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Abstract
Forest inventories are crucial for effective ecosystem management but often lack 
precision for smaller geographical units due to limited sample sizes. This study 
introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon 
its univariate counterpart. The model incorporates field data and auxiliary data, 
including canopy height metrics from WorldView stereo-imagery and past census 
data, sourced from the University Forest of Pertouli in Central Greece. The model 
aims to estimate the growing stock volume for 2008 and 2018, focusing on enhanc-
ing the precision of the 2018 estimates. The 2008 dependent variable is used as 
auxiliary information by the model for more reliable 2018 small area estimates. A 
novel preprocessing pipeline is also introduced, which includes outlier identifica-
tion, cluster analysis, and variance smoothing. Compared to direct estimates and the 
standard univariate Fay-Herriot model, our bivariate approach shows a percentage 
variance reduction of 96.58% and 13.52%, respectively. The methodology not only 
offers more reliable estimates with reduced variance and bias but also contributes to 
more accurate decision-making for sustainable forest management.

Keywords  Multivariate area-level model · EBLUP · Clustering · Outliers · Repeated 
forest inventories · Remote sensing data

Mathematics Subject Classification  62J20 · 62P12 · 62H30 · 62H11

1  Introduction

Small area estimation (SAE) is recognized as a powerful statistical methodology 
designed to generate accurate information for specific subpopulations, particu-
larly when sample sizes are limited [1]. SAE serves as a critical tool for informed 
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decision-making across various scientific domains. Applications of SAE are diverse, 
ranging from mapping poverty in economic studies and epidemiological research, to 
crop yield estimation in agriculture [1–3]. One of the most important applications 
lies in the field of forestry, where accurate biometrical attribute assessments are cru-
cial for sustainable management [4–6].

Forest inventories (FIs) serve as the cornerstone for collecting data and estimat-
ing key forest attributes such as wood volume and above-ground tree biomass. These 
inventories are broadly categorized into national and management forest inventories 
(MFIs). MFIs play a vital role in the sustainable management of forest ecosystems. 
Their objective is not only to provide informed estimates for the entire forest popula-
tion but also to offer precise information for geographic subpopulations such as forest 
management units (FMUs) or forest stands with limited sample sizes. The scope of 
MFIs includes also areas that have not been intentionally sampled due to the structured 
nature of the sampling process, primarily due to laborious and costly field surveys.

In the context of FIs, a sample unit or a plot represents a portion of forested land 
that contains a cluster of measured trees. The primary variable of interest in MFIs 
is the growing stock volume (GSV), which is vital for various forest management 
objectives including timber production, carbon sequestration, understanding of eco-
logical health and structural complexity, and wildlife habitat provision. However, 
relying solely on direct estimates obtained from sampling surveys frequently results 
in substantial fluctuations in the sampling intensity of small areas of interest and, 
ultimately, to imprecise or unreliable estimations. Additionally, direct estimators 
are unable to provide estimates for areas without sample. To address this challenge, 
traditional strategies such as increasing the sample size or adopting more efficient 
sampling methods, like big basal area factor (big BAF) [7–10] have been employed. 
However, these approaches frequently are practically constrained owing to increased 
field data collection expenses.

To address the above difficulties, a contemporary and comprehensive strategy 
entails incorporating advanced statistical modeling methodologies, such as SAE. 
Specifically, the model-based SAE presents with a solution. Operating within the 
framework of two-stage linear mixed models, this approach leverages existing aux-
iliary data to improve estimations for “small areas,” small geographic regions, or 
domains, where direct estimates are inadequate [1]. Model-based SAE borrows 
strength from auxiliary information, including remote sensing and historical data, to 
enhance the sampling procedure. Model-based SAE is generally classified into two 
main categories based on the types of auxiliary variables utilized: unit-level models 
and area-level models [1, 6]. Firstly, unit-level models leverage variables accessible 
at the level of the individual sample unit [2], typically corresponding to field plots 
[11–13]. Generally, models utilizing unit-level data belong to the known area-based 
approach (ABA) [14–16].

Second, area-level models, also known as Fay and Herriot (FH) models, were 
initially introduced by Fay and Herriot [17]. These models establish a relationship 
between direct estimates like the mean and aggregated area-specific auxiliary infor-
mation, among the small areas of interest. Area-level models have demonstrated 
notable efficacy within forestry [18, 19], especially in cases where the coordinates 
of sample plot centers are unavailable or when significant positioning errors lead 
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to suboptimal correlations [20, 21]. Furthermore, this approach is computationally 
more efficient [6].

Auxiliary variables are crucial components for the success of SAE implemen-
tation. In the realm of FIs, remote sensing contributes most of the auxiliary vari-
ables. SAE is well supported by detailed 3D remote sensing data, derived mainly 
from laser scanners (light detection and ranging (LiDAR) or airborne laser scanning 
(ALS)) [18, 22], and 3D point clouds gathered from digital aerial photogrammetry 
[20, 23]. High-resolution remotely sensed data covering the whole population are 
useful for both unit and area-level models. Other data such as censuses can be use-
ful covariates as well. In general, it is important to make a detailed assessment of all 
available data and to select appropriate sources of information to help improve the 
accuracy and reliability of small area estimates.

In FIs, the definition of a small area of interest varies, contingent upon the pri-
mary intent of the inventory and the spatial precision of estimations. For MFIs, these 
areas could encompass forest stands, compartments, or FMUs. Recent research has 
illustrated that after employing cluster analysis, the definition of small areas can be 
expanded to encompass more homogenous regions and, as a consequence, enlarge 
the sample size of the redefined domains (small areas) [25]. This preprocessing step 
is mandatory in FH models every time the assumption of a strong linear correlation 
between the auxiliary data and response variable is not met. Recent research in het-
erogenous uneven-aged fir proved that the direct estimates GSV for domains with 
1–3 sample plots do not correlate strongly with the available auxiliary data, and the 
FH model could be applied only after the above process [24, 25].

An extension of the univariate FH (UFH) model is the multivariate FH (MFH), 
which can provide more efficient estimators by considering the correlations between 
the response variables, for both empirical best linear unbiased prediction (EBLUP) 
and hierarchical Bayes (HB) estimation approaches [1, 26–28]. The MFH models can 
use the residual maximum likelihood (REML) method to estimate the random effects 
and their correlations [29]. Similar to MFH, multivariate nested error regression was 
introduced by Fuller and Harter [30] for the unit-level SAE approach. Our emphasis 
in this article is on a new, multivariate SAE methodology for modeling GSV.

A temporal bivariate area-level linear mixed model with independent time effects 
was used to estimate small area socioeconomic indicators based on EBLUP predic-
tors [31]. Another instance of a Bivariate mixed-effects model based on a condi-
tionally specified model offers a practical approach to SAE for bivariate data with 
binary and Gaussian components, permitting frequent inference based on empiri-
cal Bayes (EB) predictors [32]. Recently, a new multivariate mixed-effects model 
for SAE of mixed-type response variables subject to item nonresponse was intro-
duced, showing its improvements compared to direct estimators and univariate mod-
els [33]. By employing bivariate SAE models, researchers can significantly enhance 
the accuracy and reduce the variance of estimates derived from smaller household 
surveys in the USA, without the need for additional regression covariates. This 
improvement is facilitated by capitalizing on the strong correlations between popu-
lation characteristics estimated in smaller surveys and those in the American Com-
munity Survey (ACS) [34]. In the context of discontinuities arising from changes 
in the design of repeated surveys, van den Brakel and Boonstra [35] introduced a 
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bivariate hierarchical Bayesian model, which offers advancements over traditional 
UFH models and incorporates an adjusted step-forward selection procedure to miti-
gate overfitting.

In this study, we introduce the term “bivariate temporal-like” to differentiate it 
from “temporal univariate” Fay-Herriot models commonly employed in SAE. Our 
primary focus lies in evaluating the applicability of the proposed model for handling 
repeated measures and leveraging temporal correlations or trends. Although both 
models aim to enhancing the accuracy and efficiency of small area estimates, they 
differ in their nature of temporal data and underlying assumptions.

The bivariate temporal-like Fay-Herriot model emphasizes the significance of 
repeated surveys or responses from disparate time periods (e.g., GSV for 2008 and 
2018). Unlike traditional temporal models, it does not model the entire time series 
of a given variable. Instead, it concentrates on capturing the correlation between two 
specific time points, making it particularly useful when only limited temporal data 
are available.

An innovative aspect of this model involves the use of past response variables 
as explanatory data. This approach captures the inherent temporal correlation 
between different time points, thereby minimizing the need for external covariates 
and offering a unique perspective on SAE. The bivariate approach primarily focuses 
on capturing the correlation between two specific time references or years, rather 
than modeling the temporal dynamics over extended periods. A critical assumption 
to maintain is that past responses serve as reliable predictors of future responses, 
particularly when the variable of interest remains relatively stable over time. In the 
context of sustainable management of a single-tree selection system in uneven-aged 
forests, and given consistent management practices across units, it can be assumed 
that the GSV remains stable across different FMUs.

In contrast, the typical temporal univariate Fay-Herriot model, which follows an 
autoregressive process, leverages the entire temporal correlation structure in the data 
by incorporating time-dependent auxiliary variables. This provides a more compre-
hensive approach to modeling temporal dynamics [36]. SAE under a multivariate 
linear model for repeated measures data has been addressed using random effects 
growth curve models and accounting for the correlation structure among repeated 
measures within each area [37, 38]. Both models can account for repeated measures, 
where surveys from different periods are considered as repeated observations of the 
same small area, allowing the model to “borrow strength” both across small areas 
and over time.

One of the first examples of SAE application in agriculture was with a multivari-
ate linear regression model for repeated data measurements to produce district-level 
estimates of crop yield in Rwanda for the agricultural seasons of 2014 [39] based on 
[38] with covariates being available at the district level. Additionally, the sampling 
design that response data are surveyed with can vary [40]. For the example above, 
the Crop Assessment Survey was based on a two-stage stratified sampling design 
where strata were administrative districts [39]. In the first stage, primary sampling 
units are selected with probability proportional to the area size. For the second stage, 
secondary sampling units are selected with simple random sampling.
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Consequently, in this paper, we propose the utilization of a temporal-like bivariate 
Fay-Herriot (BFH) model on FI data derived from a pipeline preprocessing method-
ology, targeting the estimation of the GSV for the years 2008 and 2018. This method 
presents with various benefits over conventional approaches. Initially, it facilitates 
the integration of supplementary variables like remotely sensed data and historical 
records, thereby enhancing the accuracy and precision of estimations. Secondly, it 
accommodates the interrelation between GSVs and auxiliary variables, capturing 
the intricate connections within the forest ecosystem.

Through the implementation of the innovative bivariate Fay-Herriot model—a  
novel approach in the field of forestry—we seek to improve the precision and 
dependability of estimating GSV, thereby supporting well-informed decision-
making regarding sustainable forest management. We utilized remote sensing and 
historical data sourced from the University Forest of Pertouli. Additionally, we 
have incorporated a preprocessing methodology that combines clustering, variance 
smoothing, variable selection, and outlier detection techniques. The proposed 
preprocessing scheme significantly enhances the robustness of the estimates of 
the multivariate framework. The performance of the proposed BFH approach is 
rigorously evaluated concerning bias and the coefficient of variation (CV). Our 
findings are compared to the widely-used UFH model and the precision of the direct 
estimates, leading to noteworthy insights about the practicality and effectiveness of 
these statistical models in the context of SAE for FIs.

2 � Materials and Methods

2.1 � Study Area and Data

This study was conducted in the University Forest of Pertouli in Central Greece 
(Fig.  1). This ecosystem, characterized by uneven-aged forest, is primarily domi-
nated by the hybrid fir species, Abies borisii-regis Mattf. The forested area spans 
2260 ha within a larger territory of 3297 ha, which includes other land uses like 
meadows. The forest is divided into 174 FMUs, 160 of which were included in the 
analysis after eliminating unmanaged FMUs and those lacking adequate auxiliary 
data. The field data comprises 239 sample plots, each measuring 0.1 ha for the year 
2018. Of the 239 sample plots, 218 were common with those from 2008 and used 
in this study. The sampling frequency within the forest land was close to 1%. Nearly 
half of the FMUs have a single sample plot, and the other half have two plots. Only a 
few FMUs consist of three or none [41].

Our dataset combines tree-level information with pixel-level height metrics 
extracted from remote sensing data. Specifically, we generated a 2-m canopy height 
model (CHM) and used it to compute the distribution of tree height metrics, includ-
ing L-moments, for each FMU and small area. Figure 2 presents the distribution of the 
mean values from the CHM at the FMU level (left panel) accompanied by boxplots of 
height at the cluster level or small areas of interest (right panel). The CMH was com-
puted by subtracting the available LiDAR-based digital terrain model (DTM) from the 
digital surface model (DSM) generated from the WorldView 2 satellite data stereo pair.
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We incorporated tree-level density and volume data from past inventories. These 
attributes of the forest were used as covariates in the multivariate Fay-Herriot mod-
els that we investigated, to obtain dependable statistics at the area level. Despite 

Fig. 1   Pertouli forest study area: sampling design and cluster distribution

Fig. 2   Distribution of canopy height mean in Pertouli forest. In the left panel, the distribution of height 
means is illustrated in the forest management unit (FMU) level. The right panel displays the distribution 
of the height mean of the FMUs at the cluster level
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employing systematic sampling for the sample plots, we used direct estimators based 
on simple random sampling with replacement. No small areas beyond the sampled 
ones were considered, and each domain contained a minimum of two sample plots 
to facilitate variance estimation. The auxiliary variables of the dataset, along with 
descriptive metrics and units, are presented in Table 1.

2.2 � Advanced Preprocessing Pipeline

In the present analysis, small areas are redefined through the aggregation of FMUs 
or stands, accomplished via cluster analysis centered on height metrics. This process 
is conducted to establish a linear correlation between the variable of interest and 
auxiliary data. The term “small areas” pertains to consolidated FMUs. The rationale 
behind clustering FMUs emerges from the necessity—to adhere to the foundational 
model assumption—of a robust linear association between covariates and the vari-
ables of interest. The data are obtained from multi-story, uneven-aged forests, and 
as a result, the modest sample size of 1–3 sample plots per FMU cannot accurately 
represent the overall status. This situation led to a feeble correlation, rendering the 
utilization of area-level models infeasible. Grouping FMUs that share similar char-
acteristics addresses this challenge. During the clustering procedure, the choice of 
clustering variables holds significance as they are expected to encapsulate the heter-
ogeneity among FMUs. For this reason, we opted for tree height, a variable strongly 
linked to volume. Specifically, we utilized the mean height metric calculated by 
aggregating pixel heights to the FMU level.

In the process of conducting clustering analysis, we utilized the hierarchical 
single-linkage clustering algorithm [42], with the Euclidean distance serving as 
the measure for calculating distances [43]. We set the minimum cluster count at 
8, which, on average, corresponds to over 10 sample plots suggested for expanded 
small areas [44]. As an indicator for the clustering process, we used the aggregated 
canopy height mean at the FMU level. The challenge in clustering for SAE purposes 
involved achieving a robust correlation, while concurrently generating as many 
domains as feasible to enhance predictions at a more refined spatial resolution [25].

Table 1   Auxiliary data derived from remote sensing data and previous census inventories

Data type Descriptive statistics Abbreviations Unit metric Year

Height Quantiles h25; h50; h75; h90 Meters (m) 2022
Height Central tendency hmean; hmode m 2022
Height Dispersion metrics hsd; hcv m; dimensionless 2022
Height Shape distribution; L-moments hLskew, hLcv; L3, L4 Dimensionless 2022
Census Central tendency FirTreeDensityt97ha Trees/hectare (ha) 1997
Census Central tendency ForestDensity97ha Trees/ha 1997
Census Central tendency ForestGSV97ha m2/ha 1997
Census Central tendency FirGSV88ha m3/ha 1988
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To achieve the aim, we relied on the Calinski-Harabasz index [45] to identify 
the optimal number of clusters, discernible by the maximum value of the index. A 
study with simulated forest plots found that the Calinski-Harabasz index consist-
ently performed better at detecting the optimal number of clusters in comparison 
to other methods [46]. This is aligned with recent extensive research on the opti-
mal number of clusters based on different clustering schemes and auxiliary vari-
ables for the estimation of forest attributes in the context of SAE [25].

Using cluster analysis, we established 36 expanded domains, each encompass-
ing an average of 8.25 sample plots. The collective average relative standard error 
(RSE) among all domains was 13.31%. Among these domains, the 7 that con-
tained a single sample plot were excluded from the analysis due to the inability 
to calculate the variance of the sampling mean. Another 18 sample plots in 9 
domains, considered correlation outliers or exhibited covariance instability, were 
also eliminated, yielding an 8.26% reduction in the total number of sample plots.

The exclusion of this small percentage of plots led to a significant increase in 
correlation, as illustrated in the left panel of Fig. 3. This also resulted in the elim-
ination of extreme co-variance estimates. The right panel in Appendix Fig.  10 
shows the enhanced, post-clustering correlation, calculated without the removal 
of outliers, compared to the correlation diagram at the FMU level on the left 
panel (prior to clustering FMUs). Finally, 20 domains were identified as sampled 
areas, averaging 9.65 sample plots each, as detailed in Table 2. We observed that 
systematic sampling ensures consistent sampling intensity across each small area, 
as indicated in Table  2. Following cluster formation, auxiliary variables were 
aggregated within the newly defined smaller regions, from which we derived 
direct estimates using a design-based approach.

Fig. 3   Left panel: correlations at the cluster level—excluding outliers—for the response variables (vol-
ume 18 and 08) and auxiliary variables are displayed. Right panel: diagrammatic comparison of correla-
tions before (blue color) and after the clustering process (red color) and the extraction of outliers (green 
color)
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Before proceeding with the temporal-like FH model, a correlation analysis was 
conducted utilizing the Pearson correlation coefficient and assessing the signifi-
cance of the coefficients obtained. Outliers were identified using scatterplots, and 
their impact on correlation was further validated using a robust multivariate estima-
tor, the Donoho-Stahel estimator of multivariate location and scatter [47]. Moreo-
ver, we conducted a supplementary outlier evaluation by comparing the standard 
Pearson and the weighted correlation, with sample sizes serving as weights. Both 
types of correlation must show minimal disparities, given that domains featuring 
limited sample sizes could disproportionately affect the correlation outcomes. From 
the analysis, we observed that specific domains, predominantly comprising just two 
sample plots, exhibited extreme direct estimates and variances.

Overall, we have identified three types of outliers during the model-building 
process through the following steps: (I.) in correlation analysis, specifically focus-
ing on the dependencies between the GSV of 2018, the other response (GSV of 
2008), and auxiliary variables; (II.) in covariance matrices; and (III.) in the residu-
als of random area effects. An alternative to withdrawing outliers is to employ a 
robust approach for outlier treatment in SAE; more about this approach is included 
in the discussion. The right panel of Fig. 3 displays a comparative analysis of cor-
relations, focusing on the GSV for 2018, compared to the Volume08 (GSV of 
2008) auxiliary response variable, along with the auxiliary variables.

The analysis spans three distinct categories: (1) correlations for the initial 
FMUs (FMU-level, colored with blue), (2) after clustering of FMUs to form 
larger domains (colored with red), and (3) following the removal of outliers from 
these clusters (colored with green). The left panel represents the correlation val-
ues after the application of the preprocessing pipeline.

The final step of the preprocessing pipeline involves a variance-smoothing 
procedure. The FH model presupposes known sampling variances, an assump-
tion that is frequently untenable in real-world applications. The model tends to be 
unstable, leading to computational issues, zero random area effects, and a degra-
dation in the performance of the multivariate estimator. Smoothing the sampling 
variances using the generalized variance function (GVF) can mitigate this issue 
[48], especially for domains with small sample sizes. In forestry applications, a 
specific type of smoothing is implemented by weighting the sampling variance 

Table 2   Summary statistics of clusters, number of sample plots, area size, participation of primary forest 
management units (FMUs)

a  “nPlots” refers to the number of sample plots or sample size, and “Total” refers to the total number of 
population units

Number of 
clusters

Total 
nPlotsa

Mean of 
nPlots

Total area 
in hectares 
(ha)

Mean 
domain 
area (ha)

Mean of 
FMUs

Sampling 
intensity

All data 36 218 6.42 2076.05 61.06 6.80 0.95%
No outliers 20 193 9.65 1815.99 90.80 4.64 0.94%
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based on the small area size Ad [18, 19, 49]. This implies allocating greater 
weight to larger domains, as they are expected to yield more precise estimates.

The smoothed sampling variances �̃2
�d

 are defined as

where V� is a constant weighted mean of variances, nd denotes the number of units 
in domain d , Ad is the respective total area, and D is the number of domains. The 
term �̂2

�d
—calculated directly from the sample plots—is utilized to estimate the �2

�d
 , 

whereas �̃2
�d

 presents a smoothed version of the original sampling variances. The 
following equation presents the unbiased sample variance under simple random 
sampling (SRS) with replacement, without the finite population correction factor

Furthermore, we calculated the covariances by taking the square root of the 
smoothed variances and multiplying by the correlation of the variables under study,

Specifically, �̃2
�d1

 and �̃2
�d2

 represent the smoothed variances of the two examined 
response variables. This is based on SRS, which assigns equal inclusion probabili-
ties to all units within a given domain. When different probabilities are assigned to 
each domain based on the domain area, this results in a weighted sampling variance. 
In such cases, the weighted variances are typically smaller, but the smoothed vari-
ances exhibit fewer fluctuations. Details about the weighted variance estimation are 
provided in [50].

In the left panel of Fig.  4, we present the variances of the GSV 2018 direct 
estimates under three conditions: using SRS (Variance_SRS), after applying the 
selected smoothing procedure (Smoothed_Variance), and with varying inclusion 
probabilities of sample plots (Weighted_Variance) based on the domain area. It is 
important to note that the sampling error variance is not assumed to follow a nor-
mal distribution. After applying the smoothing procedure, our analyses reveal a shift 
from initially non-normally distributed sampling variances to a normal distribution, 
as shown in Fig. 4’s right panel part and confirmed by the Shapiro–Wilk test.

After all the preprocessing steps, the variable selection process was explored 
based on a range of techniques. We initially tested lasso regression with cross- 
validation [51, 52], random forests’ variable importance [53], recursive feature 
elimination [54], PCA-based selection [55], Bayesian model averaging (BMA) [56], 
variance inflation factor (VIF) assessments [57], and the branch and bound method 
[58]. Among these, we adopted the EBLUP-FH method, employing stepwise 

(1)�̃2
�d

=
V�

nd
,

(2)V� =

∑D

i=1
Ad�̂

2
�d∑D

i=1
Ad

(3)�̂2
�d

=
∑nd

j=1

(
ydj − yd

)2
∕
(
nd − 1

)

(4)�̃�d12 = � ∙

√
�̃2
�d1

∙ �̃2
�d2

= � ∙ �̃�d1 ∙ �̃�d2
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selection based on the AIC criterion using the “saeBest” package [59]. This method 
outperformed the others in suitability. More specifically, the sets of auxiliary 
variables suggested by the aforementioned methodologies generated higher MSE 
and CV values compared to the set of variables provided by the EBLUP-FH method. 
Consequently, the final MSE and CV values were the selection criterion of the 
EBLUP-FH method. The incorporation of many covariates can cause computation 
challenges including convergence problems; therefore, the model should be kept 
as simple as possible, aiming to avoid overfitting issues. For this reason, after the 
variable selection, we executed and then interpreted the model’s coefficients and 
variance of random area effects.

2.3 � Multivariate Fay‑Herriot Model

MFH models incorporate the correlation among response variables and borrow 
strength from auxiliary variables, resulting in more efficient parameter identifica-
tion. This fact leads to results of reduced variance, compared to direct estimates and 
the UFH model. Moreover, compared to the standard univariate approach, the MFH 
models incorporate the linear dependencies between the chosen response variables, 
alleviating the requirement of auxiliary variables with significant relationships with 
all the characteristics under study.

FH models can be described in two stages, consisting of a sampling design stage 
and a linking model. In the sampling design stage, direct survey estimates ( Ydk ) 
account for the sampling variability or random sampling errors ( �dk ) of the true area 
values ( Ydk ). The direct estimates of the domain means are used as responses in the 
area-level model. The sampling model can be described as

The covariance estimator of the sampling means of the response variables is

(5)ydk = Ydk + �dk,d=1,..., D,k=1,..., K

Fig. 4   Left panel: three types of sampling variances for direct estimates of growing stock volume in 
2018—variance calculated using simple random sampling (SRS) (Variance_SRS), variance after applica-
tion of selected smoothing procedure (Smoothed_Variance), and variance with varying inclusion prob-
abilities of sample plots based on domain area (Weighted_Variance). Right panel: frequency distribu-
tions representing both typical sampling variances and smoothed sampling variances for growing stock 
Volume
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Based on this formula, where the smoothed variances are employed, the covari-
ance matrix of sampling errors ( Σ�d ) is constructed.

The linking model relates the true population means ( ydk ) to the auxiliary vari-
ables ( xT

dk
 ) through the parameter vector ( bk ). As a result, the linking model is repre-

sented by the linear relation

We note that D represents the cardinality of domains or small areas in the 
population, while K represents the number of linearly correlated target variables. 
In addition, ydk corresponds to the unbiased direct survey estimate of the popula-
tion’s means Ydk for each domain d , and target variable k, where d = 1,… ,D and 
k = 1,… ,K . Also, xdk represents a vector of p auxiliary variables that are linearly 
correlated with Ydk,d = 1,… ,D, k = 1,… ,K . Finally, bk =

(
bk1,… , bkpk

)
 is a vec-

tor of coefficients describing the relationship between the auxiliary variables and 
the direct estimates. The subscript pk corresponds to the cardinality of auxiliary var-
iables xdk =

(
xdk1,… , xdkpk

)
 that are incorporated in the linear model that describes 

Ydk . More specifically, in the bivariate case ( K = 2) formulas (2) and (3) can be writ-
ten as

and

or

where p = p1 + p2, shows the sum of the auxiliary variables used for both Yd1 and 
Yd2.

By combining Eqs. (5) and (7), we obtain an area-level mixed random effect 
model where ydk is modeled as a linear combination of xdk , a domain-specific ran-
dom effect udk , and the sampling error �dk . Hence, the area-level random effect 
model is given by

(6)ĉov
(
ydk, ydl

)
= �̃�dkl = � ∙ �ydk ∙ �ydl

(7)Y
dk
= x

T

dk
b
k
+ u

dk
, d = 1, ...,D, k = 1, ...,K

(8)
(
yd1
yd2

)
=

(
Yd1

Yd2

)
+

(
�d1
�d2

)
, d = 1,… ,D

(9)
(
Yd1

Yd2

)
=

(
xd1

0

0

xd2

)(
bT
1

bT
2

)
+

(
ud1
ud2

)
, d = 1,… ,D

(10)

�
Yd1

Yd2

�
=

�
xd11

0

…

…

xd1p1

0

0

xd21

…

…

0

xd2p2

�

2×p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b11
⋮

b1p1

b21
⋮

b2p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠p×1

+

�
ud1
ud2

�
, d = 1,… ,D
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while for the BFH, we have

The MFH model for the d-th domain can be expressed in matrix form as

where yd =
(
yd,1, yd,2,… , yd,K

)T is a vector of direct survey estimates for the domain 
d , xd is a matrix of auxiliary variables for the domain d , b =

(
bT
1
, bT

2
,… , bT

K

)T
p×1

 is a 
parameter matrix, zd is a design matrix, ud is a vector of random effects for the 
domain d , and �d is a vector of sampling errors. Both vector of sampling errors and 
random effects follow normal distributions of zero mean, where �d ∼ N(0,��d) and 
ud ∼ N(0,�ud).

The covariance matrix of yd is given by

where ��d represents a known K × K sampling covariance matrix of the direct esti-
mates. Matrix �ud = diag

(
�2
uk

)
, 1 ≤ k ≤ K, is associated with homoscedastic and 

uncorrelated random effects. Alternative structures/formulas for �ud can be found 
in [29] to account for correlated and heteroscedastic effects. For the UFH case, ��d 
also takes a diagonal form.

By aggregating the D area-level models, Eq. (13) can be described in matrix form as

This formulation represents the integration of the D area-level models into a 
matrix form for the MFH. The covariance matrix of y is now represented by

Matrices �� and �u have a block diagonal form, assuming independence between 
sampling errors and random effects across domains.

To estimate the target variables for different domains, we employ the multivariate 
empirical best linear unbiased predictors (EBLUP) of Y,

The respective estimate for the covariance matrix of the EBLUP estimators is 
produced by

(11)Y
dk

= x
T

dk
b
k
+ u

dk
, �

dk
= 1, ...,D, k = 1, ...,K

(12)

�
yd1
yd2

�
=

�
xd11

0

…

…

xd1p1

0

0

xd21

…

0

0

xd2p2

�

2×p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b11
⋮

b1p1

b21
⋮

b2p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠p×1

+

�
ud1
ud2

�
+

�
�d1
�d2

�
, d = 1,… ,D

(13)Y
d
= xT

d
b + z

d
ud, �

d
, d = 1, ...,D

(14)V
d
= z

d
�
ud

z
T
d
+ ��d

(15)y= Xb + Zu + �

(16)V= Z�u Z
T
+ ��

(17)ŶE = Xb̂E + ZûE
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In addition, the model’s coefficients and random effect estimates are obtained 
according to

and

The above quantities are generated based on an iterative residual maximum like-
lihood (REML) algorithm, resulting in the construction of the Fisher information 
matrix. The results of this algorithm are later incorporated into the estimation of the 
covariance matrix of random effects Σ̂ud. The estimated covariance matrix participates 
in the computation of V̂ , since V̂ = �̂ud + ��d, according to EBLUP. More details 
about the REML algorithm can be found in [29]. The statistical analysis was con-
ducted using the open-source statistical software R, with the R package “msae” [60].

To compare the performance of two estimators, we use the relative efficiency 
(RE) and the percentage variance reduction gain [6]. The direct estimates are 
denoted as yDIR

dk
 and the EBLUP model-based estimates of the temporal-like BFH 

and the UFH as yEBLUP
dk

 . The RE is computed as the ratio of the variance of the 
EBLUP estimates to the variance of the direct estimates

If RE is less than one, the EBLUP estimator in the numerator is more efficient 
than the direct estimator in the denominator. The RE can be expressed as a percent-
age variance reduction gain using the formula 100%(1 − RE ). A positive percentage 
gain indicates that the EBLUP estimator is more efficient, i.e., has lower variance.

In addition to the bias diagnostic scatter plot, we assess potential bias by compar-
ing model estimates with direct estimates in large domains, using direct estimates 
derived from all available observations as the gold standard [61]. This comparison 
serves as a “calibration diagnostic” for evaluating and potentially correcting bias in 
small area estimation models.

The difference between modeled and direct estimates, when aggregated to larger 
domains, helps identify if any specific large domain is estimated less accurately 
than others [62]. The expectation is that model estimates should closely align with 
direct estimates when aggregated at appropriate large domain levels. The calibra-
tion value, expressed as a percentage difference (Eq. 22), serves as an indicator of 
average relative bias (ARB). A value close to zero suggests unbiased model-based 
estimates, while a significant deviation may signal bias, warranting further investi-
gation or adjustments.

(18)V̂ = Z�̂uZ
T + ��

(19)b̂E =
(
XT V̂

−1
X
)−1

XT V̂
−1
y

(20)ûE = �̂u Z
T V̂

−1
(
y − Xb̂E

)

(21)RE =
Var

(
yEBLUP
dk

)

Var
(
yDIR
dk

)
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Lastly, validating small area estimates poses challenges distinct from conven-
tional statistical methods like in-sample or cross-validation, especially in data-sparse 
domains [61]. To address this, we performed a simulation resembling leave-one-out 
cross-validation (LOOCV) to evaluate the model’s robustness in the absence of par-
ticular domains. The validation process involved assessing the model’s performance 
by examining the estimated variance of random area effects and mean squared error 
(MSE) when excluding specific domains.

3 � Results

The objective of the FIs is to provide updated and precise estimates regarding for-
est attributes. Therefore, we present the estimates from the most recent sampling in 
2018, as this point in time is more relevant for current FI decision-making and man-
agement activities. After the model selection procedure based on the minimization 
of the AIC criterion, we obtained the following variable set, where

Table 3 displays the beta coefficients, standard errors, t-statistics, and p-values 
after the application of the temporal-like BFH according to the formula 18. We 
noted once again, that after the application of the clustering and outlier detection 
procedures, there remained a total of D = 20 domains, a number that is considered 
acceptable for FH modeling. We underline that for FH models of higher complexity, 
a small number of domains may lead to convergence issues [63].

In forestry, estimates that do not exceed a relative standard error (RSE) of the mean or CV 
threshold of 10–15% are typically considered reliable [64]. Both the temporal-like BFH and 
UFH models performed exceptionally well, with the BFH producing 20 domains and UFH 
producing 19 domains with a CV of less than 5% (Table 4). These results indicate improve-
ment over the direct estimates, which produced five domains with a CV higher than 15%, 
while other 3 domains displayed a CV greater than 10%. The boxplots of Fig. 5, left panel, 
present a comparative distribution of the error results for the direct estimates, the univariate, 
and finally, the temporal-like bivariate FH approach. Figure 5, right panel, showcases the 
confidence intervals for both UFH and BFH. The confidence intervals are illustrated with 
black solid and red dotted lines, respectively. The estimates of the three SAE approaches are 
markedly different. Figure 6 showcases maps depicting the spatial distribution of the BFH 
estimates for the GSV of 2018 (left panel) and CVs (right panel), correspondingly.

In summary, the results showed substantial variance reduction, with gains of 96.58% 
for BFH and 96.05% for UFH. When comparing the two EBLUP estimators, the tem-
poral-like BFH model demonstrated 13.52% greater efficiency in variance reduction 
than the standard UFH approach.

(22)ARB% =
1

D

∑D

i=1

�
yEBLUP
dk

− yDIR
dk

yDIR
dk

�
× 100

(22)
(
Volume18

Volume08

)
∼

(
hmean + h95 + h50 + log(hmode) + ��g(hLcv)

hmean + hsd + Den97 + DenFir88 + h952

)
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Ensuring the fulfillment of model assumptions holds paramount importance in 
the process of model construction. According to Fig. 7, the residuals generated by 
the implementation of the BFH model for the GSV of 2018 follow the assumptions 
of normality and homoscedasticity. The model’s residuals seem to take place inside 
the confidence interval of the displayed qqplot (left panel) [65], while the standard-
ized residuals are distributed without showing significant trends to the GSV 2018 
predictions derived from the application of the temporal-like BFH.

As per its design, model-based SAE inherently introduces a degree of bias, which 
serves the purpose of diminishing estimator variance; a common outcome of shrink-
age toward the mean [66]. Nonetheless, excessive bias can lead to erroneous estima-
tions. The black regression line depicted in the bias diagnostic scatter plot (Fig. 8) 
portrays the connection between direct estimates and temporal-like BFH estimates. 
Line alignment with the red diagonal bisector (y = x) indicates unbiased BFH esti-
mates [62]. This tendency suggests that the BFH estimations exhibit consistency 
with the direct estimates.

The additional bias validation, employed for calibration diagnostics by comparing 
model-based estimates and direct estimates (Eq. 22), yielded the following results. 
For the total population of 193 samples, the average relative bias (ARB%) was 
0.022%, almost zero. However, for the larger six domains, each with an average of 32 

Table 4   CV% distribution 
in classes, regarding direct, 
UFH, and temporal-like BFH 
estimates

CV% range Direct (SRS) UFH BFH

0–5.0 1 19 20
5.1–10.0 11 1 0
10.1–15.0 3 0 0
>15.0 5 0 0

Fig. 5   On the left panel: distribution of coefficient of variation (CV) produced by the direct estimates, 
univariate, and temporal-like bivariate Fay-Herriot model. Inside the square on the upper right part of the 
figure, we display an enlargement of the boxplots corresponding to the CV of the UFH and the temporal-
like BFH. On the right panel: direct sampling-based domain estimates of volume means for 2018 (gray 
points), univariate (black points), and bivariate Fay-Herriot (red points) estimates. Confidence intervals 
for the model-based estimates are illustrated with solid (univariate) and dotted (bivariate) lines
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sample plots, the ARB% values were as follows: 0.126%, 1.398%, 0.725%, − 1.293%, 
0.175%, and 0.169%. These values indicate that the EBLUP model estimates are 
nearly unbiased compared to the assumed unbiased direct estimates.

Finally, the simulation, similar to leave-one-out cross-validation, indicated that 
90% of the models (18 out of 20) exhibited comparable MSEs and non-zero model 
variances. This indicates model stability in the absence of fitted data. In contrast, the 
remaining 10% resulted in zero random area effects due to convergence or compu-
tational issues, causing zero model variances. Additionally, the estimates generated 
from these two models were biased and could potentially lead to misleading conclu-
sions. Specifically, domains 2 and 12 (depicted in Fig. 9, left panel) had the largest 
sample sizes, constituting 12.96% (25/193) and 13.99% (27/193) of the total number 
of plots, respectively. The exclusion of one of these domains led to zero random area 
effects and smaller MSEs (Fig. 9, right panel).

However, this phenomenon is misleading, as the model’s assumption of unbiased 
direct estimates is violated due to non-normally distributed random area effects. 

Fig. 6   On the left panel: spatial distribution for the GSV of 2018 estimation across forest management 
units (FMUs) based on the BFH model. Brown color indicates excluded FMUs outlier FMUs mostly 
with one sample plot. On the right panel: coefficient of variation for each forest management unit based 
on the temporal-like BFH estimates for the GSV of 2018. The brown color indicates excluded outlier 
FMUs mostly with one sample plot

Fig. 7   Normality (left panel) and homoscedasticity (right panel) plots for the residuals generated from 
the BFH after the estimation for the GSV of 2018
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This highlights the significant influence of domains with large sample sizes. To 
address these issues, testing for multicollinearity and adjusting the covariates for 
increased informativeness or reducing their number could be considered. Moreover, 

Fig. 8   Bias diagnostic plot. Bivariate Fay-Herriot (BFH) estimates (x-axis) versus direct estimates 
(y-axis) for the growing stock volume of 2018. The red line represents the y = x bisector, and the black 
line represents the regression line

Fig. 9   Sample sizes for each domain (left panel) and distribution of MSEs (right panel) across twenty 
simulations, each excluding one domain (Domains-1)
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such adjustments may contribute to the development of a more robust model for 
domain changes, albeit with an associated increase in MSEs. If challenges persist, 
alternative estimation methods such as hierarchical Bayes or empirical Bayes could 
be explored as substitutes for the EBLUP employed in this study. Another option 
involves using an adjusted form of maximum likelihood for the MFH to overcome 
issues related to zero model variance [67, 68].

4 � Discussion

This study introduces an innovative technique for conducting multivariate small area 
estimations in the context of FIs. Our principal goal is to achieve precise estima-
tions of the GSV for both the years 2008 and particularly 2018. To achieve this, 
we employed remote sensing data and census auxiliary data. The proposed statisti-
cal estimation methodology leverages a temporal-like bivariate Fay-Herriot model, 
effectively integrating information gleaned from both auxiliary and response vari-
ables, in this case, the GSV of 2008. Moreover, our model considers the sampling 
errors inherent in real data, as well as those associated with the underlying regres-
sion model. To enhance the linear relationship between the response and auxil-
iary variables, we introduce a new preprocessing pipeline, shown to significantly 
enhance the robustness of the domain estimates.

Several studies have emphasized the benefits of utilizing Fay-Herriot modeling 
to generate small area estimates in FIs [18, 19, 49, 69–71]. In our research, we 
expanded upon these insights by introducing a novel approach that arguably incor-
porates more sophisticated and suitable statistical methodologies. The introduced 
MFH model leverages the interconnected relationships among various elements: 
the target variables, direct survey evaluations, auxiliary variables, latent variability 
through random effects, and sampling errors that address the variability stemming 
from the sampling process itself. By concurrently considering these diverse com-
ponents, we enhance the accuracy of parameter estimates and elevate the overall 
reliability of the estimation process. The multivariate model inherently exploits the 
temporal correlation between the two-time points, using one of the two response 
variables as auxiliary information. This feature is necessary when the response vari-
able demonstrates strong auto-correlation. If past response variables offer sufficient 
predictive power for future instances, the need for external auxiliary variables may 
be reduced, thereby simplifying the modeling process [72]. This is especially perti-
nent when suitable auxiliary data are limited or when issues regarding the quality or 
relevance of available auxiliary data arise. We emphasize that this methodology is 
particularly well-suited for repeated surveys or MFIs, such as those conducted on a 
decadal basis, making it an ideal strategy for consistent, long-term SAE.

As previously highlighted, a unique contribution of this paper is the newly intro-
duced preprocessing pipeline. The cluster analysis applied to FMUs significantly 
improves the correlation between auxiliary and response variables, resulting in 
the creation of a robust statistical model. Simultaneously, the outlier detection step 
identifies and removes extreme domain values, further enhancing the model’s lin-
ear relationships. Another key step for enhancing both reliability and performance 
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is variance smoothing. Although the FH model assumes known sampling variances, 
this assumption often does not hold in real-world scenarios. In the context of SAE, 
it is common to encounter substantial variability due to small sample sizes for each 
small area. This variability can lead to significant discrepancies between the esti-
mated covariances of small areas, potentially causing computational issues related 
to the ill-posed inversion of the covariance matrix V . Consequently, the variance 
smoothing step effectively addresses this challenge, facilitating the model’s conver-
gence process.

The comparison between the MFH and UFH methodologies reveals several nota-
ble advantages associated with the former approach. Our findings illustrate that the 
MFH technique effectively reduces both the MSE and CV, thereby enhancing the 
model’s credibility. An intriguing aspect of our investigation lies in the strong corre-
lation observed among the target variables. This attribute accentuates the improved 
performance of the MFH approach when compared to UFH, particularly in scenar-
ios where sampling errors are small [34]. In cases where this correlation is less pro-
nounced, both UFH and MFH models could potentially yield similar results [73]. 
Furthermore, the multivariate approach amalgamates insights from auxiliary vari-
ables that exhibit linear correlations with data derived from the two response vari-
ables. This amalgamation contributes to increased estimation accuracy, manifesting 
in reduced bias and enhanced precision, as in the GSV estimates for the two-time 
points. Additionally, the inclusion of information from correlated variables mitigates 
the influence of outliers in one variable on the overall estimation process, fostering 
increased stability and reliability.

In this study, we recognize the critical importance of accurately identifying 
and appropriately treating outliers to ensure optimal model performance. We have 
identified three types of outliers that may occur: (I.) in correlation analysis, (II.) in 
covariance matrices, and (III.) in the residuals of random area effects. To mitigate 
the adverse impact of outliers, we propose two primary strategies. The first involves 
the use of robust estimators [74]. In this scenario, estimates are available for all 
small areas.

The second strategy entails identifying and removing outliers. If the outliers 
are domains rather than individual sampling units, these domains are consid-
ered unsampled. Outlier domains, particularly those with only one unit or, in 
extreme cases, two units with problematic covariances, are either excluded or 
estimated using the synthetic component of the FH model, utilizing known cal-
culated regression parameters. Recent advancements in modeling have enhanced 
the efficiency of the synthetic component in SAE. For example, some models 
provide estimates of random area effects for unsampled or outlier-removed areas 
based on clustering information from similar small areas [75, 76]. In cases of 
missing data, a newly proposed empirical best predictor (EBP) offers estimates 
for unsampled domains [77].

A third option may emerge from the estimation of zero variance of the ran-
dom area effects. In such cases, an adjusted form of maximum likelihood for 
the multivariate Fay-Herriot model can be employed to circumvent zero model 
variance [67, 68]. However, it is imperative to validate the model assumptions 
before proceeding with this approach.
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It is crucial to underscore the beneficial impact of sampling variance smooth-
ing techniques on the estimation of random area effects variance in our study. In 
the absence of smoothing, extreme covariance values pose computational and 
convergence challenges, highlighting the importance of this preprocessing step. 
While variance smoothing can often obviate the need for other strategies, it is 
not a universal solution. Specifically, it may not be sufficient in cases with mini-
mal data, such as those involving only two sample plots for each small area.

The application of univariate SAE techniques, particularly the FH approach, 
necessitates a robust collection of auxiliary variables [29] with strong linear 
correlations to the examined variable. This prerequisite is seldom met in hetero-
geneous forests with few sample plots per small area that are unable to describe 
the desired response variable. In contrast to the regression models that have 
been extensively employed in literature, the FH model considers the survey’s 
sampling design. Furthermore, many of the abovementioned regression analyses 
are accompanied by restrictive assumptions regarding the covariance structure, 
while the FH models provide a more flexible alternative as the variances of the 
response variables are estimated through formula (1).

The implementation of the multivariate Fay-Herriot model incorporates addi-
tional response variables that could provide useful insights, enabling simultane-
ous estimates for density, height, or area features of interest. However, the num-
ber of response variables should be determined with great care, as the cardinality 
of variance components increases significantly. More specifically, a MFH model 
containing K  response variables requires the estimation of K +

(
K

2

)
 components. 

Hence, a relatively small number of domains D might lead to convergence 
issues. Based on the high correlation values that are generated from the preproc-
essing pipeline (even greater than 0.6), we believe that the implementation of 
more complex FH models will provide interesting conclusions regarding sus-
tainable forest management.

The presented methodology can simultaneously explore indicators associ-
ated with official statistics [34, 73, 78], epidemiology [79, 80], and poverty [1, 
3, 81]. This methodology not only improves the estimation efficiency but also 
nurtures a comprehensive understanding across a range of scientific fields. It is 
important to underline that the proposed preprocessing and SAE approach is not 
confined to our specific dataset. Rather, it can readily be adapted for any analy-
sis involving SAE with area-level models.

5 � Conclusions

This study presents a new methodology regarding SAE in forest inventories applied 
to a dataset that combined past census and remote sensing data. It aims to present a 
statistical methodology for the precise estimation of GSV in the Pertouli University 
Forest for the year 2008 and, more importantly, for the year 2018. Before the imple-
mentation of the proposed temporal-like bivariate Fay-Herriot model, aiming at the 
production of reliable area estimations, a novel preprocessing pipeline is displayed 
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including clustering, outlier detection, variable selection through correlation analy-
sis, and variance smoothing steps. This preprocessing setup culminates in a signifi-
cant enhancement of the overall linear dependencies between auxiliary and response 
variables, resulting in more robust GSV estimations.

In summary, the BFH model adeptly combines auxiliary data, encompass-
ing historical inventory and remote sensing data, to jointly predict the target vari-
ables for both the 2008 and 2018 inventories. Outperforming direct sampling-based 
estimates, the MFH model showcases improved effectiveness when compared to 
the UFH model-based technique. By exploiting auxiliary information and correla-
tions between variables, BFH offers a more reliable and accurate assessment pro-
cess, improving the decision-making in forestry. It is important to note that the 
presented methodology—pipeline preprocessing steps and the temporal-like ΒFH/
MFH model—is not restricted to our dataset but can be easily employed for any 
SAE attempt, leading to the sustainable management of any forest ecosystem. In the 
future, more complex MFH models that simultaneously take into account different 
forest characteristics such as height, tree density, woody volume, and basal area will 
be considered, with the aim of better and simultaneous estimates.

Appendix

Acknowledgements  The WorldView stereo imagery was obtained via the End User License Agreement 
(EULA) for the U.S. Federal Civil Government (Title 5 U.S. Code).

Author Contribution  A.G. and G.S. conceptualized the study; methodology, A.G. and V.P.; software, A.G.; 
validation, A.G. and V.P.; formal analysis, A.G. and V.P.; investigation, A.G.; resources, A.G., D.G., and 

Fig. 10   Correlations diagram at FMU level (left panel) and cluster level (post-clustering) with outliers 
(right panel)

Page 23 of 28 9



Operations Research Forum   (2024) 5:9

1 3

G.S.; data curation, A.G.; writing—original draft preparation, A.G. and V.P.; writing—review and editing, 
A.G., V.P., D.G., and G.S; visualization, A.G.; supervision, G.S.; project administration, A.G.; funding 
acquisition, A.G. All authors have read and agreed to the published version of the manuscript.

Funding  Open access funding provided by HEAL-Link Greece. This study is part of A.G.’s doctoral the-
sis that has been financially supported by the Hellenic Scholarship Foundation (IKY) and the European 
Social Fund – ESF) through the operational programme “Human Resources Development, Education and 
Lifelong Learning” in the context of the Act “Enhancing Human Resources Research Potential by under-
taking a Doctoral Research Sub-action 2: IKY Scholar-ship Programme for PhD candidates in the Greek 
Universities.”

Data Availability  Sample survey data and digital maps used in the study are available upon request by the 
University Forest Administration and Management Fund at Aristotle University of Thessaloniki (https://​
www.​auth.​gr/​en/​unive​rsity_​unit/​tameio-​unifo​rest-​en/, accessed on 22 December 2023). The Digital Sur-
face Model extracted from the WorldView imagery is available from the authors upon request.

Declarations 

Competing Interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Rao JN, Molina I (2015) Small area estimation. John Wiley & Sons Inc
	 2.	 Battese GE, Harter RM, Fuller WA (1988) An Error-components model for prediction of county 

crop areas using survey and satellite data. J Am Stat Assoc 83(401):28–36
	 3.	 Pratesi M (2016) Analysis of poverty data by small area estimation
	 4.	 Georgakis A (2019) Small area estimation in forest inventories. Seventh International Confer-

ence On Environmental Management, Engineering, Planning And Economics (CEMEPE 2019) 
And SECOTOX Conference. Mykonos island, Greece

	 5.	 Guldin RW (2021) “A systematic review of small domain estimation research in forestry during 
the twenty-first century from outside the United States.” 4(96)

	 6.	 Dettmann GT, Radtke PJ, Coulston JW, Green PC, Wilson BT, Moisen GG (2022) “Review and 
synthesis of estimation strategies to meet small area needs in forest inventory.” 5

	 7.	 Diamantopoulou MJ, Georgakis A (2023) Exploration of big-BAF sampling potential for volume 
estimation in Abies borisii-regis Matff. forest stands. Operations Research Forum 4(4):71

	 8.	 Diamantopoulou MJ, Georgakis A (2023b) Assessing reliable wood volume estimation of forest 
stand, through the application of the big-BAF sampling methodology. Tenth International Con-
ference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2023) 
and SECOTOX Conference. Skiathos Island, Greece

	 9.	 Georgakis A, Stamatellos G (2019) Two Contemporary and efficient two-stage sampling meth-
ods for estimating the volume of forest stands: a brief overview and unified mathematical 
description. Open Journal of Forestry 09(03):13

	10.	 Iles K (2012) Some current subsampling techniques in forestry. Mathematical and Computa-
tional Forestry & Natural Resource Sciences 4(2):77

9 Page 24 of 28

https://www.auth.gr/en/university_unit/tameio-uniforest-en/
https://www.auth.gr/en/university_unit/tameio-uniforest-en/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Operations Research Forum   (2024) 5:9

1 3

	11.	 Breidenbach J, Astrup R (2012) Small area estimation of forest attributes in the Norwegian 
National Forest Inventory. Eur J Forest Res 131(4):1255–1267

	12.	 Goerndt ME, Monleon VJ, Temesgen H (2013) Small-area estimation of county-level for-
est attributes using ground data and remote sensed auxiliary information. Forest Science 
59(5):536–548

	13.	 Mauro F, Monleon V, Temesgen H (2015) Using small area estimation and Lidar-derived variables 
for multivariate prediction of forest attributes. Forest Inventory and Analysis (FIA) symposium 
2015, Portland, Oregon

	14.	 Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific for-
est inventory attributes using a nonparametric semi-individual tree crown approach based on fused 
airborne laser scanning and multispectral data. Remote Sens Environ 114(4):911–924

	15.	 Corona P, Fattorini L (2008) “Area-based lidar-assisted estimation of forest standing volume.” Can J 
Forest Res 38:2911+

	16.	 White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M (2013) 
A best practices guide for generating forest inventory attributes from airborne laser scanning data 
using an area-based approach. For Chron 89(06):722–723

	17.	 Fay RE, Herriot RA (1979) Estimates of income for small places: an application of James-Stein 
procedures to census data. J Am Stat Assoc 74(366):269–277

	18.	 Goerndt ME, Monleon VJ, Temesgen H (2011) A comparison of small-area estimation techniques 
to estimate selected stand attributes using LiDAR-derived auxiliary variables. Can J For Res 
41(6):1189–1201

	19.	 Magnussen S, Mauro F, Breidenbach J, Lanz A, Kändler G (2017) Area-level analysis of forest 
inventory variables. Eur J Forest Res 136(5):839–855

	20.	 Breidenbach J, Magnussen S, Rahlf J, Astrup R (2018) Unit-level and area-level small area esti-
mation under heteroscedasticity using digital aerial photogrammetry data. Remote Sens Environ 
212:199–211

	21.	 Mauro F, Monleon VJ, Temesgen H, Ford KR (2017) Analysis of area level and unit level mod-
els for small area estimation in forest inventories assisted with LiDAR auxiliary information. PLoS 
ONE 12(12):14

	22.	 Frank BM (2020) Aerial laser scanning for forest inventories: estimation and uncertainty at multiple 
scales. Oregon State University, PhD diss

	23.	 Magnussen S, Mandallaz D, Breidenbach J, Lanz A, Ginzler C (2014) National forest inventories in 
the service of small area estimation of stem volume. Can J For Res 44(9):1079–1090

	24.	 Georgakis A (2021) Further improvements of growing stock volume estimations at stratum-level 
with the application of Fay-Herriot model. 33rd PanHellenic statistics conference. Statistics in the 
Economy and Administration, Larissa, Greece, Greek Statistical Institute and the Departments of 
Business Administration and of Economics, University of Thessaly

	25.	 Georgakis A, Gatziolis D, Stamatellos G (2023) “A primer on clustering of forest management 
units for reliable design-based direct estimates and model-based small area estimation.” Forests 14. 
https://​doi.​org/​10.​3390/​f1410​1994

	26.	 Fay RE (1987) “Application of multivariate regression to small domain estimation.” Small area sta-
tistics: 91–102

	27.	 Ghosh M, Datta GS, Fay RE (1991) Hierarchical and empirical multivariate Bayes analysis in small 
area estimation. Proc 7th Annu Res Conf Bur Cens 63–79

	28.	 Ghosh M, Nangia N, Kim DH (1996) Estimation of median income of four-person families: a 
Bayesian time series approach. J Am Stat Assoc 91(436):1423–1431

	29.	 Benavent R, Morales D (2016) Multivariate Fay-Herriot models for small area estimation. Comput 
Stat Data Anal 94:372–390

	30.	 Fuller W, Harter R (1987) “The multivariate components of variance model for small area estima-
tion.” Small Area Stat

	31.	 Benavent R, Morales D (2021) Small area estimation under a temporal bivariate area-level linear 
mixed model with independent time effects. Stat Methods Appl 30(1):195–222

	32.	 Sun H, Berg E, Zhu Z (2022) Bivariate small-area estimation for binary and gaussian variables 
based on a conditionally specified model. Biometrics 78(4):1555–1565

	33.	 Sun H, Berg E, Zhu Z (2023) “Multivariate small-area estimation for mixed-type response variables 
with item nonresponse.” J Surv Stat Methodol smad018

Page 25 of 28 9

https://doi.org/10.3390/f14101994


Operations Research Forum   (2024) 5:9

1 3

	34.	 Franco C, Bell WR (2022) Using American Community Survey Data to improve estimates from 
smaller U.S. surveys through bivariate small area estimation models. Journal of Survey Statistics 
and Methodology 10(1):225–247

	35.	 van den Brakel JA, Boonstra H-J (2021) Estimation of domain discontinuities using Hierarchical 
Bayesian Fay-Herriot models. Surv Methodol 47(1):151–190

	36.	 Marhuenda Y, Molina I, Morales D (2013) Small area estimation with spatio-temporal Fay-Herriot 
models. Comput Stat Data Anal 58:308–325

	37.	 Ngaruye I (2017) Contributions to small area estimation : using random effects growth curve model 
doctoral thesis, comprehensive summary, Linköping University Electronic Press

	38.	 Ngaruye I, Nzabanita J, Rosen DVd, Singull M (2017) "Small area estimation under a multivariate 
linear model for repeated measures data." Commun Stat - Theory Method 46(21):10835–10850

	39.	 Innocent N, Dietrich VR, Martin S (2016) Crop yield estimation at district level for agricultural sea-
sons 2014 in Rwanda. African Journal of Applied Statistics 3(1):69–90

	40.	 Georgakis A, Stamatellos G (2020) Sampling design contribution to small area estimation proce-
dure in forest inventories. Modern Concepts & Developments in Agronomy 7(1):694–697

	41.	 UFAMF (2018) Pertouli University Forest Management Plan 2019–2028, University Forest Admin-
istration and Management Fund (UFAMF)

	42.	 Saligkaras D, Papageorgiou VE (2023) Seeking the truth beyond the data. AIP Publishing, An unsu-
pervised machine learning approach, p 2812

	43.	 Saligkaras D, Papageorgiou  VE (2022) “On the detection of patterns in electricity prices across 
European countries: an unsupervised machine learning approach.” AIMS Energy 10(6)

	44.	 Westfall JA, Patterson PL, Coulston JW (2011) Post-stratified estimation: within-strata and total 
sample size recommendations. Can J For Res 41(5):1130–1139

	45.	 Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27
	46.	 Corral GR (2020) Investigating selection criteria of constrained cluster analysis: applications in for-

estry. Statistical Methods and Applications in Forestry and Environmental Sciences. G. Chandra, R. 
Nautiyal and H. Chandra. Singapore, Springer Singapore 161–180

	47.	 Maronna RA, Yohai VJ (1995) The behavior of the Stahel-Donoho robust multivariate estimator. J 
Am Stat Assoc 90(429):330–341

	48.	 Wolter KM (2007) Generalized variance functions. Introduction to Variance Estimation. K. M. 
Wolter. New York, NY, Springer New York 272–297

	49.	 Ver Planck NR, Finley AO, Kershaw JA, Weiskittel AR, Kress MC (2018) Hierarchical Bayes-
ian models for small area estimation of forest variables using LiDAR. Remote Sens Environ 
204:287–295

	50.	 Särndal CE, Swensson B, Wretman JH (1992) Model assisted survey sampling. Springer-Verlag
	51.	 Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Meth-

odol) 58(1):267–288
	52.	 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selec-

tion. 40th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada
	53.	 Breiman L (2001) Random Forests. Mach Learn 45(1):5–32
	54.	 Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using sup-

port vector machines. Mach Learn 46(1):389–422
	55.	 King JR, Jackson DA (1999) Variable selection in large environmental data sets using principal 

components analysis. Environmetrics 10(1):67–77
	56.	 Jennifer AH, David M, Adrian ER, Chris TV (1999) Bayesian model averaging: a tutorial (with 

comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors. Stat Sci 
14(4):382–417

	57.	 O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 
41(5):673–690

	58.	 Narendra, Fukunaga (1977) “A branch and bound algorithm for feature subset selection.” IEEE Transa 
Comput C-26(9):917–922

	59.	 Ubaidillah A, Aziz SD (2021) saeBest: selecting auxiliary variables in small area estimation (SAE) 
model

	60.	 Permatasari N, Ubaidillah A (2022) msae: an R package of multivariate Fay-Herriot Models for 
small area estimation. The R Journal 13:28

	61.	 Srebotnjak T, Mokdad AH, Murray CJL (2010) A novel framework for validating and applying 
standardized small area measurement strategies. Popul Health Metrics 8(1):26

9 Page 26 of 28



Operations Research Forum   (2024) 5:9

1 3

	62.	 Brown G, Chambers R, Heady P, Heasman D (2001) Evaluation of small area estimation methods—
an application to unemployment estimates from the UK LFS. Proc Stat Can Symp

	63.	 Esteban MD, Lombardía MJ, López-Vizcaíno E, Morales D, Pérez A (2020) Small area estimation 
of proportions under area-level compositional mixed models. TEST 29(3):793–818

	64.	 Mauro F, Molina I, García-Abril A, Valbuena R, Ayuga-Téllez E (2016) Remote sensing estimates 
and measures of uncertainty for forest variables at different aggregation levels. Environmetrics 
27(4):225–238

	65.	 Almeida A, Loy A, Hofmann H (2018) ggplot2 compatible quantile-quantile plots in R. R J 
10(2):248

	66.	 Chandra H, Salvati N, Chambers R (2017) Small area prediction of counts under a non-stationary 
spatial model. Spatial Statistics 20:30–56

	67.	 Angkunsit A, Suntornchost J (2020) “Bivariate Fay-Herriot models with application to Thai socio-
economic data.” Naresuan Univ J: Sci Technol (NUJST) 29:(1)

	68.	 Angkunsit A, Suntornchost J (2022) Adjusted maximum likelihood method for multivariate Fay-
Herriot model. Journal of Statistical Planning and Inference 219:231–249

	69.	 Ver Planck NR, Finley AO, Huff ES (2017) Hierarchical Bayesian models for small area estimation 
of county-level private forest landowner population. Can J For Res 47(12):1577–1589

	70.	 Green PC, Burkhart HE, Coulston JW, Radtke PJ (2019) “A novel application of small area estima-
tion in loblolly pine forest inventory.” Forestry: Int J For Res

	71.	 Temesgen H, Mauro F, Hudak AT, Frank B, Monleon V, Fekety P, Palmer M, Bryant T (2021) 
Using Fay-Herriot models and variable radius plot data to develop a stand-level inventory and 
update a prior inventory in the Western Cascades, OR, United States. Frontiers in Forests and 
Global Change 4(157):17

	72.	 Franco C, Maitra P (2023) Combining surveys in small area estimation using area-level models. 
WIREs Comput Stat 15(6):18

	73.	 Guha S, Chandra H (2022) Measuring and mapping micro level earning inequality towards address-
ing the sustainable development goals – a multivariate small area modelling approach. Journal of 
Official Statistics 38(3):823–845

	74.	 Jiang J, Rao JS (2020) “Robust small area estimation: an overview.” 7(1):337–360
	75.	 Torkashvand E, Jozani MJ, Torabi M (2017) Clustering in small area estimation with area level lin-

ear mixed models. J R Stat Soc A Stat Soc 180(4):1253–1279
	76.	 Desiyanti A, Ginanjar I, Toharudin T (2023) “Application of an empirical best linear unbiased pre-

diction Fay-Herriot (EBLUP-FH) multivariate method with cluster information to estimate average 
household expenditure.” Mathematics 11. https://​doi.​org/​10.​3390/​math1​10101​35

	77.	 Burgard JP, Morales D, Wölwer A-L (2022) Small area estimation of socioeconomic indicators for sam-
pled and unsampled domains. AStA Advances in Statistical Analysis 106(2):287–314

	78.	 Papageorgiou V, Tsaklidis G (2021) “Modeling of premature mortality rates from chronic diseases 
in Europe, investigation of correlations, clustering and granger causality.” Commun. Math Biol 
Neurosci 67

	79.	 Papageorgiou VE, Tsaklidis  G (2023) “An improved epidemiological-unscented Kalman filter 
(hybrid SEIHCRDV-UKF) model for the prediction of COVID-19. Application on real-time data.” 
Chaos Solit Fractals 166:112914

	80.	 Papageorgiou VE, Tsaklidis G (2023) “A stochastic SIRD model with imperfect immunity for the 
evaluation of epidemics.” Appl Math Model

	81.	 Yilema SA, Shiferaw YA, Zewotir T, Muluneh EK (2022) Multivariate small area estimation of 
undernutrition for children under five using official statistics. Stat J IAOS 38:625–636

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Page 27 of 28 9

https://doi.org/10.3390/math11010135


Operations Research Forum   (2024) 5:9

1 3

Authors and Affiliations

Aristeidis Georgakis1 · Vasileios E. Papageorgiou2 · Demetrios Gatziolis3 · 
Georgios Stamatellos1

 *	 Aristeidis Georgakis 
	 arisgeorg@for.auth.gr

	 Vasileios E. Papageorgiou 
	 vpapageor@math.auth.gr

	 Demetrios Gatziolis 
	 demetrios.gatziolis@usda.gov

	 Georgios Stamatellos 
	 stamatel@for.auth.gr

1	 School of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 
Greece

2	 Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
3	 USDA Forest Service, Pacific Northwest Research Station, Portland, OR, USA

9 Page 28 of 28


	Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Study Area and Data
	2.2 Advanced Preprocessing Pipeline
	2.3 Multivariate Fay-Herriot Model

	3 Results
	4 Discussion
	5 Conclusions
	Appendix
	Acknowledgements 
	References




