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Abstract
Purpose of Review Task allocation using a team or coalition of robots is one of the most important problems in robotics, 
computer science, operational research, and artificial intelligence. We present a survey of multi-robot task allocation cover-
ing many problem variants and solution approaches, both centralized and decentralized.
Recent Findings In recent work, research has focused on handling complex objectives and feasibility constraints amongst 
other variations of the multi-robot task allocation problem. There are many examples of important research and recent pro-
gress in these directions, which are captured in this survey, along with similar examples for the various solutions that have 
been developed to solve such problems.
Summary We first present a general formulation of the task allocation problem that generalizes several versions that are 
well-studied. Our formulation includes the states of robots, tasks, and the surrounding environment in which they oper-
ate, and we describe how the problem can be varied depending on the feasibility constraints, objective functions, and the 
level of dynamically changing information. In addition, we discuss existing solution approaches for the problem including 
optimization-based approaches, and market-based approaches.

Keywords Robot coalition · Task allocation · Team formation · Routing problems · Allocation under constraints

Introduction

Coordinating actions of agents, humans, or robots to allocate 
and complete tasks is a ubiquitous and fundamental problem. 
We consider this problem in the context of multi-robot task 
allocation (MRTA). The general problem has several fea-
tures. Tasks need to be completed with robots who have the 
required skills. The tasks are heterogeneous, i.e., they are of 
different types and have different requirements. Depending 

on the nature of the tasks, the value of completing the tasks 
may be different. Typically, both the tasks and the robots are 
in a metric space. Travel costs and energy considerations 
require that the robots do not undertake tasks that are too far 
from them. In many of these aspects, the tasks undertaken by 
robots have an underlying sequencing aspect: a robot may be 
required to undertake tasks in a particular sequence/order. 
Such decisions are informed by the spatial locations of the 
robots and tasks.

In this paper, we survey different variants of the problem 
and approaches to solve them. Since the problem has been 
studied across different fields including artificial intelli-
gence, operations research, and combinatorial optimization, 
several surveys have been written on the topic. We provide 
an updated survey that has one particular contribution: we 
present a general model covering several features and con-
straints related to MRTA. Our formulation helps to encap-
sulate several MRTA problems that have been extensively 
studied in the literature.
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Related Surveys and Taxonomies

Gerkey and Matarić [1] present a taxonomy for MRTA prob-
lems where tasks are assumed to be independent. The tax-
onomy is structured according to the type of robot, the type 
of task and the type of assignment. It differentiates between 
robots that are capable of executing a single task at a time 
(ST) and multiple tasks simultaneously (MT). Tasks are 
considered according to whether they require a single robot 
(SR) or multiple robots (MR) to complete, and allocations 
may be instantaneous (IA) or time-extended (TA). The paper 
discusses known allocation problems, and some variants that 
align with the taxonomy along with existing approaches to 
solve these problems. Korsah et al. [2] extend the taxonomy 
presented by Gerkey and Matarić [1] to account for problems 
involving interrelated utilities and task constraints. Depend-
encies between tasks are specified as no dependency (ND), 
in-schedule dependencies (ID), cross-schedule dependencies 
(XD), and complex dependencies (CD). These dependen-
cies are applied to Gerkey and Matarić’s taxonomy with 
associated mathematical models and solution approaches 
discussed.

A further extension to the taxonomy presented by Gerkey 
and Matarić [1] is provided by Nunes et al. [3•]. They pri-
marily consider temporal and ordering constraints on tasks. 
They review and organize relevant MRTA literature accord-
ing to their taxonomy and they discuss both centralized and 
decentralized solution approaches.

Rizk et al. [4] present a survey structured according to the 
components of the workflow used to automate multi-robot 
systems (MRS). Coalition formation and task allocation are 
identified as a key component. Only cooperative coalition 
formation algorithms are considered, and they are classified 
according to their assumptions. Various approaches to task 
allocation in MRS are also discussed. The decision-making 
topology (centralized, decentralized and distributed), hetero-
geneity of robots and associated applications are highlighted.

Diaz et al. [5] focus on market-based approaches and 
review research according to various dimensions. The task 
allocation problem is considered under the planning dimen-
sion. Examples of market-based approaches categorized 
according to the taxonomy presented by Gerkey and Matarić 
[1] are provided along with examples of centralized and dis-
tributed mechanisms. There is also a review of approaches 
that allocate constrained subtasks and approaches that allo-
cate roles.

Yan et al. [6] focus on coordination specifically relating to 
MRS. One key aspect of this coordination is task planning, 
under which task allocation is considered. A discussion of 
approaches for MRTA based on the Contract Net Protocol 
(CNP) is presented in addition to various other approaches.

Parker et al. [7] present task allocation as a core concept 
relevant to the interaction between multiple mobile robot 
systems and they review behavior-based and market-based 
task allocation approaches.

The Multiple Traveling Salesman Problem is closely 
related to MRTA and a comprehensive survey is presented 
by Cheikhrouhou and Khoufi [8]. Variants of the problem 
are articulated and solution approaches are presented in 
terms of those applied to unmanned ground vehicles and 
those applied to unmanned air vehicles. The main categories 
of task allocation approaches considered are deterministic 
approaches, metaheuristic-based approaches and market-
based approaches.

The review by De Ryck et al. [9] focuses on control algo-
rithms and techniques for automated guided vehicles. The 
section on task allocation considers relevant task constraints 
and optimization objectives. The main task allocation 
approaches reviewed are optimization-based and market-
based, while there is also a brief mention of behavior-based 
approaches.

Khamis et  al. [10] provide a comprehensive review 
on challenging aspects of the MRTA problem. They dis-
cuss different MRTA schemes and planning algorithms. 
They review two popular categories of MRTA solution 
approaches, namely optimization-based and market-based 
approaches. Several other surveys and reviews also include 
relevant discussion in relation to MRTA [11–15].

Problem Definition

Let R = {r1,… , rn} be a set of n robots and T = {t1,… , tm} 
be a set of m tasks. Moreover, for every r ∈ R , define Sr(�) 
to denote the state of robot r at time � . The state of any robot 
encodes a wide range of information regarding the robot 
including its position, skills, energy and its current alloca-
tion. Similarly, for every t ∈ T  , St(�) denotes the state of 
task t at time � encoding information such as task constraints 
and dependencies, robot skill requirements and completion 
status. Furthermore, Se(�) represents the information regard-
ing a dynamically changing environment including transition 
costs between tasks and robots and dynamic factors that may 
affect robot communication. Throughout the paper, we refer 
to St, Sr, Se for the static case, where the system does not 
change during the course of an allocation. This case will 
be the focus of our current discussion. For consideration of 
dynamic aspects of the problem, please see Section Dynamic 
Settings.

In order for a robot r ∈ R to perform task t ∈ T  , it incurs 
a cost c(Sr(�), St(�), Se(�)) , while the reward received may 
be represented as v(Sr(�), St(�), Se(�)) . Both factors depend 
on the states. In the case of the cost, this may represent the 
travel cost to a task, the completion cost of the task and/or 
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some other cost. The combination of cost and reward may be 
represented in terms of utility u(c, v), which seeks to quan-
tify a robot’s preference over a particular task. The MRTA 
problem refers to allocating tasks to robots while respect-
ing states and optimizing objective functions. The objective 
functions may be based on any combination of cost, reward, 
utility or another objective, and are discussed further in Sec-
tion Objective Functions.

Both the robots and tasks in MRTA problems may be 
subject to constraints. An in-depth discussion of con-
straints is included in Section Constraints on Tasks and 
Robots, but here we elaborate on robot capability con-
straints. A robot may be capable of one or more skills 
� and a task may require a robot of a particular skill or 
multiple robots with a combination of skills. The set 
of all skills is Φ = {�1,… ,�l} . Each robot’s skill set 
and the set of skills required by a task are subsets of 
this set, i.e., Φr,Φt ⊆ Φ . Using the state-based approach 
described above, for every robot r ∈ R , a robot’s 
state Sr may be represented as a tuple (Φr, br) , where 
Φr ⊆ Φ is the set of skills the robot is equipped with 
and br ∈ ℝ

+ denotes the remaining budget of robot r to 
perform tasks. Moreover, for every task t ∈ T  , we have 
St = ((�, dt,�),…) , where each pair consists of one skill 
� and its corresponding demand dt,� required by task t. 
In order for robot r to handle required skill � of task t, 
the robot needs to have sufficient budget br in order to 
accommodate the demand dt,� . In what follows we give 
an example of these particular constraints.

Example 1 Suppose that we have a set of two robots, 
{r1, r2} , and a set of three tasks, {t1, t2, t3} , scattered on 
ℝ

2 with standard Euclidean metric denoted by d(⋅, ⋅) (see 
Fig. 1). Let Φ = {����, ����} denote the set of skills. Moreo-
ver, robot and task states are as follows: Sr1 = ({����}, 4) , 
Sr2 = ({����, ����}, 6)  ,  St1 = ((����, 3), (����, 3))  , 
St2 = (����, 3) , and St3 = (����, 1) . For instance, Sr2 denotes 
that robot r2 has skill set {����, ����} and total budget of six. 
St1 indicates that task t1 requires three units of skill ���� and 
three units of skill ���� . In order to complete the tasks, each 
robot visits a subset of tasks and satisfies their demands. 

Given the skill and budget constraints, task t1 requires both 
r1 and r2 to be completed. As illustrated in Fig. 1, robot r2 
first visits task t3 and then visits t1 while robot r1 visits tasks 
t1 and t2 . Notice that each robot incurs a cost which is pro-
portional to travel distance. Therefore, an optimal task allo-
cation assigns an ordered sequence of tasks to each robot 
and satisfies task requirements while minimizing the total 
distance traveled by the robots.

Constraints on Tasks and Robots

The constraints on robots and tasks in the scope of MRTA 
restrict how tasks may be allocated to robots.

In order to initially describe task constraints, we 
assume that tasks are elemental, which refers to singular, 
non-decomposable tasks. Task constraints may be con-
sidered in many dimensions. There may be constraints on 
the capability of robots completing a task [16, 17•, 18, 
19]. In Section Problem Definition, we consider this in 
terms of skills, i.e., only robots possessing a particular 
skill are able to complete tasks requiring this skill. There 
may be requirements on how many robots are required to 
complete a task [1, 20•, 21], i.e., a task may require more 
than one robot to complete. There may also be dependen-
cies between tasks that dictate that tasks must be com-
pleted in a particular order [3•, 22, 23], known as prec-
edence or ordering constraints. Furthermore, there may 
be restrictions on when a task must be completed [3•, 24, 
25], known as temporal constraints. For instance, certain 
tasks may need to be completed simultaneously or a task 
may need to be completed within a time window. In some 
cases, there may also be spatial task constraints, where 
tasks are required to be completed at a certain location 
[26]. Additionally, there may be task budget constraints, 
where tasks must be completed within a specified budget 
[20•], i.e., only robots that can complete the task below 
a certain cost may be allocated the task.

Fig. 1  The dashed line indicates 
a path staring from robot r1 
and ending at task t2 . The solid 
line indicates the path starting 
from robot r2 visiting task t3 and 
ending at t1 . Moreover, d(ri, tj) 
(or d(ti, tj) ) denotes the distance 
between robot ri (or task ti ) and 
task tj
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Instead of elemental tasks, MRTA may consider 
decomposable tasks, which are represented by a set of 
subtasks [2]. There may be a set of relationships between 
these subtasks that dictate the required combination of 
subtasks for the decomposable task. These relationships 
may capture any of the constraints described above, or 
others, that must be satisfied. These decomposable tasks 
may be allocated as a whole or the subtasks may be allo-
cated separately depending on the nature of the tasks and 
their constraints.

The constraints on robots may be as varied as those applied 
to tasks. This includes capability constraints, carrying capac-
ity constraints, budget constraints and spatial constraints 
amongst others. Capability constraints refer to the case where 
a robot may only be capable of specific skills, as described 
above and in Section Problem Definition. Carrying capacities 
constrain robots by limiting the number of tasks they may be 
allocated at a time (e.g., [27, 28]), such as in problems where 
the tasks involve transportation of items. Alternatively, budget 
constraints (e.g., [29, 30]) may limit the total number of tasks 
that can be allocated to a robot or the total distance that can 
be traveled by a robot. Lastly, spatial robot constraints limit 
where a robot may travel, such as designated start and finish 
locations [31] or proximity requirements [32, 33].

Objective Functions

Motivated by a wide range of applications, MRTA seeks to 
optimize a given set of objective functions, while respecting 
robot and task constraints. This set of objective functions 
defines the preferred allocation of tasks to robots. MRTA 
problems often consider a single objective, but the problem 
involving multiple objectives represents a more general set-
ting. In this case, the aim is to optimize each unique objec-
tive, noting that the preferred allocation may be represented 
by a Pareto frontier.

There are a number of well-studied objective functions 
considered in the MRTA literature. In certain applications 
where tasks have associated reward and cost, utility func-
tions may be specified to account for both of these factors 
[1, 2]. The objective of utility optimization may therefore 
capture the trade-off between costs and rewards. These 
objectives may also be considered independently for MRTA 
problems. If all tasks are equal, cost minimization may be 
an appropriate objective. This may consider various met-
rics depending on the application including minimization 
of distance [34, 35], time [36, 37] or energy [38, 39]. In the 
case of time metrics, this could include travel time or task 
completion time. If tasks have different priority or if robots 
have preferences over tasks, robots may have distinct values 
for each task and reward maximization may instead be a 
suitable objective (e.g., [40]). In some problems, completing 

all tasks is not feasible. In this case, the objective may relate 
to completing the maximum number of tasks (e.g., [41]).

Whether the objective relates to utility, cost, reward or 
something else, there are a number of approaches by which 
these objectives can be addressed (e.g., see [42]). In the case 
of cost, we may wish to minimize the total cost of an alloca-
tion. Alternatively, we may seek to minimize the maximum 
cost incurred by any robot, otherwise known as makespan 
minimization. Finally, we may minimize the average cost of 
the tasks allocated to robots.

Dynamic Settings

Within the context of MRTA, the set of robots, the set 
of tasks, the operating environment and their associated 
states may be static and permit an instantaneous allo-
cation or they may be dynamic and change over time 
requiring a more complex allocation. Here, we acknowl-
edge how dynamic settings may influence the shape of 
the MRTA problem such that it changes over time. A 
key factor for MRTA in real-world applications is that 
the environment may be unknown (e.g., [43]), requir-
ing tasks to be re-allocated once more information is 
revealed. Robots may experience faults that reduce their 
capabilities (e.g., [44]) or new robots may be introduced 
(e.g., [45]), and tasks may be discovered or arrive over 
time (e.g., [46, 47]). There may also be uncertainty in a 
robot’s estimation of its ability to complete a task or the 
requirements of a task (e.g., [17•, 48]). These various 
dynamic settings may lead to changes in robot prefer-
ences over tasks and dictate modification of an allocation 
or a more dynamic approach to MRTA.

Connections with Well‑Studied Problems

There are a wide range of problems which are closely 
related to MRTA including job shop scheduling, team 
orienteering, vehicle routing and coalition formation. We 
now briefly discuss some of these problems.

Vehicle Routing

The CapaCitated VehiCle Routing pRoblem (CVRP) is one 
of the most well-studied problems within the class of Vehi-
Cle Routing pRoblems (VRP). In case of CVRP, the trans-
portation requests consist of the distribution of a set of n 
vehicles, say R, from a single depot to a set of m customers/
tasks, say T, which are positioned on a metric space denoted 
by Se , i.e., the environment state. The standard definition of 
CVRP utilizes a weighted graph G = (V ,E,w) to represent 
the environment. The edge weight w indicates the traveling 
cost/distance from one vertex V to another along edge E. 
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In this problem, for every t ∈ T  , St indicates the capacity 
demand of each task and, for every r ∈ R , Sr indicates the 
carrying capacity of vehicle/robot r. It is assumed that for 
all r ∈ R , Sr is the same and all vehicles/robots have the 
same capacity.

A vehicle starting from a depot services a subset of cus-
tomers, and eventually returns to the depot. Therefore, the 
servicing vehicle r ∈ R is assigned a closed tour and the cost 
incurred to vehicle r is defined as

where v0 = vi0 , vi1 ,… vip are the vertices being visited by 
vehicle r in the closed tour. CVRP seeks to assign a closed 
tour to each vehicle while minimizing 

∑

r∈R c(r) and satisfy-
ing customer/task demands.

There is an intimate connection between CVRP and 
MRTA. If we think about the vehicles as robots and the cus-
tomers visited in going from the source to the destination 
as tasks, it can be easily seen that CVRP is an instance of 
MRTA, with the appropriate cost and distance functions.

The VRP has a long and fascinating history. Dantzig and 
Ramser [49] introduced the VRP as a real-world applica-
tion concerning the delivery of gasoline to gas stations. 
They called it the truck dispatching problem. In this semi-
nal paper, they proposed the first mathematical program-
ming formulation and algorithmic approach for the VRP. 
Clarke and Wright [50] proposed an effective greedy heu-
ristic for the approximate solution of the VRP. Gendreau 
et al. [51] reviewed different types of stochastic vehicle 
routing problems. Cordeau and Laporte [52] studied the 
dial-a-Ride pRoblem, which consists of designing vehicle 
routes and schedules for customers who specify pickup and 
delivery requests between origins and destinations. The aim 
is to plan a set of minimum cost vehicle routes capable of 
accommodating as many customers as possible, under a set 
of constraints.

Coalition Formation

The coalition formation problem for task allocation is a well-
studied setting where each task requires a group of robots of 
a specified size, i.e., a coalition, to be completed. Moreover, 
every coalition assigned to a task has a valuation, interpreted 
as either cost or profit. The goal is to assign a set of coali-
tions to tasks to optimize a desired objective function with 
respect to the cost/profit of each coalition. The problem is a 
variant of the MRTA problem in which, for every task t ∈ T , 
the task state St denotes the number of robots required to 
perform task t. Moreover, the environment state Se is rep-
resented by a complete bipartite graph G = (R ∪ T ,E,w) , 
where each edge {r, t} is associated with a weight wr,t . Rt ⊂ R 

c(r) =

p−1
∑

j=0

c(vij , vij+1) + c(vip , vi0 ),

denotes a coalition of robots performing the task t. The cost 
associated with the coalition Rt is c(Rt) =

∑

r∈R wr,t . There-
fore, the problem seeks to find a collection of coalitions, say 
{Rt ∶ t ∈ T} , which minimizes 

∑

t∈T c(Rt) , and satisfies the 
demands of all tasks.

One of the earliest works in this area is by Shehory and 
Kraus [19]. The authors proposed a greedy k-approximation 
algorithm with running time O(mnk) for n robots, m tasks, 
and maximum coalition size k. Later, the algorithm’s running 
time was improved to O(mn3∕2) by Service and Adam [53]. 
Lau et al. [54] provided a taxonomy and considered different 
variations of the problem including tasks with unit demands 
and limited and unlimited resources. Besides the hardness 
result, polynomial algorithms are presented for special cases.

One can easily see that the problem reduces to the one-
to-many bipartite matching problem. Recently, Aziz et al. 
[20•] viewed the model from a budget constraint perspec-
tive, where the total task and robot budget is part of the 
input. The proposed models seek to find an allocation to 
satisfy the budget constraints.

MRTA Solution Approaches

In this section, we discuss solution approaches for MRTA. 
In particular, we highlight approaches of note against key 
elements of our problem definition in Section  Problem 
Definition. We consider both centralized and decentralized 
approaches, and we distinguish between the main catego-
ries of approaches identified in MRTA literature, namely 
optimization-based, market-based, and others.

Optimization‑Based Approaches

Optimization-based approaches for MRTA seek to find opti-
mal solutions to problems by searching a solution space. The 
search is guided by an objective function (or functions) for 
the problem and the set of solutions is often restricted based 
on constraints relating to the problem. These approaches typ-
ically rely on having access to global information in order to 
solve the problem. They may be broadly classified as deter-
ministic approaches or stochastic and heuristic approaches.

Although many optimization-based approaches for 
MRTA are centralized, there are examples of research 
that demonstrate how these techniques can be applied in a 
decentralized or distributed manner. Such approaches are 
particularly important for MRTA in scenarios that lack a 
central authority to coordinate robot assignments and they 
avoid the potential single point of failure associated with a 
central computer. In the following discussion, we include 
some examples of both centralized and decentralized opti-
mization-based approaches for MRTA.
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Deterministic Approaches

Deterministic (or exact) approaches for solving MRTA prob-
lems are capable of achieving optimal solutions. However, 
they rely on rigorous algorithms that are typically slow 
and only suitable for small problem sizes. As the problem 
size increases, the solution space grows and deterministic 
algorithms become intractable. In addition, they are less 
suited for problems with complex constraints. Despite this, 
a number of deterministic approaches have been developed 
for MRTA.

A traditional deterministic method for solving allocation 
problems in polynomial time is the Hungarian method [55], 
which is a centralized approach suitable for optimally solv-
ing linear assignment problems where robots are allocated 
single tasks. More recently, distributed versions of the Hun-
garian method have been proposed for MRTA [34, 56].

Branch-and-bound algorithms, and their variants (e.g., 
[57, 58]), provide improved efficiency over exhaustive search 
techniques, which consider all possible solutions. These algo-
rithms represent all potential solutions as a tree and search 
branches of the tree, which correspond to subsets of solutions. 
Upper and lower bounds on the optimal solution are used to 
determine which branches are enumerated during the search, 
i.e., those that can produce better solutions.

When deterministic methods are used to solve MRTA 
problems, the MRTA problem is often formulated as a mixed 
integer linear program (MILP) (e.g., [40, 57, 59]). In these 
formulations, the objective functions and constraints are cap-
tured with integer and linear equations prior to being solved. 
Solvers such as CPLEX and Gurobi are often used. MILP 
formulations for MRTA problems may also be solved with 
heuristics, which are discussed in Section Stochastic and 
Heuristic Approaches. In addition, MRTA problems may be 
formulated and solved using constraint programming tech-
niques, where constraints are specified in order to identify 
feasible solutions, as evidenced by Booth et al. [31].

Stochastic and Heuristic Approaches

In order to produce solutions for MRTA problems that are 
much more efficient than deterministic approaches, stochas-
tic and heuristic approaches make use of approximations and 
heuristics, including metaheuristics. There are many exam-
ples of the application of heuristics to solve problems in 
MRTA scenarios (e.g., [39, 60–63]). These approximate and 
heuristic approaches trade-off optimality in order to simplify 
the search for a solution to optimization problems. Given 
this, they tend to be more prevalent in MRTA applications.

Metaheuristic approaches guide the search process for 
solutions to optimization problems. Rather than seeking to 
enumerate all possible solutions, they only sample a sub-
set of solutions. Unlike more general heuristic approaches, 

they permit sub-optimal intermediate solutions in order to 
escape local optima. There are many types of metaheuristic 
approaches that may be used to solve MRTA problems. They 
may be classified as trajectory-based and population-based 
approaches. Other metaheuristics may also be formed that 
are hybrids of the various types of approaches.

Trajectory-based metaheuristic approaches consider sin-
gle candidate solutions, which they seek to improve dur-
ing the search process. Exemplar approaches include simu-
lated annealing (e.g., [64, 65]) and various search-based 
approaches, such as Tabu search (e.g., [66, 67]). Simulated 
annealing involves probabilistically selecting between a cur-
rent solution and a neighboring solution and is more likely 
to initially consider worse solutions in order to escape local 
optima, the probability of which gradually decreases as the 
solution space is explored. Tabu search uses local search 
methods to find local optima and considers worse solutions 
in order to escape these optima, but previously evaluated 
solutions are avoided through the use of Tabu lists.

Population-based metaheuristic approaches make use of a 
population of agents to search the solution space and they con-
sider multiple candidate solutions at a time during the search 
process. There are many types of population-based metaheuris-
tic approaches, including genetic algorithms (e.g., [58, 68, 69, 
70, 71•, 72]), Particle Swarm Optimization (PSO) (e.g., [73, 
74]), Ant Colony Optimization (ACO) (e.g., [75–77]), Artifi-
cial Bee Colony (ABC) algorithms (e.g., [78]) and memetic 
algorithms (e.g., [79, 80]) amongst others. Inspired by natu-
ral selection, genetic algorithms iteratively evolve candidate 
solutions through mutation, crossover and selection operations, 
and a fitness function is used to evaluate solutions until a final 
solution is obtained. PSO is another iterative search algorithm 
that moves particles, representing potential solutions, through-
out a search space based on position and velocity formulae. 
A particle’s movement is guided by the current best solution 
found by itself and other particles. ACO adopts pheromone 
principles used by foraging ants in order to reinforce better 
solution components as agents iteratively construct candidate 
solutions from empty solutions. The ABC algorithm is based 
upon the food seeking behavior of honey bee swarms where 
food source locations represent potential solutions. Bees (i.e., 
agents) are guided towards solutions with higher fitness and 
search neighboring solutions through iterations of the algo-
rithm. Lastly, memetic algorithms seek to combine local search 
or learning strategies with population-based metaheuristic 
approaches (e.g., evolutionary algorithms) in order to improve 
convergence properties.

Market‑Based Approaches

Market-based solutions to MRTA problems apply market-
based principles, such as auctions and negotiation, in order 
to allocate tasks to robots. One of the earliest works in this 
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space was by Smith [81], where a task-sharing protocol, the 
so-called Contract Net Protocol is proposed. In this proto-
col, a node, known as the manager, announces an available 
task that it has generated to the other nodes. Eligible nodes 
submit their bids for the task to the manager, who identifies 
and notifies the node that is assigned the task.

The concept of using auctions for assignment problems 
was first conceived by Bertsekas [82]. Most auction-based 
algorithms for MRTA apply the principles of CNP to decen-
tralize computation of an allocation of tasks amongst indi-
vidual robots. Robots express their preferences for tasks with 
bids, which are shared via explicit communication between 
robots. The highest or lowest bid on a task typically wins an 
auction depending on the objective function. In most cases, 
robots will only have access to local information to formu-
late their bids, which impairs the ability of an auction to 
optimize the relevant objective from a global perspective. In 
an auction, there may be an auctioneer to receive bids and 
allocate tasks (e.g., [83–85]) or the winner of an auction may 
be determined in a distributed manner, such as consensus 
(e.g., [16, 86, 87]). Winner determination in auctions that 
make use of an auctioneer is generally simpler, but an auc-
tioneer may represent a single point of failure for the system. 
However, in some cases, the auctioneer role may be shared 
between agents (e.g., [88, 89]).

There are many different types of auctions, which are 
typically differentiated based on the items that are auctioned 
and the structure of the auction. Tasks may be allocated in 
single-item auctions (e.g., [42, 84, 90]), multi-item auctions 
(e.g., [86, 89]) or combinatorial auctions (e.g., [91–93]). 
Sequential single-item auctions are relatively simple and 
only permit the allocation of one task at a time while mul-
tiple tasks may be allocated in parallel in a given round in 
multi-item auctions. Conversely, combinatorial auctions 
involve combinations of tasks being auctioned as a group. 
The solutions to combinatorial auctions are more likely to 
approach the optimal solution, but they require a lot of com-
putation and communication, which grows exponentially as 
the number of tasks increases. In general, single-item and 
multi-item auctions are more efficient, but their solutions 
are less optimal. A comprehensive analysis of various types 
of auctions for MRTA is provided by Otte et al. [94•] who 
study auction algorithm performance subject to imperfect 
communication between robots.

Negotiation-based approaches to MRTA work similarly 
to auctions in that they involve robots evaluating and shar-
ing their preferences for tasks to be allocated (e.g., [23, 
95]). However, there is no auctioneer and task allocations 
are determined independently amongst robots.

In what follows, we seek to highlight and discuss some 
noteworthy market-based approaches to MRTA. One of the 
first market-based approaches developed for MRTA was the 
M+ protocol [23]. It is a negotiation-based approach where 

robots incrementally select and negotiate on which tasks 
to perform after receiving a mission description. However, 
robots only have local knowledge of the world state. The 
protocol accounts for task precedence constraints where only 
executable tasks are able to be selected by robots.

Another early market-based approach developed for 
MRTA is the MURDOCH system [83], which is capable 
of allocating tasks to robots in an online manner. It uses a 
simple, greedy auction mechanism, similar to CNP, where 
one robot acts as an auctioneer for a task introduced to the 
system. Auctioneers monitor task completion and provide a 
level of fault tolerance in the event of robot failure.

The approach presented by Zlot et al. [96] proposes a mar-
ket architecture for multi-robot coordination in exploration 
scenarios. Robots receive revenue by providing information 
to a central agent and costs are measured in terms of resources 
consumed by robots. Robots discover tasks and may opportun-
istically exchange these tasks with each other via auctions prior 
to task execution in order to improve efficiency.

Lagoudakis et al. [42] present a theoretical analysis of 
auction methods for multi-robot routing. The theoretical 
guarantees offered by various bidding rules and objective 
functions, specifically approximation ratio bounds, are 
provided.

The Consensus-Based Bundle Algorithm (CBBA) pro-
posed by Choi et al. [86] is a market-based mechanism 
that combines auctions and consensus in order to allocate 
subsets of tasks to robots in a distributed manner. CBBA 
has become a building block for many decentralized alloca-
tion algorithms. The original algorithm relies on submodu-
lar bidding functions in order to guarantee convergence, 
but Johnson et al. [97] modified the algorithm in order to 
achieve improved convergence properties. Motivated by 
multi-UAV settings, Buckman et al. [98] extended CBBA 
to a dynamic environment where tasks appear in an online 
fashion and must be allocated upon arrival. Their proposal 
enables robots to reset a portion of their previous alloca-
tion and replan as tasks arrive. Recently, Chen et al. [99] 
implemented a replanning approach based on CBBA that 
considered tasks with timing and capability constraints.

Other Approaches

In this section, we discuss examples of solution approaches 
not covered in the previous two subsections. This includes 
learning-based, behavior-based and hybrid approaches 
amongst others. Hybrid approaches combine different types 
of approaches in order to solve MRTA problems, which may 
include optimization-based and market-based approaches. 
Learning-based approaches incorporate some level of 
learning to the task allocation process and are often also 
hybrid solutions. Finally, behavior-based approaches define 
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behaviors for robots and typically involve robots allocating 
tasks without explicit communication regarding each task.

An example of a learning-based approach for MRTA and 
scheduling problems is presented by Wang et al. [100]. They 
propose a heterogeneous graph attention network model in 
order to learn heuristics for robot scheduling policies in 
scenarios subject to temporal and spatial constraints. Their 
approach is applied in the context of final assembly manu-
facturing with robot teams.

Liu et al. [101] present a reinforcement learning method 
for a cooperative multi-robot system. The problem they 
solve is a multi-task scheduling problem in the context 
of aircraft painting applications where they seek to avoid 
collisions between robots. They solved the planning prob-
lem with a multi-agent reinforcement learning algorithm 
based on an option framework, which is an extension of 
the Markov decision process (MDP). Furthermore, they 
demonstrate how their proposed solution is capable of han-
dling dynamic situations, such as robot failures.

Park et al. [102] propose a novel MDP formulation for 
multi-robot task allocation using reinforcement learn-
ing in problems involving multi-robot tasks. The prob-
lem considered involves sequentially allocating robots to 
spatial tasks with particular workload requirements and 
their deep reinforcement learning method makes use of 
a cross-attention mechanism to compute the importance 
of tasks for robots. Their solution was compared against 
various metaheuristics and was shown to outperform these 
approaches, especially for complex problems.

Schneider et al. [103] present a hybrid approach that 
combines a market-based approach with learning mecha-
nisms. Tasks are allocated using auctions and learning 
is applied in order to learn estimated task costs used by 
robots in bidding for tasks.

Another hybrid approach is presented by Parker and 
Tang [104]. They present a behavior-based approach for 
coalition formation, known as ASyMTRe, which is com-
bined with a negotiation protocol to achieve a distributed 
version of the algorithm (ASyMTRe-D). ASyMTRe uses 
schemas, which reside on robots and are combined to 
achieve particular behaviors in order to complete tasks. 
ASyMTRe uses a greedy search of schema configurations 
to identify a solution while robots request and obtain infor-
mation from others via negotiation in ASyMTRe-D.

Other popular behavior-based approaches for MRTA include 
the ALLIANCE framework developed by Parker [44] and the 
Broadcast of Local Eligibility (BLE) technique introduced by 
Werger and Matarić [105]. In the ALLIANCE framework, robots 
use motivational behaviors in order to adaptively allocate tasks. 
Without the use of explicit communication, robots monitor the 
relative fitness of all robots to perform each task based on their 
states and the state of the environment. Tasks are represented 
as behavior sets and the motivation of a robot to select a task 

will grow over time until it reaches a selection threshold unless 
it is inhibited by events such as another robot selecting the task. 
The original framework was also extended in L-ALLIANCE to 
incorporate learning, which modified the rate of change of moti-
vational behaviors depending on a robot’s ability to complete a 
task. Conversely, BLE involves robots periodically calculating 
and broadcasting their fitness for completing tasks, which allows 
each robot to identify and allocate the most eligible robot for 
completing a particular task.

Conclusion

In this paper, we systematically surveyed and analyzed the 
research problems in the field of multi-robot task alloca-
tion, focusing on those approaches involving multi-robot 
coordination. We defined a very general formulation of 
this problem, encompassing the states of robots, tasks, and 
the surrounding environment in which they operate. We 
discussed several constraints on robots and tasks, along 
with a variety of objective functions. We also considered 
the problem in terms of dynamic scenarios. Moreover, we 
studied its connections with well-known problems such 
as vehicle routing and coalition formation. Finally, we 
analyzed many solution approaches for MRTA, such as 
optimization-based, market-based, and some other tech-
niques which do not fall into any of these two categories.
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