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Abstract
The aim of the paper is to recover some results of Cardaliaguet–Nolen–Souganidis in
Cardaliaguet et al. (Arch Rat Mech Anal 199(2): 527–561, 2011) and Xin–Yu in Xin and Yu
(Commun Math Sci 8(4): 1067–1078, 2010) about the homogenization of the G-equation,
using different and simpler techniques. The main mathematical issue is the lack of coercivity
of the Hamiltonians. In our approach we consider a multivalued dynamics without periodic
invariants sets, a family of intrinsic distances and perform an approximation by a sequence
of coercive Hamiltonians.
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1 Introduction

True to the title, the aim of these notes is to study the homogenization of time dependent
Hamilton–Jacobi equations with Hamiltonian

H(x, p) = |p| + p · V (x) (x, p) ∈ R
N × R

N ,

where the advection field V is ZN -periodic, Lipschitz continuous and with suitably small
divergence. ThisHamiltonian appears in combustion theory, where the homogenization result
can be interestingly interpreted, see [3,9]. However, we do not treat this side of the issue, and
stay solely concerned with the theoretical aspects of the matter.

As it is well known, the relevant mathematical point is that H looses coercivity whenever
|V | ≥ 1 and consequently, as pointed out in [3,9], there could benohomogenization ifV is just
assumed to be Lipschitz continuous or even more regular, some additional requirements are
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needed, specifically the condition on the divergence. This is in contrast to the homogenization
theory for coercive Hamiltonians, see [7].

It is opportune to make clear that our outputs are not new, in [3] it has been already
established, among other things, that homogenization takes place under assumptions just
slightly different from ours, and for vector fields V also depending on time, which adds
further complications.

The interest of our contribution, if any, is that the proofs are different and, we believe, more
simple and intuitive. They rely on ametric approach to thematter. Note that metric techniques
have been already used in homogenization of Hamilton–Jacobi equations, in particular in the
stationary ergodic case, see for instance [2,5].

To begin with, we define the effective Hamiltonian H , appearing in the limit equation, as

H(P) = inf{a | H(x, Du + P) = a admits an usc bdd periodic subsolution},
without passing through ergodic approximation. From this formulation, we see that the sub-
solutions of H(x, Du + P) = H(P) + δ, for δ > 0 small, can be used as approximate
correctors to prove, via the perturbed test function method, see [4], that the weak lower
semilimit of the solutions to the ε-oscillatory equations is supersolution of the limit equation
with the effective Hamiltonian. This depends on the very definition of H , and can be done
without using the assumption on the divergence of V .

The solution of the problem therefore boils down to show the existence of lsc bounded
periodic supersolutions to the critical equation H(x, Du + P) = H(P). This should actually
allow performing the other half of the homogenization procedure.

Backtracking the issue, we see that such supersolutions do exist provided that some peri-
odic distances related to H are bounded. In other terms we discover, not surprisingly, that
some controllability condition is needed in order for homogenization to take place, compare
for instance with [1], where other noncoercive models are considered.

The boundedness of the distances is in turn equivalent, see Sects. 5–6, to the nonexistence
of periodic invariant sets for a multivalued dynamics related to H . This is the key point where
the condition on the divergence of V enters into play.

The key point in this respect is Theorem4.2,where it is proved that if such a set, say�, does
exist, then it possesses Lipschitz boundary, but then the compression of V toward the interior
of � is not compatible with its small divergence. This result is deduced through divergence
theorem and isoperimetric inequality, see Lemma 4.12, Theorem 4.9. More precisely, we
apply the isoperimetric inequality on the flat torus TN = R

N /ZN , so that our condition on
V reads

‖ div V ‖L N (TN ) ≤ 1

χ
,

where χ is the isoperimetric constant on TN , which coincides with that of Q 1
2

= (0, 1/2)N ,
see Sect. 2. This is actually the same assumption of [3] except that they use the isoperimetric
constant of Q1 = (0, 1)N . We are not aware of comparison results between these two
constants, and we do not know if this difference is just a technical detail, or some more deep
fact is involved.

The paper is organized as follows: in Sect. 2 we give notations and preliminary results. In
Sect. 3 we write down the problem with the standing assumptions. Section 4 is devoted to the
definition of a relevant multivalued dynamics and the proof of the nonexistence of periodic
invariant sets. In Sect. 5 we define some distances intrinsically related to H and study their
properties. In Sect. 5 we approximate H by a sequence Hk of coercive Hamiltonians and
prove that the effective Hamiltonians Hk converge to H . From this result we deduce the
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existence of lsc periodic bounded supersolutions to the critical equation related to H , and
complete the proof of the homogenization result. Finally, in the Appendix we present some
proofs.

2 Preliminaries

Given a subset E ofRN , we write E , int E , ∂ E , Ec to indicate its closure, interior, boundary,
complement, respectively. For x ∈ R

N , r > 0, we denote by B(x, r) the open ball centered
at x with radius r . Given a > 0, we denote by Qa the open hypercube (0, a)N . We write
T

N = R
N /ZN to indicate the flat torus. Namely the torus with the metric induced by the

Euclidean one on RN . With this choice RN and T
N are locally isometric.

We identify R
N and its dual, and use the symbol · to denote both the duality pairing and

the scalar product.
Given a convex subset C of RN , the negative polar cone C− is defined through

C− =
{

p ∈ R
N | p · q ≤ 0 for any q ∈ C

}
.

All the curves we will consider are assumed to be Lipschitz continuous.
The acronyms usc /lsc stand for upper/lower semicontinuous. For any bounded function

u : RN → R, and δ > 0 we define δ–inf and sup convolutions, respectively, as follows:

uδ(x) = inf

{
u(y) + 1

2δ
|x − y|2 | y ∈ R

N
}

uδ(x) = sup

{
u(y) − 1

2δ
|x − y|2 | y ∈ R

N
}

Given x0 ∈ R
N , we say that y0 is uδ-optimal with respect to x0 if y0 realizes the infimum in

the formula of inf convolution. The notion of uδ-optimal point is given similarly.
Given a sequence of locally bounded functions un , we define the lower/upper weak

semilimit as follows

lim inf#un(x) = inf {lim inf{un(xn) | xn → x}
lim sup#un(x) = sup {lim sup{un(xn) | xn → x}

The term super/sub solution for a given PDE must be understood in the viscosity sense.
We denote by D+u(x) (resp. D−u(x)) the viscosity superdifferential (resp. subdifferential).

Definition 2.1 We say that a subset � ⊂ R
N has Lipschitz boundary if for any x ∈ ∂� there

is a neighborhood U , an hyperplane of the form x + p⊥, for some nonvanishing vector p,
and a Lipschitz function ψ defined in (x + p⊥) ∩ U with

(i) ∂� ∩ U = {y + ψ(y) p | y ∈ (x + p⊥) ∩ U }
(ii) int� ∩ U = {y + λ p | y ∈ (x + p⊥) ∩ U , λ > ψ(y)}

The isoperimetric constant χ on the torus TN is the smallest constant such that

|	|1−1/N ≤ χ HN−1(∂	)

for any subset 	 of TN with Lipschitz boundary. Here HN−1 stands for the (N − 1)–
dimensional Hausdorff measure and | · | for the N -dimensional Lebesgue measure.
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The (relative) isoperimetric constant χa on Qa is the smallest constant such that

|	|1−1/N ≤ χa HN−1(∂	 ∩ Qa)

for all subset 	 ⊂ Qa with Lipschitz boundary.
According to [8], the isoperimetric problems inTN in Q 1

2
are equivalent, and consequently

the constants χ and χ 1
2
coincide.

A formulation of the divergence Theorem on the torus is:
Let 	 ⊂ T

N be a set with Lipschitz boundary and V : TN → R
N a Lipschitz continuous

vector field, then ∫

	

div V dx =
∫

∂	

V · n	 d HN−1,

where n	 is the outward unit normal on ∂	.

Remark 2.2 We recall that if 	 has Lipschitz boundary then the outer normal n	(x) exists
for HN−1 a.e. x ∈ ∂	 and satisfies the following property:

proj	(x + t n	(x)) = x for t > 0 suitably small,

where proj	 indicates the projection on 	.

3 The problem

We consider the Hamiltonian

H(x, p) = |p| + p · V (x) in R
N × R

N ,

where V : RN → R
N , is a vector field that we assume

(A1) Z
N–periodic and Lipschitz continuous;

(A2) satisfying ‖ div V ‖L N (TN ) ≤ 1
χ
, where χ is the isoperimetric constant in Q 1

2
and in T

N

as well, see Sect. 2.

Throughout the paper we will denote by LV , MV , the Lipschitz constant of V and the
maximum of |V (x)|, respectively. We consider, for ε > 0, the family of time–dependent
Hamilton–Jacobi equations

{
(uε)t (x/ε, t) + H(x/ε, Duε) = 0 in R

N × (0,+∞)

uε(·, 0) = u0 in R
N (HJε)

where

(A3) u0 is bounded uniformly continuous.

Our goal is to study the asymptotic behavior of the (unique) solutions uε of (HJε) , as
ε goes to 0, and to prove that they locally uniformly converges to a function u0 which is
(unique) solution of a problem of the form

{
ut (x, t) + H(Du) = 0 in R

N × (0,+∞)

u(·, 0) = u0 in R
N (HJ)

where H is a suitable limit Hamiltonian convex and positively homogeneous.
Conditions (A1), (A2), (A3) will be assumed throughout the paper, without any further

mentioning.
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4 Invariant sets

We introduce a set-valued vector field related to V . We set for any x ∈ R
N ,

F(x) = F1(x) = co {B(V (x), 1) ∪ {0}},
where co stands for closed convex hull. We also define for δ ∈ (0, 1)

Fδ(x) = co {B(V (x), δ) ∪ {0}}.
The set-valued vector fields Fδ(x) are Hausdorff-continuous with compact convex values

for any δ ∈ (0, 1]. We will say that a curve ξ : [0, T ] → R
N is an integral trajectory of F if

ξ̇ (t) ∈ F(ξ(t)) for a.e.t ∈ [0, T ].
Definition 4.1 We say that a set � ⊂ R

N is invariant for F if � is a proper subset ofRN and
for any integral curve ξ of F defined in some interval [0, t] with ξ(0) ∈ � (resp. ξ(t) ∈ �),
we have

ξ(s) ∈ � for any s ∈ [0, t].
Our first result is:

Theorem 4.2 Any invariant set for the set-valued dynamic ξ̇ ∈ F(ξ) in R
N has Lipschitz

boundary.

Remark 4.3 The same statement holds clearly true for the dynamics given by ξ̇ ∈ B(V (ξ), 1),
since the integral curves of the two problems are the same, up to change of parameter. The
choice of F fits our analysis better.

Remark 4.4 The above statement is nontrivial only if H is noncoercive, or in other terms if
|V (x)| ≥ 1 for some x . If on the contrary |V (x)| < 1 for any x then 0 ∈ int F(x) and any
curve ofRN is an integral trajectory of F , up to change of parameter, so that invariant subsets
cannot exist. Actually, we reach in our setting the conclusion that no periodic invariant set
exist, but some mathematical effort is needed.

We need some preliminary material. The next assertion is easy to check.

Lemma 4.5 Given δ2 > δ1 in (0, 1]
Fδ1(x) ⊂ Fδ2(y) for any x ∈ R

N , y ∈ B (x, rV (δ1, δ2)) ,

with rV (δ1, δ2) = d2−δ1
LV

.

Lemma 4.6 Let � be an invariant set for F, then

|V (x)| ≥ 1 for any x0 ∈ ∂�.

Proof Assume for purposes of contradiction that there is x0 ∈ ∂� with |V (x0)| < 1, then
we find r > 0 such that the same strict inequality holds true in B(x0, r). This implies that

0 ∈ int F(x) for any x ∈ B(x0, r).

Any curve lying in B(x0, r) is therefore an integral curve of F , up to change of parameter.
This is true in particular for a segment connecting a point in B(x0, r) ∩ � to another point in
B(x0, r) \ �, which is in contrast with the invariance of �. �
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Lemma 4.7 Let �, x, δ be an invariant set for F, a point in R
N and a constant in (0, 1), then

(y + int Fδ(x)) ∩ B(x, rV (δ, 1)) ⊂ int� for any y ∈ � ∩ U

(y − int Fδ(x)) ∩ B(x, rV (δ, 1)) ⊂ int�c for any y ∈ �c ∩ U .

Proof To ease notations, we set U = B(x, rV (δ, 1)). First take y ∈ � ∩ U and q ∈ Fδ(x)

with y +q ∈ U , then the curve y + t q , t ∈ [0, 1], is an integral curve of F in force of Lemma
4.5. This shows

(y + Fδ(x)) ∩ U ⊂ �

and consequently

int
(
(y + Fδ(x)) ∩ U ) = (y + int Fδ(x)) ∩ U ⊂ int� for any y ∈ � ∩ U . (1)

Now consider y ∈ � ∩ U and denote by yn a sequence in � ∩ U converging to y. If
q ∈ int Fδ(x) with y + q ∈ U , then

q + y − yn ∈ int Fδ(x) forn sufficiently large

and consequently

y + q = yn + (q + y − yn) ∈ (yn + int Fδ(x)) ∩ U .

This proves

(y + int Fδ(x)) ∩ U ⊂
⋃

n

(yn + int Fδ(x)) ∩ U ,

since yn ∈ � ∩ U for any n, all the sets in the right hand-side of the previous formula are
contained in int� by (1). The first inclusion of the claim is then proved. The latter can be
deduced by slightly adapting the same argument. �
Proof of Theorem 4.2 Let � be an invariant set. Given x ∈ ∂�, we select δ ∈ (0, 1) and set
U = B(x, rV (δ, 1)). We denote by proj the orthogonal projection on the space x + V (x)⊥
and consider the set

I := proj((x + int Fδ(x)) ∩ U ) ∩ proj((x − int Fδ(x)) ∩ U ),

which is an open convex neighborhood of x .
Claim 1. For any y ∈ I there is one and only one λ = λ(y) ∈ R such that y + λ V (x) ∈

∂� ∩ U .
Let y be in I , by the very definition of I there are λ1, λ2 with

y + λ2 V (x) ∈ (x + int Fδ(x)) ∩ U

y + λ1 V (x) ∈ (x − int Fδ(x)) ∩ U

note that by Lemma 4.6 |V (x)| ≥ 1, then V (x)⊥ is a supporting hyperplane for both x+Fδ(x)

and x − Fδ(x), and

x + int Fδ(x) ⊂ {z | (z − x) · V (x) > 0}
x − int Fδ(x) ⊂ {z | (z − x) · V (x) < 0}.

This implies that λ2 > 0 and λ1 < 0. In addition, owing to the convexity of U we have

y + λ V (x) ∈ U for any λ ∈ [λ1, λ2]. (2)
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We deduce from Lemma 4.7

y + λ2 V (x) ∈ int�

y + λ1 V (x) ∈ int�c.

We set

λ′ = inf{λ ∈ (λ1, λ2) | y + λ V (x) ∈ int�}
λ′′ = sup{λ ∈ (λ1, λ2) | y + λ V (x) ∈ int�c}.

We proceed proving by contradiction that λ′ = λ′′. In fact, if λ′ > λ′′ then

y + λ V (x) ∈ ∂� ∩ U for any λ ∈ [λ′′, λ′],
on the other side, we choose λ in [λ′′, λ′] so close to λ′′ that

(λ − λ′′) V (x) ∈ int Fδ(x),

and we deduce from (2) and Lemma 4.7

y + λ V (x) = y + λ′′ V (x) + (
λ − λ′′) V (x)

∈ ((
y + λ′′ V (x)

) + int Fδ(x)
) ∩ U ⊂ int�,

which is impossible. If instead λ′ < λ′′, then we set

λ0 = sup
{
λ ∈ [

λ′, λ′′] | y + λ V (x) ∈ int�
}
.

We find λ < λ0 close to λ0 with

y + λ V (x) ∈ int�

(λ0 − λ) V (x) ∈ int Fδ(x)

and

y + λ0 V (x) = y + λ V (x) + (λ0 − λ) V (x)

∈ ((y + λ V (x)) + int Fδ(x)) ∩ U ⊂ int�,

contrast with the definition of λ0. We have in conclusion established by contradiction that
λ′ = λ′′.

Claim 2. The function

y �→ {λ | y + λ V (x) ∈ ∂�}
from I to Ris Lipschitz–continuous.

The function, that we denote by ψ , is univocally defined by the previous claim, and is
continuous by its very definition and the fact that ∂� is closed. By squeezing a bit I , we can
in addition suppose without loosing generality that ψ is uniformly continuous so that we can
determine ε with

|y1 − y2| < ε ⇒ |ψ(y1) − ψ(y2)| < 1.

We pick such a pair y1, y2, and assume that ψ(y1) > ψ(y2), therefore

B((ψ(y1) − ψ(y2)) V (x), (ψ(y1) − ψ(y2)) δ) ⊂ int Fδ(x)

and consequently by Lemma 4.7

((y2 + ψ(y2) V (x)) + B((ψ(y1) − ψ(y2)) V (x), (ψ(y1) − ψ(y2)) δ)) ∩ U ⊂ int�.
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Since y1 + ψ(y1) V (x) ∈ ∂� ∩ U , we must therefore have

|y2 − y1| = |y1 + ψ(y1) V (x) − y2 − ψ(y2) V (x) − (ψ(y1) − ψ(y2)) V (x)|
≥ (ψ(y1) − ψ(y2))δ

This shows the claim. To conclude, it is enough to notice, see Definition 2.1, that by Lemma
4.7 the set

{y + λψ(y) | y ∈ I , λ > ψ(y)}
is contained in int�. �
Definition 4.8 We say that a subset A ⊂ R

N is periodic if

x ∈ A ⇒ x + z ∈ A for anyz ∈ Z
N .

The main consequence of the Theorem 4.2 is:

Theorem 4.9 The dynamics given by F does not have any invariant periodic subset.

Remark 4.10 Note that invariant non periodic sets for F could exist in our setting. It is enough
to consider for instance V (x) constant.

We preliminarily give two lemmata. We define for x ∈ R
N

Z∞(x) = {p | H(x, p) ≤ 0},
It is apparent that Z∞(x) is the recession cone of the sublevels {p | H(x, p) ≤ a} for a > 0.

Lemma 4.11

F(x)− = Z∞(x) for any x ∈ R
N .

Proof An element of F(x) can be written in the form

λ (V (x) + q) for 0 ≤ λ ≤ 1, |q| ≤ 1.

Let p ∈ Z∞(x), then

p · (V (x) + q) ≤ −|p| + p · q ≤ 0,

which shows that

Z∞(x) ⊂ F(x)−.

Conversely, let p ∈ F(x)−, then V (x) + p
|p| ∈ F(x), and so

0 ≥ p ·
(

V (x) + p

|p|
)

= H(x, p),

which implies that p ∈ Z∞(x). This concludes the proof. �
Lemma 4.12 Let � ⊂ R

N be an invariant set for F. Then

n�(x) · V (x) ≤ −1 for HN−1 a.e. x ∈ ∂�, (3)

where n� denotes the outer unit normal to � andHN−1 is the (N −1)–dimensional Hausdorff
measure.
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Proof Recall that � has Lipschitz boundary by Theorem 4.2. Let x be a point of ∂� where
there exists the outer normal n�(x), seeRemark 2.2.We recall that byLemma4.6 |V (x)| ≥ 1.
By Lemma 4.7, we can find for any δ ∈ (0, 1) an open ball U centered at x with

(x + int Fδ(x)) ∩ U ⊂ int�,

which implies that n�(x) is normal to x + Fδ(x) at x and consequently n�(x) ∈ Fδ(x)−.
Therefore, by Lemma 4.11

n�(x) ∈
⋂

δ∈(0,1)

Fδ(x)− = F(x)− = Z∞(x),

or, in other terms

0 ≥ H(x, n�(x)) ≥ 1 + n�(x) · V (x).

This proves (3).
�

Proof of Theorem 4.9 Assume for purposes of contradiction that there exists a periodic invari-
ant set for F . We denote by 	 its projection on T

N , by Theorem 4.2 	 possess Lipschitz
boundary, so that we are in position to apply divergence Theorem and, owing to Lemma 4.12,
we get

HN−1(∂	) ≤
∫

∂	

−n	 · V d HN−1 =
∣∣∣∣
∫

	

div V dx

∣∣∣∣ ≤ ‖ div V ‖L N (TN ) |	|1−1/N .

Exploiting assumption (A2) on div V we deduce

HN−1(∂	) <
1

χ
|	|1−1/N ,

which is contrast with the isoperimetric inequality, see Sect. 2. �

5 Intrinsic distances

We associate to the 1-sublevels of H an intrinsic distance. The first step is to define for any
x , q in R

N

Z(x) = {p | H(x, p) ≤ 1}
σ(x, q) = sup{p · q | p ∈ Z(x)}

The set–valued function Z is closed convex valued and 0 is an interior point of Z(x) for any
x . This implies that σ(x, q) is strictly positive when q �= 0.

For |V (x)| increasing, the sublevel Z(x) shrinks in the direction of V (x) and stretches in
the opposite one, assuming more or less the shape of a water drop, till |V (x)| reaches the
threshold value of 1, where it breaks apart and the unbounded recession cone Z∞(x) pops
up as a subset. Accordingly, the support function σ(x, ·) becomes infinite at some q .

The next result is straightforward, we provide a proof in the Appendix for completeness.

Proposition 5.1 The function (x, q) �→ σ(x, q) from R
n × R

N to R
+ ∪ {+∞} is lower

semicontinuous. In addition q �→ σ(x, q) is convex positively homogeneous, for any fixed x.

The next result puts in relation the present construction and F .
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Lemma 5.2 We have

σ(x, q) ≤ 1 for any x ∈ R
N , q ∈ F(x).

Proof Given

q = V (x) + q̄ with q̄ unit vector, (4)

p ∈ Z(x), we have

p · q = p · V (x) + p · q̄ ≤ p · V (x) + |p| ≤ 1,

which shows that σ(x, q) ≤ 1. Since F(x) is the convex hull of vectors of the form (4) plus
0, we get the assertion.

�
For any curve ξ : [0, T ] → R

N we define the intrinsic length functional �V by

�V (ξ) =
∫ T

0
σ(ξ, ξ̇ ) dt .

Notice that the above integral is invariant for orientation-preserving change of parameter, as
an intrinsic length should be. It is in addition positive, and can be infinite. The corresponding
path-metric S1 is given by

S1(x, y) = inf{�V (ξ) | ξ joiningx toy}, (5)

for any x , y in R
N . The (semi)distance S1 is strictly positive whenever the two arguments

are distinct, and can be infinite. Note that S1(x, x) = 0 for any x , in addition S1 enjoys the
triangle property, but it is not in general symmetric.

We provide a periodic version of S1 via the formula

S1(x, y) = inf
{

S1(x + z, y + z′) | z, z′ ∈ Z
N
}

, (6)

Due to the periodic character of H , we also have

S1(x, y) = inf
{

S1(x + z, y) | z ∈ Z
N
}

= inf
{

S1(x, y + z) | z ∈ Z
N
}

.

The following lemma will be used in Sect. 6.

Lemma 5.3 Let P be an element of RN , δ < 1. For any x ∈ R
N there are two open sets Ux ,

Wx with x ∈ Ux ∩ Wx such that

S1(x, y) + P · (x − y) < 1 + |P| rV (δ, 1) for any y ∈ Ux (7)

S1(y, x) + P · (y − x) < 1 + |P| rV (δ, 1) for anyy ∈ Wx . (8)

In addition both families {Ux }, {Wx }, for x ∈ R
N , make up an open covering of the whole

space.

Proof Given x ∈ R
N , we have by Lemma 4.5 that

Fδ(x) ⊂ F(y) for anyy ∈ B(x, rV (δ, 1)). (9)

We set

Ux = (x + int Fδ(x)) ∩ B(x, rV (δ, 1))

Wx = (x − int Fδ(x)) ∩ B(x, rV (δ, 1)),
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if y ∈ Ux then y − x ∈ int Fδ(x) and x + t (y − x) ∈ B(x, rV (δ, 1)), for t ∈ [0, 1], we
therefore derive from (9) and Lemma 5.2

σ(x + t (y − x), y − x) < 1 fort ∈ [0, 1].
This implies that the intrinsic length of the segment x + t (y − x), t ∈ [0, 1] is less than 1
showing (7). Item (8) can be proven following the same lines.

We proceed proving that for any x ∈ R
N there is y with x ∈ Uy . We select β > 0 with

β < min

{
1,

1 − δ

MV LV

}
,

and set

y = x − β V (x).

We get

|y − x | = β |V (x)| ≤ β MV <
1 − δ

LV
= rV (δ, 1)

and

|x − y − β V (y)| = β |V (x) − V (y)| < β.

The above inequalities show that x ∈ Uy . Adapting the above argument, we also find z with
x ∈ Wz . This concludes the proof. �
Remark 5.4 Slightly adapting the above construction, a distance, denoted by Sa , Sa can be
defined starting from the sublevels {p | H(x, p) ≤ a}, for any a > 0. Due to the positive
homogeneity of H in p, we have for any x , y in R

N

Sa(x, y) = a S1(x, y)

Sa(x, y) = a S1(x, y)

Furthermore, it is easy to check that the intrinsic periodic distance corresponding to the level
0 is identically vanishing, thanks to Theorem 4.9, while Sa is identically equal to −∞ for
a < 0.

6 Homogenization

We consider the family of equations

H(x, Du + P) = a a ∈ R, (10)

with P ∈ R
N fixed, and define the effective Hamiltonian H as

H(P) = inf{a | (10) admits an usc bounded periodic subsolution}. (11)

The effective Hamiltonian is the one appearing in the limit equation (HJ) of the homoge-
nization procedure.

Lemma 6.1 The effective Hamiltonian H is convex positively homogeneous and, in addition

min
x∈RN

H(x, P) ≤ H(P) ≤ max
x∈RN

H(x, P) for anyP ∈ R
N
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Proof The effective Hamiltonian H directly inherits convexity and positive homogeneity
from H . If a ≥ maxx∈RN H(x, P) then any constant function is a subsolution to (10), which
gives the rightmost inequality in the statement.

Next, let u be a bounded periodic usc subsolution to (10). We denote by x0 a maximizer
of it in RN . Then H(x0, P) ≤ a and so minx∈RN H(x, P) ≤ a. This completes the proof. �

We proceed fixing P . Following the same procedure as in Sect. 5, we see that the intrinsic
distance related to the sublevel H(x, p + P) ≤ a is

Da(x, y) = Sa(x, y) + P · (x − y), (12)

and the periodic version is

Da(x, y) = inf
z, z′∈ZN

{Sa(x + z, y + z′) + P · (x + z − y − z′)} (13)

= inf
z∈ZN

{Sa(x, y + z) + P · (x − y − z)}

Remark 6.2 Note that Da could be finite even for a < 0, despite the fact that Sa is identically
equal to −∞. This is related to the problem of the possible coercivity of H . We do not treat
this issue here, see [3,9].

The next result is a relevant consequence of Theorem 4.9.

Theorem 6.3 The distance D1 is bounded from above in R
N × R

N .

Proof We first show that D1 is bounded from above in RN ×R
N , provided it is finite. Given

δ < 1, we consider the families of open sets {Ux }, {Wx }, for x ∈ Q1, introduced in Lemma
5.3, and extract finite subfamilies {Ui }, i = 1, . . . , M1, {W j }, j = 1, . . . , M2, respectively,
corresponding to points xi , x j , covering Q1.

Due to Lemma 5.3, we have that for any x ∈ Q1 there are indices i0, j0 with

D1(xi0 , x) ≤ 1 + |P| rV (δ, 1) and D1(x, x j0) ≤ 1 + |P| rV (δ, 1). (14)

Since we are supposing that D1 is finite, we have

D1(x j , xi ) ≤ α for i = 1, . . . , M1, j = 1, . . . , M2, some α > 0.

We take any pair of points y, z in Q1 and assume that (14) holds true with z and y in place
of x , respectively. Then

D1(y, z) ≤ D1(y, x j0) + D1(x j0 , xi0) + D1(xi0 , z) ≤ 2 + 2 |P| rV (δ, 1) + α,

showing the claim.
We proceed proving that since periodic invariant sets for F do not exist in force of Theorem

4.9, then D1 is actually finite inRN ×R
N . It is sufficient to show that, for any given y0 ∈ R

N ,
the set

� = {x ∈ R
N | D1(y0, x) < +∞}

is periodic invariant for F . This in fact implies that � = R
N , from which we in turn deduce,

by the arbitrariness of y, that D1 is finite.
It is clear by its very definition that � is periodic. To show the invariance, we take x0 ∈ �

and consider an integral curve ξ of F defined in [0, T ) , for some T ∈ R
+ ∪ {+∞}, issued
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from x0. Then we have by Lemma 5.2

D1(y0, ξ(t)) ≤ D1(y0, x0) + �V

(
ξ
∣∣[0,t]

)
+ P · (x0 − ξ(t))

≤ D1(y0, x0) + t + P · (x0 − ξ(t)) for anyt ∈ [0, T ).

Therefore the entire curve ξ is contained in �, as claimed. �
We proceed defining a sequence of coercive Hamiltonians approximating H . We set for

k ∈ N

Hk(x, p) = max{H(x, p),−k} + fk(p)

where

fk(p) =
{

0 if |p| < k
|p| − k if |p| ≥ k

and define the related intrinsic distances Sk
a , S

k
a , Dk

a , D
k
a adapting formulae (5), (6), (12),

(13).
The Hamiltonians Hk are continuous, periodic in the state and convex in the momentum

variable. They in addition satisfy:

– the sequence Hk(x, p) is nonincreasing for any (x, p);
– Hk converges to H locally uniformly in R

N × R
N by Dini’s monotone convergence

theorem.

The previous properties clearly imply that

H(x, p) ≤ Hk(x, p) for any k, x, p.

The effective Hamiltonians Hk , corresponding to Hk , are defined as in (11) with obvious
adaptations. Notice that, being Hk coercive, any periodic subsolution to (10), with Hk in
place of H , is automatically Lipschitz-continuous. In addition the critical equation Hk(x, P+
Du) = Hk(P) possess solutions. We also have that the Hk are convex coercive.

The main result of the section is:

Theorem 6.4 – For any P ∈ R
N , limk Hk(P) = H(P);

– there exist bounded periodic usc subsolutions and lsc supersolutions to the equation
H(x, Du + P) = H(P).

Note that, in absence of coerciveness of H , the convergence of Hk to H is not a straight-
forward consequence of the fact that Hk → H locally uniformly.

One half of the previous theorem is actually easy and is indeed a direct consequence of
the properties of Hk . In fact, if u is a subsolution to Hk(x, Du + P) = a, for some a, then
it enjoys the same property with respect to Hj (x, Du + P) = a , whenever j < k, and with
respect to (10). This actually shows:

Lemma 6.5 The sequence Hk(P) is nonincreasing and

Hk(P) ≥ H(P) for anyk. (15)

Remark 6.6 Since the matter is somehow intricate, let us summarize the different monotonic-
ity arising in the interplay between the Hk and H .

– Hk(x, p) is nonincreasing and Hk(x, p) → H(x, p), for any (x, p);
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– Sk
a (x, y) is nondecreasing and Sk

a (x, y) ≤ Sa(x, y), for any x , y, a;
– Hk(P) is nonincreasing and the possible convergence of Hk(P) to H(P) is the subject

we are presently investigating.

We need some preliminary material for the proof of Theorem 6.4.

Lemma 6.7 Let a ≥ H1(P), then Da is bounded in R
N × R

N .

Proof We start proving that it is bounded from above. If a ≤ 0 then Da ≤ D1, if a > 0 then

Da(x, y) = a inf
z∈ZN

{S1(x, y) + P/a · (x − y)}.

It is then enough to prove that D1 is bounded from above. This property actually comes from
Theorem 6.3. To see that Da is also bounded from below, we recall that there is a periodic
solution u of

H1(x, Dv + P) = H1(P).

Then u is a subsolution to

H(x, Dv + P) = a

and, since u is Lipschitz continuous for the coerciveness of H1, we have

u(x) − u(y) ≤ Da(y, x) for any x, y

showing the claim. �

We derive:

Lemma 6.8 The family of the distances
(
D

k
Hk (P)

)
k are equibounded in R

N × R
N .

Proof We start proving the boundedness from above. Taking into account Remark 6.6, we
have

D
k
Hk (P)(x, y) ≤ D

k
H1(P)(x, y) ≤ DH1(P)(x, y).

To get the converse estimate, we first notice that

0 = D
k
H̄k (P)(x, x) = inf

z∈ZN

{
Sk

Hk (P)
(x, x + z) − P · z

}
(16)

for any x ∈ R
N . We consider a pair of points x , y in R

N . We select z̄ ∈ Z
N in such a way

that

SH1(P)(y, x + z̄) + P · (y − x − z̄) ≤ DH1(P)(y, x) + 1.
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We compute taking into account (16), Remark 6.6 and Lemma 6.7

D
k
H(P)(x, y) = inf

z∈ZN

{
Sk

Hk (P)
(x + z, y)) + P · (x + z − y)

}

≥ inf
z∈ZN

{
Sk

Hk (P)
(x + z, x + z̄) − Sk

Hk (P)
(y, x + z̄)

+ P · (z − z̄) − P · (y − x − z̄)

}

≥ inf
z∈ZN

{
Sk

Hk (P)
(x + z, x + z̄) + P · (z − z̄)

}

+ P · (x + z̄ − y) − Sk
Hk (P)

(y, x + z̄)

≥ P · (x + z̄ − y) − SHk (P)(y, x + z̄)

≥ P · (x + z̄ − y) − SH1(P)(y, x + z̄) ≥ −DH1(P)(y, x) − 1.

This concludes the proof. �
Lemma 6.9 If for a given a there is a bounded periodic usc subsolution and a bounded
periodic lsc supersolution of (10), then a = H(P).

The proof is basically the same as in coercive case, with somemore precaution.We present
it in the Appendix.

We need the following result, see for instance [6].

Proposition 6.10 For any k, any y in the Aubry set related to Hk, the function x �→
D

k
Hk (P)(y, x) is a periodic Lipschitz continuous solution of Hk(x, P + Du) = Hk(P).

Proof of Theorem 6.4 We know from Proposition 6.10, that we can select, for any k, yk in

such a way that vk :=D
k
Hk (P)(yk, ·) is solution to

Hk(x, Du + P) = Hk(P).

Since the vk are periodic, equibounded by Lemma 6.8, the functions

v := lim inf#vk and w := lim sup#vk

are bounded periodic and, taking into account the local uniform convergence of Hk to H plus
standard stability properties of viscosity solutions theory, are indeed lsc supersolution and
usc subsolution, respectively, to

H(x, Du + P) = lim
k

Hk(P).

This implies by Lemma 6.9 that H(P) = limk Hk(P). The assertion then follows.
�

Exploiting Theorem 6.4, we get the homogenization result in a quite standard way. We
state it below and provide the proof in the Appendix.

Theorem 6.11 The solutions to (HJε) locally uniformly converge to the solution of (HJ),
where H is the effective Hamiltonian defined in (11).

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.
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A some proofs

Proof of Proposition 5.1 Let us consider (x0, q0) and an approximating sequence (xn, qn).
First assume σ(x0, q0) < +∞ and pick p0 ∈ Z(x0) with σ(x0, q0) ≤ p0 · q0 + δ, for some
positive δ. Taking into account that the interior of Z(xn) is nonempty, there is a sequence
pn ∈ Z(xn) converging to p0. We find

lim inf
n

σ(xn, qn) ≥ lim
n

pn · qn = p0 · q0 ≥ σ(x0, q0) − δ,

and the claimed semicontinuity follows since δ has been arbitrarily chosen .
If σ(x0, q0) = +∞, then taking any β > 0, we find p0 ∈ Z(x0) with p0 · q0 ≥ β, then

lim inf
n

σ(xn, qn) ≥ lim
n

p0 · qn = p0 · q0 ≥ β,

which implies limn σ(xn, qn) = +∞.
The claimed positive homogeneity and subadditivity are immediate.

�
Proof of Lemma 6.9 The argument is by contradiction. Let a be such that (10) has supersolu-
tion and subsolution as specified in the statement, denoted by v, u, respectively. If a > H(P),
then we can select b < a with

H(x, Du + P) ≤ b in the viscosity sense.

We denote, for any δ > 0, by uδ the sup-convolutions of u. By basic properties of it, we
know that

H

(
y,

x − y

δ

)
≤ b

for any δ, any x ∈ R
N , y uδ-optimal to x . We proceed considering a sequence

xδ ∈ argmin
RN

{v − uδ}, (17)

note that such minimizers do exist because v is lsc, uδ usc, and both v and uδ are periodic.
We denote, for any δ, by yδ an element uδ-optimal for xδ , we have

lim
δ

|xδ − yδ|2
δ

= 0. (18)

Consequently, taking into account the inequality
∣∣∣∣H

(
xδ,

xδ − yδ

δ

)
− H

(
yδ,

xδ − yδ

δ

)∣∣∣∣ ≤ LV
|xδ − yδ|2

δ
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and that b < a, we conclude that

H

(
xδ,

xδ − yδ

δ

)
< a, (19)

for δ small enough. On the other side, keeping in mind that xδ−yδ

δ
∈ D−uδ(xδ) and that uδ

is subtangent to v at xδ , we get

H

(
xδ,

xδ − yδ

δ

)
≥ a for anyδ,

which contradicts (19).
�

Proof of Theorem 6.11 Let uε the solutions to (HJε) , they are equibounded by (A3). We set

v = lim inf#uε and u = lim sup#uε.

As already pointed out in the Introduction, it is standard to show that v is a supersolution of
(HJ).

We focus on proving that u is subsolution to (HJ). We consider (x0, t0) ∈ R
N × (0,+∞)

and a C1 strict supertangent ψ to u at (x0, t0). We denote by w a bounded periodic lsc
supersolution to the problem

H(x, Dv + D(ψ(x0, t0))) = H(D(ψ(x0, t0))).

We have that ε w(x/ε) is supersolution to

H(x/ε, Dv + D(ψ(x0, t0))) = H(D(ψ(x0, t0))). (20)

The point (x0, t0) is the unique maximizer of u − ψ in U , for a suitable choice of an open
neighborhood U of (x0, t0) in R

N × (0,+∞). We proceed considering the functions

uε(x, t) − ψ(x, t) − ε wδ(x/ε), (21)

wherewδ stands for the δ inf–convolution ofw for δ > 0.We have that the quantity ε wδ(x/ε)

converges uniformly to 0 as ε → 0, uniformly with respect to δ. Owing to the stability
properties of maximizers, we deduce that a sequence of maximizers of (21) denoted by
(xδ

ε , tδε ), belongs to U for ε small enough and
(
xδ
ε , tδε

) → (x0, t0) asε → 0, uniformly inδ. (22)

Since
(
ψt (xδ

ε , tδε ), Dψ(xδ
ε , tδε ) + pδ

ε

) ∈ D+uε

(
xδ
ε , tδε

)

for any pδ
ε ∈ ∂wδ(xδ

ε ) = D+wδ(xδ
ε ), and uε is subsolution to (HJε) , we derive

ψt (xδ
ε , tδε ) + H(xδ

ε /ε, Dψ(xδ
ε , tδε ) + pδ

ε) ≤ 0 for anypδ
ε ∈ ∂wδ(xδ

ε ). (23)

Since wδ is inf–convolution of w, and w is supersolution to the equation (20), we further
have

H(yδ/ε, Dwδ(x/ε) + Dψ(x0, t0)) ≥ H(Dψ(x0, t0))

at any x wherewδ is differentiable,with yδ denoting thewδ–optimal point for x . Consequently

H(yδ
ε /ε, qδ

ε + Dψ(x0, t0)) ≥ H(Dψ(x0, t0)) (24)
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for any ε, some qδ
ε ∈ ∂wδ(xδ

ε ), with yδ
ε denoting an uδ-optimal point for xδ

ε . In order to
combine (23) and (24), we need to estimate

|H(xδ
ε /ε, Dψ(xδ

ε , tε) + qδ
ε ) − H(yδ

ε /ε, Dψ(x0, t0) + qδ
ε )| =: I . (25)

After straightforward computations, we get

I ≤ |Dψ(x0, t0) − Dψ(xδ
ε , tδε )| (1 + |V (xδ

ε /ε)|)
+ |Dψ(x0, t0) + qδ

ε | LV
|xδ

ε − yδ
ε |

ε

≤ O(ε) + o(
√

δ)

ε
+ o(δ)

δ

1

ε
.

We freeze ε and move δ in order to obtain a δε for which

I ≤ O(ε) + ε2

ε
+ ε2

ε
= O(ε).

We use the above estimate plus (23), (24) to finally get

0 ≥ ψt
(
xδε
ε /, tδε

ε

) + H
(
xδε
ε /ε, Dψ(xδε

ε , tδε
ε ) + qδε

ε

)

≥ ψt
(
xδε
ε , tδε

ε

) + H
(
yδε
ε /ε, Dψ(x0, t0) + qδε

ε

) − O(ε)

≥ ψt
(
xδε
ε , tδε

ε

) + H(Dψ(x0, t0)) − O(ε).

Sending ε → 0, we see that u satisfies the subsolution test at (x0, t0) with respect to the
supertangent ψ , as was claimed.

Finally, taking into account that (HJ) satisfies a comparison principle, we get that the uε

locally uniformly converge to v = u. �
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