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Abstract
Purpose of Review This paper reviews opportunities and challenges for decentralised control, change-detection, and learning 
in the context of resilient robot teams.
Recent Findings Exogenous fault-detection methods can provide a generic detection or a specific diagnosis with a recovery 
solution. Robot teams can perform active and distributed sensing for detecting changes in the environment, including iden-
tifying and tracking dynamic anomalies, as well as collaboratively mapping dynamic environments. Resilient methods for 
decentralised control have been developed in learning perception-action-communication loops, multi-agent reinforcement 
learning, embodied evolution, offline evolution with online adaptation, explicit task allocation, and stigmergy in swarm 
robotics.
Summary Remaining challenges for resilient robot teams are integrating change-detection and trial-and-error learning 
methods, obtaining reliable performance evaluations under constrained evaluation time, improving the safety of resilient 
robot teams, theoretical results demonstrating rapid adaptation to given environmental perturbations, and designing realistic 
and compelling case studies.

Keywords Change-detection · Decentralised control · Multi-robot systems · Swarm robotics · Machine learning · Multi-
agent systems

Introduction

From monitoring wildlife [1], exploring dangerous terrains 
[2], or collaboratively transporting items [3], robotic systems 
have the potential to transform society by performing tasks 
that are too dangerous, laborious, or repetitive for humans. 
In many such tasks, employing a robot team, which con-
sists of multiple robots, often yields significant advantages 
over employing just a single robot. For example, robot teams 
can monitor larger areas due to a larger spatial spread and 

provide robustness to failure due to redundancy (i.e. multiple 
robots performing the same or a similar subtask) [4].

In any given mission, robots in the team must control 
their own actuators and outgoing communications based on 
local sensory data and incoming communications. Decen-
tralised control in this sense has been studied for multi-robot 
systems [5, 6], which have fewer robots with more power-
ful hardware and high-complexity algorithms such as deep 
neural networks (e.g. [7••]), and swarm robotics [8], which 
is scalable in team size but comes with simplistic hardware 
and low-complexity algorithms such as ant-inspired algo-
rithms (e.g. [9]).

When robot teams are expected to become employed in 
long-term autonomy, they must be resilient to disruptions 
such as sensory-motor faults, weather conditions affect-
ing the operating environment, or even adversarial cyber-
attacks. The designer may anticipate some of these disrup-
tions and hard-code their diagnoses and solutions; however, 
when there are complex or unanticipated disruptions, the 
robot team must detect these and adapt accordingly. While 
generic methods for change-detection [10, 11] and transfer 
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learning [12] have been applied in abstract machine learn-
ing problems, their application to robot teams comes with 
unique challenges such as communicating and integrating 
data from different robots’ local error-prone observations 
and cooperative learning without incurring costs within the 
physical environment.

With this context in mind, this paper reviews ongoing 
research on resilient robot teams within a decision pro-
cess framework integrating decentralised control, change-
detection, and learning. Section 2 first presents the inte-
grated decision process framework and different prototype 
approaches within the framework. Section 3 reviews how 
robot teams can cooperate in detecting faults as well as 
changes in the surrounding environment. Section 4 reviews 
how decentralised control strategies can be learned for 
allowing robot teams to adapt to changed environments. 
Finally, Section 5 provides the main conclusions from the 
review along with future research directions.

Integrating Decentralised Control, 
Change‑Detection, and Learning

From decentralised control to change-detection and adap-
tation to changes, robot teams face a challenging decision 
process. As illustrated in the integrated decision process 
framework shown in Fig. 1, each robot in the team must 
integrate its sensory readings and incoming communications 
to decide on which movements to take, which communica-
tions to send, and when and how to adapt to changes in the 
environment. To achieve this aim, each robot in the team 
uses a policy which selects an action to take at each con-
trol cycle, and performs change-detection and learning to 
adapt. Within our integrated decision process framework, 
the following section establishes a common vocabulary and 
key concepts for analysing the various methodologies for 
resilient robot teams.

Communication

Communication is an essential part of the decision-making 
process and comes in two forms, namely explicit commu-
nication and implicit communication [6]. Explicit com-
munication is an encoded message from a transmitter to 
receiver, and includes raw [13] or processed sensory read-
ings [14], tasks [15], and the performance of team members 
[16]. Being communicated via wireless connections, they 
come with limitations such bandwidth, cost, and delays. In 
implicit communication, the sender manipulates the envi-
ronment, for example by using gestures [17] or by placing 
objects in the environment as signs [9], and the receiver 
observes this directly via sensory readings. It avoids commu-
nication overload but may have more limited range, making 
it preferable for high robot densities.

When the robot-environment interaction changes, for 
instance due to sensory-motor faults or communication 
disturbances, the best communication strategy may change 
over time; in this case, learning-how-to-communicate is 
an important capability. Learning-how-to-communicate 
approaches [17–20] include aspects of communication into 
the policy to be updated during the learning cycle.

Adaptation to Changes

To allow rapid adaptation to changes, the integrated deci-
sion process framework requires (1) a policy space that 
captures the desired behaviours in the policy space with-
out needlessly increasing the search space; (2) a learning 
algorithm with strong empirical and theoretical support; and 
(3) a change-detection algorithm that balances genericity 
of application with specificity of diagnosis to inform the 
learning algorithm.

Research in resilient robot teams has addressed these 
issues from different strategies, which we categorise based 

Fig. 1  Integrated decision pro-
cess framework. The framework 
integrates decentralised control, 
change-detection, and learning 
into a single loop describing the 
decision problem faced by each 
robot in a robot team. Solid 
lines indicate the control cycle, 
dashed lines indicate the learn-
ing cycle performing policy 
updates periodically, and dotted 
lines indicate the optional 
change-detection cycle
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on four prototypes, namely diagnose-and-solve, trial-and-
error, teacher-student, and robust-by-design, as summa-
rised in Table 1. In diagnose-and-solve, map a diagnose 
(e.g. localisation error) onto a specific “repair” (e.g. camera 
recalibration). This is the reasoning behind traditional fault-
detection and fault-diagnosis methods [21] such as learning-
based fault-diagnosis [16]. In trial-and-error, the robots 
adapt to the environment by trying out different policies and 
evaluating their performance. Key approaches include multi-
agent reinforcement learning [22], embodied evolution [23], 
and offline evolution with online adaptation [24••]. In the 
teacher-student, the robots learn their policy from a teacher, 
typically using a large data set. The approach is typically 
based on imitation learning, i.e. by supervised learning from 
a data set of desired behaviours (e.g. [7••]), where resilience 
can be provided by generalisation or by learning on a newly 
provided data set. The source of the data set varies but com-
mon examples are simulated trajectories generated by cen-
tralised expert controllers which have global state informa-
tion [7••, 25] and real-world video recordings of humans 
performing the desired behaviour [26]. In robust-by-design, 
each control cycle accounts for a range of environmental 
changes, for example by implicitly communicating occu-
pancy map changes [9] or by explicitly communicating the 
availability and capability of team members [27].

The above-mentioned approaches are analysed in more 
fine-grained detail in Section 3 and Section 4. For now, we 
provide an overview of these approaches’ applicability to 
different change types in Table 2. Changes in team mem-
bers include changes in team size or in the capability or 
functionality of team members. Changes in communica-
tion include communication noise and the limited range 
of communication potentially cutting off some team mem-
bers. Changes in the transition dynamics or task require-
ments include moving targets, obstructions, task complexity 
increases, and even mission objective changes.

Change‑Detection

Although the topic of change-detection is broad, we focus 
on the unique opportunities and challenges in the context of 
resilient robot teams. In particular, we focus on identifying 
faults in team members and detecting and tracking changes 
in the surroundings. The former follows the diagnose-and-
solve prototype while the latter often requires more generic 
adaptation methods.

Detecting Faults in Team Members

At any time in their mission, members of a robot team may 
experience faults. Robots within a team may detect faults in 
themselves, or endogenous fault-detection. However, exog-
enous fault-detection, in which robots detect faults in each 
other based on data collected from the different team mem-
bers, makes full use of the team’s joint capability to provide 
comparably higher efficiency and robustness. We distin-
guish here between four methods to detecting faults in team 
members, with an emphasis on exogenous fault-detection. 
The methods vary in their assumptions, genericity, and scal-
ability, namely model-based fault-detection, feature-based 
anomaly detection, synchronisation, and cryptographic 
authentication.

Model-based methods model faults at design-time and 
detect them at run-time. Learning-based fault-diagnosis [16] 
pre-determines the causal links between symptom, fault, 
and solution for a priori known faults. It uses case-based 
reasoning to identify new cases by comparing them to the 
existing database of causal links (containing pre-defined or 
previously encountered faults) based on the most probable 
symptoms that are relevant for task completion. If the new 
case cannot be classified in terms of pre-existing causal 
links, then a human operator must communicate the recov-
ery solution. Another approach analyses the difference of the 

Table 1  Adaptation prototypes within the integrated decision framework

Columns indicate the prototypes and their various properties: Policy space indicates the space of possible policies for decentralised control; 
Change-detection indicates how change-detection is typically implemented; Learning indicates how the policy is adapted upon a detected envi-
ronmental change. Approaches lists the different classes of algorithms within the adaptation prototype

Prototype Policy space Change-detection Learning Approaches

Diagnose-and-solve Domain-specific Diagnosis of a priori known 
faults

No learning or limited to gener-
alising solutions to new faults

Fault-detection and fault-diagnosis

Trial-and-error Generic Generic change-detection Learning by trial-and-error Multi-agent reinforcement learn-
ing, embodied evolution, and 
offline evolution with online 
adaptation

Teacher-student Generic New data provided by a teacher, 
often a human operator

Imitation learning on provided 
data set

Learning perception-action-com-
munication loops

Robust-by-design Domain-specific Implicit or explicit communica-
tion

Frequent updates on desired task 
allocation

Explicit task allocation, stigmergy 
in swarm robotics
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observed dynamics to the dynamics expected under normal 
or faulty conditions. This method was first pursued in endog-
enous fault-detection using Kalman filters as models for lin-
ear dynamical systems [57, 58] or neural network models 
for more generic applicability [59, 60]. Later, in a method 
suitable for endogenous and exogenous fault-detection, 
Christensen et al. [28, 29] use time-delay neural networks 
to model faulty sensors or actuators by fitting sensory-motor 
data coming from trajectories under the fault and compare 
these to observed sensory-motor data observed from other 
robots. The expressivity of neural networks makes the 
approach ideal for detecting complex symptoms of fail-
ure. Unlike learning-based fault-diagnosis, the approach is 
sensitive to an arbitrary threshold parameter for the neural 
network classification and does not lend well to high-level 
behaviours such as path planning, localisation, and following 
behaviours. Scalability is a question mark, as the method-
ology was shown on the leader-follower task which only 
contains two robots.

A generic and scalable approach to exogenous fault-
detection is to perform distance- or probability-based 
anomaly detection based on team members’ feature vec-
tors which record features of interest received by explicit 
communications from team members (e.g. sensory-motor 
trajectories). In Lau et al. [30], robots check from com-
municated data whether or not other robots experience the 
same change and if not a fault is present. Their results find 
that the receptor density algorithm [61], a non-parametric 
kernel-based technique inspired by T-cell receptors, sig-
nificantly outperformed 4 other statistical tests. In a related 

immune system inspired method, faults are detected by 
individual robots applying a cross-regulation model [62, 
63] on behavioural feature vectors of neighbouring robots 
and then voting on which robots are faulty [31, 32•]; the 
method has been evaluated on a variety of tasks and envi-
ronmental changes (including physical experiments [32•], 
showing tolerance to changing swarm behaviors as well 
as individual robots behaving anomalously. A potential 
downside of the immune-inspired approach is that rather 
than faults, differences in behavioural feature  vectors 
might reflect localised environmental conditions such as 
reduced friction or the presence of obstacles.

Synchronisation [33] assumes robots are required to 
send out physical signals (e.g. LED light flashes) and 
require them back from their neighbouring team mem-
bers; if a neighbouring robot does not synchronise, it must 
have a fault of some sort (e.g. light sensors, light actua-
tors, or motion actuators). Unfortunately, the approach 
is rather hardware-specific and does not easily extend to 
fault-diagnosis.

Cryptographic approaches focus specifically on iden-
tifying team members that have been compromised by a 
cyber-attack. The approach by Ferrer et al. [34•] relies on 
a Merkle tree data structure, which ensures that each robot 
must share cryptographic proofs to verify their integrity 
before cooperating on the mission. While the approach is 
only applicable to security risks, it can detect such changes 
even when the robot under attack does not demonstrate any 
observable behavioural differences.

Table 2  Change types and available methods

Change type Examples Change-detection Policy learning

Team members Team size change Model-based fault-detection [16, 28, 29] Embodied evolution [23, 35–38]
Sensory-motor or software Feature-based fault-detection [30–32] Offline evolution with online adaptation 

[24••, 39]
Fault Synchronisation [33] Adaptive specialisation [27, 40, 41••]
Capability change Cryptography [34•] Explicit negotiation [15, 42]

Ad hoc teamwork [43]
Dynamic DCOPs [44, 45]

Communication Communication noise Model-based fault-detection [16, 28, 29] Perception-action-communication loops 
[7••, 25]

Local communication range Independent Dec-POMDPs [46]
Networking Dec-POMDPs [47, 48••]

Transition dynam-
ics or task require-
ments

Dynamic targets Task identification [49–51] Multi-task multi-agent reinforce-
ment learning [46]

Obstructions Dynamic and multi-vehicle mapping [14, 
52, 53]

Embodied evolution [23, 35–38, 56]

Task complexity increase Multi-anomaly detection and tracking [13, 
54, 55]

Offline evolution with online adaptation 
[24••, 39]

Mission objective change Dynamic DCOPs [44, 45]
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Detecting Changes in the Surroundings

Compared to traditional change-detection in machine learn-
ing, robot teams are distributed in space and can actively 
reposition themselves to make sense of the surrounding envi-
ronment, which has special relevance for applications such 
as disaster recovery, search-and-rescue, and environmental 
monitoring.

One domain of interest is detecting and tracking anoma-
lies in the environment. In the approach by Saldana et al. 
[54], team members can sense anomalous regions directly 
in the environment, explicitly communicate their observa-
tions to each other, and try to surround multiple existing 
anomalies while exploring the map to find new anomalies. 
The approach by Li et al. [13] formulates a dynamic opti-
misation problem in which the optimum to be tracked is the 
maximum (or minimum) on a particular feature of interest. 
Robots function as distributed searchers that occupy prom-
ising areas more densely and that communicate each oth-
ers’ measurements. Unfortunately, the approach was only 
demonstrated on toy function optimisation problems, so a 
physical robotics demonstration could make the approach 
more convincing. For physical fields such as oceans, Salam 
et al. [55] present an algorithm for estimating the full state 
of a dynamic process based on robots within a team commu-
nicating their local observations of the quantity to be tracked 
(e.g. concentration of particles, temperature) and then rec-
omputing the updated system dynamics. The approach was 
demonstrated to have high accuracy compared to radial basis 
function interpolation in a physical water tank.

Similarly, due to their distributed active sensing capa-
bilities, cooperative techniques are also being investigated 
for simultaneous localisation and mapping (SLAM) within 
robot teams [52]. Traditional multi-vehicle SLAM has two 
main disadvantages, namely that forming joint map from the 
local observations has high computation and communication 
overhead and that the objects in the map formed by SLAM 
are assumed to be static. To counter these issues, one can 
track static and dynamic features in the map using dynamic 
occupancy grids [53] and communicate local maps rather 
than raw sensory data [14].

Policy Learning for Decentralised Control

This section describes how policies can be learned for 
allowing robot teams to adapt to changed environments. We 
distinguish broadly between six approaches: one teacher-
student approach called learning perception-action-com-
munication loops; three trial-and-error approaches, namely 
multi-agent reinforcement learning, embodied evolution, and 
evolution with online adaptation; and two robust-by-design 

approaches called explicit task allocation and stigmergy in 
swarm robotics.

Learning Perception‑Action‑Communication Loops

Incorporating perception-action-communication loops 
into graph neural networks (GNNs) is a recent solution to 
decentralised control and learning-how-to-communicate 
[7••, 25]. In such works, the GNN takes as input a com-
munication graph, which represents robots as nodes, com-
munication links as edges, and communication delays as 
their distances. The GNN is learned via imitation learning, a 
teacher-student approach in which the policies of the robots 
are updated by supervised learning on trajectories collected 
by the teacher (e.g. a human operator who has evaluated 
the best joint policy for the new situation). As in Hu et al. 
[7••], which assumes each robot has a transceiver, the graph 
neural network can learn to process incoming messages and 
send outgoing messages, and integrate this with local visual 
observations, resulting in a system that is robust to visual 
degradation as well as changes in team size and communica-
tion graph topology. A key challenge for imitation learning 
is that expert knowledge of the teacher will not always be 
available. Although domain adaptive imitation learning [64] 
as explicitly targeted imitation learning across different 
tasks, this still relies on the availability of expert data sets 
for each task. Alternatively, few-shot imitation methods [26] 
provide an option for imitation learning with limited data but 
so far has been studied only in single-robot contexts.

Multi‑agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is a relatively 
mature field which is grounded in the sound theoretical foun-
dations of Markov decision processes with various analytical 
convergence results (e.g. [65]). In MARL, different agents 
receive observations of the environment, perform an action, 
and receive rewards indicating how desirable the behaviour 
is, and by trial-and-error the agents learn to collectively 
optimise the long-term cumulative reward. In MARL, resil-
ience is conceptualised as learning a near-optimal policy in 
response to a change in the decision process.

Among the variety of MARL frameworks, decentralised 
partially observable Markov decision processes (Dec-POM-
DPs; [66]) are of particular relevance to robot teams, as they 
integrate partial observability (e.g. due to limited sensory 
observations) into decentralised control. While there have 
been a variety of powerful alternative frameworks, such as 
Communicative Multi-agent Team Decision Problems [67], 
these have not been as widely investigated. Recent works 
within Dec-POMDPs has examined multi-task learning and 
robustness to communication failures. Decentralised hys-
teretic deep recurrent Q-network (Dec-HDRQN) [46] uses 
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hysteretic Q-learning [68], in which agents update their 
own independent Q-table with lower learning rate (with-
out communication) when this is likely due to other agents’ 
suboptimal actions, while using deep recurrent Q-network 
[69] for partial observability and policy distillation [70] 
for improved generalisation. Dec-HDRQN allows learning 
many tasks within a single policy without requiring explicit 
task identification, as demonstrated on tasks with different 
grid sizes and transition dynamics in a grid-world domain. 
While independent decentralised control has benefits when 
communication channels are unreliable or faulty, the strat-
egy is suboptimal. Instead, “networking” Dec-POMDPs can 
additionally incorporate communication amongst the differ-
ent agents; popular approaches include sharing parameters 
and then forming a consensus [65], factorisation [71, 72], 
and communication protocols learned concurrently with the 
policy [47, 73]. Among these, CommNet [47] accounts for 
dynamic variation of the type and number of agents com-
municating and has been demonstrated for energy sharing in 
multi-UAV systems for distributed data processing [48••].

Assuming a change is detected in the decision process 
(e.g. using task identification methods [49–51]), MARL 
systems require extensive experience to learn a suitable 
policy if it is not already available from prior training. 
When a high-fidelity simulator is available, this may not 
be problematic and in this case one may also consider 
improving performance by applying centralised train-
ing with decentralised execution in the online phase (e.g. 
[74, 75]). Alternatively, for rapid adaptation, (theoretical 
or empirical) demonstrations of sample complexity are 
required rather than the asymptotic convergence guarantees 
for model-free MARL (e.g. methods based on Q-learning 
[76]).

Evolution

Evolutionary algorithms (EAs) mimic natural evolution to 
generate a diverse population of genomes and progressively 
select them for fitness over subsequent generations. While it 
is popular to evolve policies with EAs — for example, using 
NEAT [77] to evolve the weights and topology of neural 
networks — in the context of resilient robot teams we mainly 
find two dominant approaches, namely embodied evolution 
and offline evolution with online adaptation.

Embodied Evolution

Embodied evolution [23] evolves robots within their physical 
environment, which helps to avoid the “simulation-reality 
gap” [78] and to adapt to changes in the real world. Each 
robot executes its policy based on its current genotype but 
the policy has a limited lifespan based on a “virtual energy” 
quantity which represents the robot’s own performance 

estimate and which (in some implementations) improves the 
chances of reproduction. For reproduction, robots commu-
nicate with each other by broadcasting their own genotype, 
some genes of which are then integrated into the receiving 
robots’ genotypes.

Unfortunately, this process of adaptation can take hours 
[36, 56]. Functional diversity can also be developed by 
using a quality-diversity approach to embodied evolution 
[35], which can be used as an implicit task allocation. With 
focus on real robot swarms, Silva et al. (2017) [37] demon-
strate odNEAT [56], an online variant of NEAT, as being 
resilient to simulation-to-reality transfer, task change, and 
fault injection.

Rather than evolving genotypes, embodied evolution 
may also operate on memes, which are cultural utterances 
defined in robot teams as “contiguous sequences or packages 
of movements, or sounds, copied from one robot to another, 
by imitation” [38]. This approach uses implicit communi-
cation by observing each others’ behaviours with sensory 
observations, which reduces communication overhead and 
more directly searches the policy space but is limited by 
observability.

Offline Evolution with Online Adaptation

Embodied evolution is time-consuming, so another approach 
is to first evolve a large archive of policies offline and then 
perform rapid online adaptation by searching this policy 
space after a change (e.g. performance drop) is detected. In 
this context, offline evolution is based on quality-diversity 
(QD) algorithms (e.g. [79, 80]), which evolve an archive of 
behaviourally diverse and high-performing solutions, while 
online adaptation is based on Bayesian optimisation and has 
been studied primarily in single-robot adaptation to damaged 
actuators [81–83].

Two recent methods have expanded the approach to be 
applied in robot teams and in a wider set of environmen-
tal changes. Swarm Map-based Optimisation Decentralised 
(SMBO-Dec) [24••] forms a Gaussian process model for 
each subgroup within the team based on local environmental 
conditions. Different robots in the team function as different 
workers in an asynchronous batch-based Bayesian optimi-
sation, which helps to speed up the search while avoiding 
to sample similar behaviours simultaneously. The empirical 
success was demonstrated by 80% performance improve-
ments within a mere 30 evaluations on a large variety of 
perturbations, including food scarcity and different sensory-
motor faults. Due to subgrouping the team based on local 
conditions, the approach combines naturally with diagno-
ses of change-detection algorithms, although this option 
has not been explored yet. Quality-Environment-Diversity 
(QED) [39] evolves behavioural diversity based on the type 
of environments that the policies solve. Since QED archives 
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represent solutions to different environments, they may be 
more efficient for online adaptation than traditional QD 
archives, especially when robots can provide information 
on their current environment.

Explicit Task Allocation

Explicit task allocation explicitly defines subtasks within a 
mission, and assigns different robots to them based on task 
priority and robot capability. This reduces the complexity 
of the mission but limits behavioural flexibility and requires 
design-time knowledge as well as frequent explicit commu-
nication during run-time. The approach is robust-by-design 
as task allocation dynamically accounts for the unique and 
changing task priorities and robot capabilities.

In adaptive specialisation, robots change their roles if 
they detect insufficient task progress. Representative of this 
approach are ALLIANCE [27], in which each robot activates 
a high-level behaviour from its set based on how incoming 
communications affecting its internal motivations, and data-
driven adaptive multi-robot task allocation [41••], which 
makes low (resp. high) performance of robot i on task j 
being followed by a reduction (resp. increase) in the task 
specialisation sij . The latter approach demonstrated success-
ful task re-allocation in a team composed of ground robots 
and quadcopters in the Robotarium (see [84]) after parts of 
the space became no-go or no-fly zones [40, 41••]. Down-
sides of adaptive task specialisation are the sensitivity to 
hyperparameters (e.g. time until impatience), the frequent 
modelling, communication, and global information required 
to evaluate task progress, and the model assumptions (e.g. 
control-affine systems).

Ad hoc teamwork [43] considers the related problem of 
allocating a subset of agents from a pool to participate in 
solving a particular task, based on their capabilities in the 
domain from which the task is sampled. While traditionally 
these capabilities are pre-defined, recent work integrates 
convolutional neural network based change point detection 
of capability changes in non-stationary agents [85].

In explicit negotiation, agents bid for their preferred tasks, 
typically based on the contract-net protocol [86]. Within this 
approach, TraderBots [15] demonstrated adaptive task allo-
cation on communication failure, partial and complete robot 
failure, and the reintroduction of a once failed robot, and 
MURDOCH [42] demonstrated adaptation to new tasks as 
well as individual robot failures.

Task allocation can be cast as a distributed constrained 
optimisation problem (DCOP) [44], by allocating each agent 
in the team to one or more mission variables to optimise 
the mission’s objective, which is composed of different cost 
functions on subsets of mission variables. Of particular 
interest is the dynamic DCOP, which allows the DCOP to 
change over time. Within this framework, it is for example 

possible to solve search-and-rescue missions with robustness 
to run-time addition or removal of tasks, defined as victim 
locations that are reachable within deadline [45]. Dynamic 
DCOPs do come with an increase in explicit communication 
and computation.

Stigmergy in Swarm Robotics

Stigmergy is a form of implicit communication in which one 
agent drops signs in the environment to pass information 
to other agents, an approach which is scalable to the large 
team sizes found in swarm robotics. Most traditionally, ant 
colony algorithms leave pheromone trails in the environment 
to signal where other agents should come [9]. The approach 
is mostly applicable to foraging or search tasks, where it can 
account for road blockades, making the approach robust-
by-design. However, physically implementing pheromones 
is always a challenge in real-world applications [87] as the 
physical signs, when dropped en masse should not incur 
environmental costs, interference with human activities, 
etc. Recent work has explored the use of light sources but 
requires either an overhead camera and light projector [88] 
or locally placed photochromic materials [89].

Conclusions

Integrating decentralised control, change-detection, and 
learning is an important challenge facing robot teams 
for resilience in real-world applications such as search-
and-rescue, environmental monitoring, exploration, and 
pickup-and-delivery.

Change-detection in robot teams comes with unique 
opportunities and challenges. Team members can coopera-
tively identify faults in each other as well as actively seek, 
identify, and track anomalies in the surrounding environ-
ment. They share a limited space which comes with locali-
sation and communication constraints (e.g. deadlocks and 
communication overload), and they must seek to diagnose 
the faults and provide a solution in a generic manner.

Robot teams face a challenging decision process with 
decentralised control of actuators and communication 
channels. Perception-action-communication loops can 
be learned such that incoming and outgoing messages 
are processed by the policy of the robot. These rely on 
imitation learning, which requires an expert to provide 
new data when the environment changes. MARL is pur-
sued for robot teams in Dec-POMDPs, which has been 
recently investigated in the context of multi-task RL to 
improve generalisation to new environments. Despite 
only demonstrating asymptotic convergence (rather than 
transfer and sample efficiency), the existence of theoreti-
cal guarantees distinguishes the MARL framework from 
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other frameworks. Embodied evolution evolves the robots 
directly in the physical environment which avoids the 
simulation-reality gap but can take many hours to achieve 
adaptation. The recently emerging field of offline evolution 
with online adaptation achieves rapid adaptation across a 
wide range of perturbations by using collaborative learn-
ing to update performance priors from behaviours evolved 
offline. Explicit task allocation breaks the mission down 
into smaller subtasks and allocates team mambers to them, 
which simplifies the adaptation problem but reduces the 
flexibility of the team by the pre-defined roles. Finally, 
stigmergy is based on dropping signs in the environment, 
which scales favourably with team size but is challenging 
to implement in physical robot teams.

While the above has addressed resilience to a wide 
array of change types, including team members’ capabili-
ties or functionalities, limitations of communication, and 
environmental dynamics, we still foresee significant chal-
lenges in the field of resilient robot teams. First, the inte-
gration of change-detection and trial-and-error methods 
has not been widely explored; to start the adaptation pro-
cess within a subset of environments, inspiration could be 
drawn from task identification methods [49–51]. Second, 
there is a need for methods to obtain reliable performance 
evaluations without requiring too much evaluation time; 
there, the evaluation time could be large for promising 
solutions and small for clearly unsuccessful solutions, 
similar to the use of virtual energy in embodied evolution. 
Third, safety is still widely overlooked in the context of 
robot teams. A promising avenue is to extend single-agent 
methods for safe reinforcement learning (e.g. shielding 
[90]) and offline evolution with safe online adaptation (e.g. 
map-based constrained Bayesian optimisation [83]) to the 
decentralised multi-agent setting. Indeed, shielding, which 
replaces any unsafe actions for a given state with a safe 
action, has recently been extended to factorised shielding 
[91], which maintains shields for subsets of agents based 
on a factorisation of the state space. Fourth, there is the 
challenge of designing algorithms for adaptive robot teams 
with formal proofs on their sample complexity under vari-
ous classes of environmental perturbations. Fifth, since 
realistic applications are ultimately the driver of research 
in robotics, the design and implementation of convinc-
ing case studies is of critical importance. Such studies 
will highlight new challenges and opportunities, as well 
as demonstrate the trustworthiness of resilient robot teams 
to key players in industry and government.
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