Persistent non-
blocking binary search trees supporting wait-free range que-
ries. In: Proceedings of the 31st symposium on parallelism in
algorithms and architectures (SPAA ’19). ACM, pp 275–286.
https:// doi. org/ 10. 1145/ 33231 65. 33231 97

 16. Akkary H, Driscoll MA (1998) A dynamic multithreading pro-
cessor. In: Proceedings of the 31st annual international sym-
posium on microarchitecture (MICRO-31). IEEE, pp 226–236.
https:// doi. org/ 10. 1109/ MICRO. 1998. 742784

 17. Marcuello P, González A (1999) Clustered speculative multi-
threaded processors. In: Proceedings of the 13th international
conference on supercomputing. ACM, pp 365–372. https:// doi.
org/ 10. 1145/ 305138. 305214

 18. Hammond L, Hubbert BA, Siu M, Prabhu MK, Chen M, Oluko-
tun K (2000) The Stanford hydra CMP. IEEE Micro 20(2):71–
84. https:// doi. org/ 10. 1109/ 40. 848474

 19. Vijaykumar TN, Gopal S, Smith JE, Sohi G (2001) Specu-
lative versioning cache. IEEE Trans Parallel Distrib Syst
12(12):1305–1317. https:// doi. org/ 10. 1109/ 71. 970565

 20. Cintra M, Torrellas J (2002) Eliminating squashes through learn-
ing cross-thread violations in speculative parallelization for multi-
processors. In: Proceedings of the 8th international symposium on
high-performance computer architecture. IEEE, pp 43–54. https://
doi. org/ 10. 1109/ HPCA. 2002. 995697

 21. Steffan JG, Colohan CB, Zhai A, Mowry TC (2002) Improving
value communication for thread-level speculation. In: Proceed-
ings of the 8th international symposium on high-performance
computer architecture. IEEE, pp 65–75. https:// doi. org/ 10. 1109/
HPCA. 2002. 995699

 22. Prabhu MK, Olukotun K (2003) Using thread-level speculation
to simplify manual parallelization. In: Proceedings of the 9th
ACM SIGPLAN symposium on principles and practice of paral-
lel programming. ACM, pp 1–12. https:// doi. org/ 10. 1145/ 781498.
781500

 23. Garzaran MJ, Prvulovic M, Llaberia JM, Vinals V, Rauchwerger
L, Torrellas J (2004) Software logging under speculative paral-
lelization. High Perform Mem Syst. https:// doi. org/ 10. 1007/ 978-
1- 4419- 8987-1_ 12

 24. Steffan JG, Colohan C, Zhai A, Mowry TC (2005) The STAM-
Pede approach to thread-level speculation. ACM Trans Comput
Syst 23(3):253–300. https:// doi. org/ 10. 1145/ 10824 69. 10824 71

 25. Ohsawa T, Takagi M, Kawahara S, Matsushita S (2005) Pinot:
speculative multi-threading processor architecture exploiting
parallelism over a wide range of granularities. In: Proceedings
of the 38th annual international symposium on microarchitecture

(MICRO-38). IEEE, pp 81–92. https:// doi. org/ 10. 1109/ MICRO.
2005. 26

 26. Colohan CB, Ailamaki A, Steffan JG, Mowry TC (2006) Tol-
erating dependences between large speculative threads via sub-
threads. In: Proceedings of the 33rd annual international sympo-
sium on computer architecture (ISCA ’06). IEEE, pp 216–226.
https:// doi. org/ 10. 1109/ ISCA. 2006. 43

 27. Praun C, Ceze L, Cascaval C (2007) Implicit parallelism with
ordered transactions. In: Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP ’7), pp. 79–89. https:// doi. org/ 10. 1145/ 12294 28. 12294 43

 28. Tian C, Feng M, Nagarajan V, Gupta R (2008) Copy or discard
execution model for speculative parallelization on multicores. In:
Proceedings of the 41st IEEE/ACM international symposium on
microarchitecture (MICRO-41). IEEE, pp 330–341. https:// doi.
org/ 10. 1109/ MICRO. 2008. 47718 02

 29. Mehrara M, Hao J, Hsu P, Mahlke S (2009) Parallelizing sequen-
tial applications on commodity hardware using a low-cost soft-
ware transactional memory. In: Proceedings of the 30th ACM
SIGPLAN conference on programming language design and
implementation. pp 166–176. https:// doi. org/ 10. 1145/ 15431 35.
15424 95

 30. Hertzberg B, Olukotun K (2011) Runtime automatic speculative
parallelization. In: Proceedings of the 9th Annual IEEE/ACM
international symposium on code generation and optimization.
IEEE, pp 64–73. https:// doi. org/ 10. 1109/ CGO. 2011. 57646 75

 31. Odaira R, Nakaike T (2014) Thread-level speculation on off-
the-shelf hardware transactional memory. In: Proceedings of the
IEEE international symposium on workload characterization. pp
212–221. https:// doi. org/ 10. 1109/ IISWC. 2014. 69830 60

 32. Shoji Y, Nunome A, Hirata H, Shibayama K (2015) A large-scale
speculation for the thread-level parallelization. In: Proceedings of
the 3rd international conference on applied computing and infor-
mation technology (ACIT 2015). IEEE, pp 162–168. https:// doi.
org/ 10. 1109/ ACIT- CSI. 2015. 39

 33. Salamanca J, Amaral JN, Araujo G (2016) Evaluating and improv-
ing thread-level speculation in hardware transactional memories.
In: Proceedings of the IEEE international parallel and distributed
processing symposium (IPDPS). IEEE, pp 586–595. https:// doi.
org/ 10. 1109/ IPDPS. 2016. 84

 34. Hirata H, Kimura K, Nagamine S, Mochizuki Y, Nishimura A,
Nakase Y, Nishizawa T (1992) An elementary processor architec-
ture with simultaneous instruction issuing from multiple threads.
In: Proceedings of the 19th annual international symposium on
computer architecture (ISCA ’92). ACM, pp 136–145. https:// doi.
org/ 10. 1145/ 146628. 139710

 35. Tullsen DM, Eggers SJ, Levy HM (1995) Simultaneous multi-
threading: maximizing on-chip parallelism. In: Proceedings of the
22nd annual international symposium on computer architecture
(ISCA ’95). ACM, pp 369–380. https:// doi. org/ 10. 1145/ 225830.
224449

https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3323165.3323197
https://doi.org/10.1109/MICRO.1998.742784
https://doi.org/10.1145/305138.305214
https://doi.org/10.1145/305138.305214
https://doi.org/10.1109/40.848474
https://doi.org/10.1109/71.970565
https://doi.org/10.1109/HPCA.2002.995697
https://doi.org/10.1109/HPCA.2002.995697
https://doi.org/10.1109/HPCA.2002.995699
https://doi.org/10.1109/HPCA.2002.995699
https://doi.org/10.1145/781498.781500
https://doi.org/10.1145/781498.781500
https://doi.org/10.1007/978-1-4419-8987-1_12
https://doi.org/10.1007/978-1-4419-8987-1_12
https://doi.org/10.1145/1082469.1082471
https://doi.org/10.1109/MICRO.2005.26
https://doi.org/10.1109/MICRO.2005.26
https://doi.org/10.1109/ISCA.2006.43
https://doi.org/10.1145/1229428.1229443
https://doi.org/10.1109/MICRO.2008.4771802
https://doi.org/10.1109/MICRO.2008.4771802
https://doi.org/10.1145/1543135.1542495
https://doi.org/10.1145/1543135.1542495
https://doi.org/10.1109/CGO.2011.5764675
https://doi.org/10.1109/IISWC.2014.6983060
https://doi.org/10.1109/ACIT-CSI.2015.39
https://doi.org/10.1109/ACIT-CSI.2015.39
https://doi.org/10.1109/IPDPS.2016.84
https://doi.org/10.1109/IPDPS.2016.84
https://doi.org/10.1145/146628.139710
https://doi.org/10.1145/146628.139710
https://doi.org/10.1145/225830.224449
https://doi.org/10.1145/225830.224449

	Performance Evaluation on Parallel Speculation-Based Construction of a Binary Search Tree
	Abstract
	1 Introduction
	2 Background
	3 Speculatively Parallel Construction
	3.1 Speculative Memory
	3.2 Speculative Node-Insertion Algorithm

	4 TLS-Inspired Parallel Construction
	4.1 Development Insight for a New Parallel Algorithm
	4.2 TLS-Inspired Parallel Node-Insertion Algorithm

	5 Performance Evaluation
	5.1 Evaluation Setting
	5.1.1 Evaluated Programs
	5.1.2 Problem Size and Task Granularity
	5.1.3 List of Removed Subtrees
	5.1.4 Execution Environment

	5.2 Results
	5.2.1 Basic Performance Modeling
	5.2.2 Results of One 24-Thread Xeon and 8-Node Task
	5.2.3 Results of Two 32-Thread Xeon’s and 8-Node Task
	5.2.4 Results of POWER8 and 8-Node Task
	5.2.5 Results of M1 Ultla and 8-Node Task
	5.2.6 Results of One 24-Thread Xeon and 64-Node Task
	5.2.7 Results of Two 32-Thread Xeon’s and 64-Node Task
	5.2.8 Results of POWER8 and and 64-Node Task
	5.2.9 Results of M1 Ultla and 64-Node Task

	5.3 Discussion

	6 Conclusion
	References

