
SN Partial Differential Equations and Applications (2021) 2:30
https://doi.org/10.1007/s42985-021-00076-w

ORIG INAL PAPER

A game-theoretic approach to dynamic boundary problems
for level-set curvature flow equations and applications

Nao Hamamuki1 ·Qing Liu2

Published online: 24 March 2021
© The Author(s) 2021

Abstract
This paper is devoted to a game-theoretic approach to the level-set curvature flow equa-
tion with nonlinear dynamic boundary conditions. Under the comparison principle for the
dynamic boundary problem, we construct a family of deterministic discrete games, whose
value functions approximate the unique viscosity solution. We also apply the game approx-
imation to study the convexity preserving properties and the fattening phenomenon for this
geometric dynamic boundary problem.
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1 Introduction

1.1 Background andmotivation

We are interested in a deterministic game-theoretic interpretation to curvature flow equations
with dynamic boundary conditions. Throughout this paper, we assume that

(A1) � is a domain in R
2 with boundary of uniformly C2 class.

We will later strengthen the regularity of � to C2,1 when necessary.
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We consider

(CF)

⎧
⎨

⎩

ut − |∇u| div (∇u/|∇u|) = 0 in � × (0,∞), (1.1)

ut + H(x,∇u) = 0 on ∂� × (0,∞), (1.2)

u(·, 0) = u0 in �, (1.3)

where u0 : � → R is assumed to be bounded and Lipschitz, and H : � × R
2 → R is

a given continuous Hamiltonian describing the dynamics on the boundary. A more precise
form of H will be given in (1.5) later.

The equation (1.1) is a level set formulation of themotion of a planar curve by its curvature.
In fact, when u is smooth, letting, for any t ≥ 0,

�t = {x ∈ R
2 : u(x, t) = 0},

we see that on �t , ut/|∇u| and div(∇u/|∇u|) respectively denote the normal velocity and
curvature of the curve provided that ∇u �= 0. In general solutions of (1.1) may not belong
to C2 class and one needs to apply the viscosity solution theory in order to overcome the
singularity at∇u = 0 aswell as the lack of regularity; see [9,15,20] for a detailed introduction
on the viscosity approach. In Sect. 2.1 we briefly review the definition of viscosity solutions
and well-posedness results of (CF).

Parabolic equations with dynamic boundary conditions are studied in different contexts;
see for instance [10,12,14,16–18,43,44]. A viscosity solution approach is proposed in [4,5] to
handle dynamic boundary problems for a general class of fully nonlinear parabolic equations
without singularity. Motivated by applications in superconductivity and interface evolution
[13] studies a class of dynamic boundary problems for the Hamilton–Jacobi equations. We
also refer to [1,6] for results on asymptotic behavior for the Hamilton-Jacobi equations with
dynamic boundary conditions. In addition, uniqueness and existence of viscosity solutions
to degenerate dynamic boundary problems are recently considered in [25].

As for singular parabolic problems like (CF), the well-posedness is much less known
except for the case when� is a half space and the dynamic boundary condition is linear [22].

In this paper, we aim to construct a family of discrete deterministic two-person games
whose value functions approximate the viscosity solution of (CF). We restrict ourselves to
the two dimensional case only for simplicity of our game rules. It is actually possible to
generalize our results in higher dimensions.

Such a deterministic game-based approach is proposed by Kohn and Serfaty in [28] for the
mean curvature flow equation and in [29] for general parabolic and elliptic equations.We also
refer to stochastic Tug-of-war games studied by Peres et al. [39,40] for normalized p-Laplace
equations with 1 < p ≤ ∞; see related results on the so-called asymptotic mean value
properties in [30,36,37]. The game approximations turn out to be useful in understanding
various properties of the associated nonlinear PDEs, as shown in [3,33–35,38,41] etc.

The games mentioned above are considered either in the whole space or in a domain with
Dirichlet boundary conditions. Concerning the Neumann type boundary problems, determin-
istic game interpretations for curvature flow equations and more general parabolic equations
are studied respectively in [24] and in [11]; see also [2,8] for stochastic discrete games asso-
ciated to the infinity Laplacian. The mean value property is recently studied for the Robin
boundary problems in [31,32].

In our recent work [26], we establish a deterministic game interpretation of more general
fully nonlinear parabolic equations with dynamic boundary conditions and discuss applica-
tions to related problems on asymptotic behavior. However, the results and method in [26] do
not directly apply to singular parabolic equations such as (1.1). In the present work, we thus
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attempt to resolve the singularity in (1.1) and further develop the game approach to dynamic
boundary problems.

1.2 The PDE setting

Let us give a more precise description of our basic PDE setting, especially the boundary
condition (1.2). Assume that A is a compact metric space. Let ν(x) denote the unit outward
normal to ∂� at x ∈ ∂�. For later use, we take for every λ ≥ 0

�λ = {x ∈ � : dist (x, ∂�) > λ}. (1.4)

The Hamiltonian H in (1.2) is in the form of

H(x, p) = max
a∈A

〈p, ν(x) − f (x, a)〉 , (1.5)

where 〈·, ·〉 denotes the inner product in R
2 and f : � × A → R is a bounded Lipschitz

function satisfying several assumptions to be introduced later.
Inspired by [28], we aim to give a discrete game interpretation of this problem. Since the

game dynamics in the interior of the domain has already been clarified in [28], we place
our emphasis on how to generate the boundary condition (1.2). The games on the classical
Neumann condition are studied in [24] for the curvature flow equation and in [11] for more
general parabolic and elliptic equations.

We extend the definition of ν into the interior of domain near the boundary.More precisely,
since � is of class C2 uniformly, the signed distance function

sd(x, ∂�) = dist (x,R2 \ �) − dist (x,�) (x ∈ R
2)

is known to be of class C2 near ∂�. We thus may let ν = −∇ sd(·, ∂�) near ∂� and extend
it to a Lipschitz function in �.

We assume throughout this work that

(A2) f is bounded and continuous in � × A with

sup
(x,a)∈∂�×A

| f (x, a)| < 1, (1.6)

and there exists L f > 0 such that

| f (x, a) − f (x ′, a)| ≤ L f |x − x ′|
for all x, x ′ ∈ � and a ∈ A.

The assumption (A2) implies that there exists ρ > 0 such that

H (x, p + sν(x)) − H(x, p) ≥ ρs for all s > 0 and x ∈ ∂�. (1.7)

In fact, we may choose

ρ = 1 − sup
(x,a)∈∂�×A

| f (x, a)| > 0 (1.8)

to obtain (1.7). This amounts to saying that in (1.2) the classical Neumann part 〈∇u, ν〉
dominates the whole boundary condition uniformly for all a ∈ A. These assumptions are not
only important for our game interpretation but also for uniqueness of viscosity solutions; we
refer to [4,5] for a comparison principle for nonsingular equations that essentially requires
this domination.
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A typical example of dynamic boundary conditions in our mind is

ut + 〈∇u, ν〉 + K |∇u| = 0 on ∂� × (0,∞) (1.9)

with any 0 ≤ K < 1, for which we take in (CF) A = B1 and f (x, a) = Ka. Here Br denotes
the open disk centered at the origin with radius r > 0. In the sequel we also denote by Br (x)
the open disk centered at x with radius r .

The well-posedness for (CF) is in general a challenging problem due to the singularity at
∇u = 0. A comparison theorem is established in [22] in the special case when � is a half
space and the dynamic boundary condition (1.2) is linear; see Theorem 2.2 for the precise
statements in two space dimensions (n = 2). Although our game setting below is quite
general, except for this special case, we need to assume the comparison principle in order to
conclude the convergence of game values.

1.3 Main result

Let us below describe our two-person game for the dynamic boundary problem (CF).
We first fix a step size ε > 0. Since � is a C2 domain, �λ given as in (1.4) is also of class

C2 for λ > 0 small. We set, for any x ∈ �,

ηε(x) = min

{

1,
dist (x, ∂�)√

2ε

}

(1.10)

and take

ζε = 1 − η2ε in �. (1.11)

The game starts from a fixed state y0 = x ∈ � with duration t ≥ 0. The total of steps is
N = [t/ε2]. At the k-th step (k = 1, 2, . . . , N ),

• Player I chooses a unit vector vk ∈ R
2 and ak ∈ A;

• Player II sees the choice of Player I and then picks bk = ±1;
• Once the choices of both players are determined, the game position is moved from yk−1

to

yk = yk−1 + √
2εηε(yk−1)bkvk − ε2ζε(yk−1) (ν(yk−1) − f (yk−1, ak)) ,

where 0 ≤ ηε, ζε ≤ 1 are the functions given in (1.10) and (1.11).

Owing to the inclusion of the function ηε , we can easily verify that

x + √
2εηε(x)bv − ε2ζε(x) (ν(x) − f (x, a)) ∈ �

for all x ∈ �, a ∈ A, b = ±1, |v| = 1 and for ε > 0 sufficiently small. Indeed, by (A2), we
get

dist
(
x + √

2εηε(x)bv − ε2ζε(x) (ν(x) − f (x, a)) , ∂�
)

≥ dist
(
x + √

2εηε(x)bv, ∂�
)

+ ε2ζε(x) 〈ν(x), ν(x) − f (x, a)〉 + o(ε2)

> dist (x, ∂�) − √
2εηε(x) ≥ 0.

We thus can repeat the game rules till the final step.
The choices of both players, ak , vk and bk for k = 1, 2, · · · N , determine a sequence of

game positions y0(= x), y1, y2, · · · , yN ∈ �. Suppose that Player I needs to pay to Player
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II the amount u0(yN ) of money when the game ends. Player I certainly intends to minimize
the cost u0(yN ) while Player II is to maximize it.

We then define the value function of the game by

uε(x, t) = min
v1,a1

max
b1

min
v2,a2

max
b2

· · · min
vN ,aN

max
bN

u0(yN ). (1.12)

It is clear, by (1.12), that

uε(x, t) = min
|v|=1
a ∈ A

max
b=±1

uε
(
x+√

2εηε(x)bv − ε2ζε(x) (ν(x) − f (x, a)) , t − ε2
)
, (1.13)

which is the so-called dynamic programming principle (DPP) of our game.
Since u0 is bounded in�, by definition we easily see that uε is also bounded in�×[0,∞)

uniformly in ε. We thus can define the relaxed half limits u and u of the value function uε as
below: for every (x, t) ∈ � × [0,∞),

u(x, t) = limsup∗
ε→0

uε(x, t)

= lim
δ→0

sup{uε(y, s) : y ∈ �, s ≥ 0, |y − x | + |s − t | + ε ≤ δ},
u(x, t) = liminf∗

ε→0
uε(x, t)

= lim
δ→0

inf{uε(y, s) : y ∈ �, s ≥ 0, |y − x | + |s − t | + ε ≤ δ}.

(1.14)

Using the dynamic programming principle and a comparison principle, we show the
following result.

Theorem 1.1 (Game approximation) Assume (A1) and (A2). Assume that u0 is bounded and
Lipschitz continuous in �. For any ε > 0 small, let uε be the value function defined as in
(1.12). Let u and u be the relaxed limits of uε defined by (1.14). Then u and u are respectively
a subsolution and a supersolution of (1.1)–(1.2) with H given by (1.5) and satisfy

u(·, 0) = u0 = u(·, 0) in �. (1.15)

In addition, if the comparison principle for (CF) holds, then uε → u locally uniformly in
� × [0,∞) as ε → 0, where u is the unique viscosity solution of (CF).

Remark 1.2 A so-called inverse game is also available to approximate the solutions of (CF);
see [28] for the case of the Cauchy problem. More precisely, if we keep the game rules above
but switch the goals of both players, then we can define the value function in this case to be

uε(x, t) = max
v1,a1

min
b1

max
v2,a2

min
b2

· · · max
vN ,aN

min
bN

u0(yN ). (1.16)

As in Theorem 1.1, one can again show that the relaxed half limits of uε are sub- and
supersolutions of (1.1)–(1.2) respectively with

H(x, p) = min
a∈A

〈p, ν(x) − f (x, a)〉 . (1.17)

The convergence of uε to the unique solution u is again an immediate consequence provided
that the comparison principle holds.
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1.4 Heuristics

In what follows, we give a heuristic proof of Theorem 1.1, deriving the equations (1.1) and
(1.2) from the game setting. Let us assume that uε, u are smooth with ∇uε �= 0, ∇u �= 0 and
uε → u as ε → 0 in a sufficiently strong sense.

Under these assumptions, we start with Taylor expansion of the right hand side of (1.13):

0 = min
v,a

max
b

{√
2εηε(x)b

〈∇uε(x, t), v
〉 + ε2η2ε (x)

〈∇2uε(x, t)v, v
〉

− ε2ζε(x)
〈∇uε(x, t), (ν(x) − f (x, a))

〉
}

− ε2uε
t (x, t) + o(ε2).

It follows that

0 = min
v

{√
2εηε(x)

∣
∣
〈∇uε(x, t), v

〉 ∣
∣ + ε2η2ε (x)

〈∇2uε(x, t)v, v
〉
}

− ε2ζε(x)H(x,∇uε(x, t)) − ε2uε
t (x, t) + o(ε2).

This implies that the minimizer v satisfies

v ≈ ∇⊥uε(x, t),

where ∇⊥u denotes (−uy, ux ) for any u ∈ C1(R2). Denoting

F(p, X) = − tr

[(

I − p ⊗ p

|p|2
)

X

]

(1.18)

for (p, X) ∈ (R2 \ {0}) × S
2, where Sn stands for the set of n × n symmetric matrices, we

have

0 = −ε2η2ε (x)F
(∇uε(x, t),∇2uε(x, t)

) − ε2ζε(x)H(x,∇uε(x, t)) − ε2uε
t (x, t) + o(ε2).

(1.19)

Here we applied the fact that for all (p, X) ∈ (R2 \ {0}) × S
2,

tr

[(

I − p ⊗ p

|p|2
)

X

]

=
〈

X
p⊥

|p| ,
p⊥

|p|
〉

,

where p⊥ denotes a vector orthogonal to p with length equal to |p|.
For any fixed x ∈ �, since ηε(x) → 1 as ε → 0, dividing the equation (1.19) by ε2 and

passing to the limit, we get

ut (x, t) + F
(∇u(x, t),∇2u(x, t)

) = 0,

which is precisely (1.1).
On the other hand, if x ∈ ∂�, then ηε(x) = 0. Hence, in this case (1.19) yields the

dynamic boundary condition (1.2), i.e.,

ut (x, t) + H(x,∇u(x, t)) = 0.

We remark that although the derivation of the boundary condition is quite straightforward
in our formal argument above, the rigorous proof is more involved. As a matter of fact, since
the real proof is essentially based on stability arguments, one has to consider the situation
when u(x, t) is tested via the test functions on uε at a sequence of approximating locations
xε ∈ �, rather than xε ∈ ∂�. Note that we do not have any controls on the converging speed
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of xε → x , which means that the limit of ζε(xε), via a converging subsequence, can be any
c ∈ [0, 1] rather than simply 0.

However, it turns out that this is not a problem at all, since we will eventually consider
the dynamic boundary condition in the generalized (viscosity) sense. More precisely, when
we intend to show, for example, that u is a subsolution at (x, t) with x ∈ ∂�, if there holds

0 ≤ −ε2η2ε (x)F(∇uε(xε, tε),∇2uε(xε, tε)) − ε2ζε(xε)H(xε,∇uε(xε, tε))

−ε2uε
t (xε, tε) + o(ε2)

and (xε, tε) → (x, t) as ε → 0, then even if ζε(xε) → c with 0 ≤ c ≤ 1, by dividing both
sides by ε2 and letting ε → 0, we have, thanks to (1.11),

ut (x, t) + (1 − c) F
(∇u(x, t),∇2u(x, t)

) + cH(x,∇u(x, t)) ≤ 0,

which is equivalent to

(1 − c)
(
ut (x, t) + F

(∇u(x, t),∇2u(x, t)
)) + c (ut (x, t) + H(x,∇u(x, t))) ≤ 0.

It is clear that either

ut (x, t) + F
(∇u(x, t),∇2u(x, t)

) ≤ 0

or

ut (x, t) + H(x,∇u(x, t)) ≤ 0

holds, which verifies that u satisfies the subsolution property on the boundary in the viscosity
sense. The proof for the supersolution part is similar.

1.5 Applications

Our game approximation not only provides an existence result for (CF) but also has applica-
tions in understanding various properties of the evolution. In Sect. 4, following the method
in [34], we discuss the preservation of convexity for the curvature flow with the dynamic
boundary condition. The idea is to establish an approximate convexity estimate for the level
sets of uε(·, t) for all t > 0 and then pass to the limit as ε → 0. However we need to overcome
several difficulties due to the presence of the boundary condition.

Since� is not assumed to be convex, in general one cannot directly consider the convexity
of sub- or super-level sets of uε(·, t) in �. We therefore give a different definition of set
convexity, which we call convexity relative to �. Roughly speaking, a closed set is convex
relatively to � if the portion of its boundary in � is convex; see Definition 4.1. It turns out
that it is a proper notion for us to study the convexity preserving property with boundary
conditions.

Although it is awell-knownproperty thatmean curvature flow in thewhole space preserves
convexity [21,27], it fails to hold for general boundary value problems (cf. [34, Example 5.7]).
In order to give an affirmative convexity result for the dynamic boundary problem, we thus
impose an additional assumption on the initial value so as to ensure that the initial curve
bends in a “correct” way. A precise statement is given in Theorem 4.2.

In Sect. 5, we use the game interpretation to understand the so-called fattening phe-
nomenon for (CF). As shown in [15,19], either for the Cauchy problem or for the Neumann
problem of motion by curvature, there exist solutions whose zero level set is initially a curve
but develops nonempty interior during the evolution. Such singular behavior is rigorously
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verified using the corresponding game-theoretic interpretation [33]. In this work, we use
our game to discuss the fattening or non-fattening phenomenon for the curvature flow with
dynamic boundary conditions. We choose specific game strategies for both players to obtain
uniform estimates on upper and lower bounds of uε for all ε > 0.

2 The game interpretation

In this section we give a rigorous and detailed proof of Theorem 1.1. For the reader’s
convenience, in what follows we first give the definition of viscosity solutions of (CF) and
briefly review several known results on its well-posedness.

2.1 Viscosity solutions to dynamic boundary problems

Let F : (R2 \{0})×S
2 → R be as in (1.18). It is clear that F is continuous in (R2 \{0})×S

2

and

F∗(0, 0) = F∗(0, 0) = 0.

Here F∗ and F∗ respectively denote the upper and lower semicontinuous envelopes of F .

Definition 2.1 A locally bounded upper semicontinuous (resp., lower semicontinuous) func-
tion u on � × (0,∞) is said to be a subsolution (resp., supersolution) of (1.1)–(1.2) if
whenever there exist (x0, t0) ∈ � × (0,∞) and a function ϕ ∈ C∞(� × (0,∞)) such that
u−ϕ attains a strict maximum (resp., minimum) in�×(0,∞) at (x0, t0), then the following
inequalities hold:

• If x0 ∈ �, then we have

ϕt (x0, t0) + F∗(∇ϕ(x0, t0),∇2ϕ(x0, t0)) ≤ 0
(
resp., ϕt (x0, t0) + F∗(∇ϕ(x0, t0),∇2ϕ(x0, t0)) ≥ 0

)
.

• If x0 ∈ ∂�, then we have

ϕt (x0, t0) + min
{
F∗

(∇ϕ(x0, t0),∇2ϕ(x0, t0)
)
, H (x0,∇ϕ(x0, t0))

} ≤ 0
(
resp., ϕt (x0, t0) + max

{
F∗ (∇ϕ(x0, t0),∇2ϕ(x0, t0)

)
, H (x0,∇ϕ(x0, t0))

} ≥ 0
)
.

A continuous function on � × (0,∞) is called a solution of (1.1)–(1.2) if it is both a
subsolution and a supersolution.

Moreover, a locally bounded upper semicontinuous (resp., lower semicontinuous) func-
tion u on � × [0,∞) is said to be a subsolution (resp., supersolution) of (CF) if it is a
subsolution (supersolution) of (1.1)–(1.2) and satisfies u(·, 0) ≤ u0 (resp., u(·, 0) ≥ u0) in
�. A continuous function on�×[0,∞) is called a solution of (CF) if it is both a subsolution
and a supersolution of (CF).

It is certainly an important question whether the viscosity solutions defined above are
unique. This turns out to be a challenging open question. Let us consider the case when the
boundary condition is linear (with f ≡ 0 in (1.5)), i.e.,

H(x, p) = 〈p, ν(x)〉 for all x ∈ �, p ∈ R
n . (2.1)

A comparison result in this case is recently established in [22] when � is a half space.
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Theorem 2.2 (Comparison theorem in a half space [22]) Suppose that� is a half space, i.e.,

� = {(x1, x2, . . . , xn) ∈ R
n : xn > 0}. (2.2)

Let u and v be respectively a subsolution and a supersolution of (1.1)–(1.2) with H given
by (2.1). Assume in addition that there exists M ∈ R such that for any T > 0, u(·, t) − M
and v(·, t) − M are compactly supported in � for all 0 ≤ t ≤ T . If u(·, 0) ≤ v(·, 0) on �,
then u ≤ v in � × [0,∞).

It is however an open question whether the comparison principle holds in a more general
domain and for more general nonlinear dynamic boundary conditions.

2.2 A rigorous proof of sub- and supersolution properties

We next prove Theorem 1.1 rigorously. We first define a monotone operator Sε : C(�) →
C(�) to be

Sε[ψ](x) = min
|v| = 1
a ∈ A

max
b=±1

ψ
(
x + √

2εηε(x)bv − ε2ζε(x) (ν(x) − f (x, a))
)

,

x ∈ �,ψ ∈ C(�). (2.3)

It is clear that

• Sε[c] = c in � for any constant c ∈ R;
• Sε[ψ + c] = Sε[ψ] + c in � for any ψ ∈ C(�) and c ∈ R.
• Sε[ψ1] ≤ Sε[ψ2] in � provided that ψ1 ≤ ψ2 in �.
• For any ψ ∈ C(�) and any nondecreasing function h ∈ C(R), we have

h
(
Sε[ψ]) = Sε[h(ψ)] in �. (2.4)

The last property above can be viewed as a discrete version of the geometricity of the level-set
mean curvature operator. It is known that the evolution of a particular level set described by
(1.1) does not depend on the choice of u0 but only on the initial level set. Our game for the
dynamic boundary problem keeps the same feature.

In addition, the following property of Sε holds.

Lemma 2.3 (Consistency)Assume (A1) and (A2). Let ηε and ζε be given by (1.10) and (1.11).
Letψ ∈ C2(�) and Sε be the operator defined in (2.3). Fix x ∈ �. Then, for ε > 0 sufficiently
small,

Sε[ψ](x) − ψ(x) ≤ −ε2η2ε (x)F∗(∇ψ(x),∇2ψ(x)) − ε2ζε(x)H(x,∇ψ(x)) + o(ε2),

(2.5)

Sε[ψ](x) − ψ(x) ≥ −ε2η2ε (x)F
∗(∇ψ(x),∇2ψ(x)) − ε2ζε(x)H(x,∇ψ(x)) + o(ε2),

(2.6)

where F is given by (1.18).

In order to prove Lemma 2.3, we first present an elementary result for our later use.

Lemma 2.4 (Lemma 4.1 in [23]) Suppose that p is a unit vector in R
2 and X ∈ S

2. Then
there exists a constant C > 0 that depends only on the norm of X, such that for any unit
vector ξ ∈ R

2,

|〈Xp⊥, p⊥〉 − 〈Xξ, ξ 〉| ≤ C |〈ξ, p〉|. (2.7)

SN Partial Differential Equations and Applications
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Proof of Lemma 2.3 Fix arbitrarily x ∈ �. By Taylor expansion on (2.3), we have

Sε[ψ](x) = ψ(x) + min|v|=1

{√
2εηε(x)| 〈∇ψ(x), v〉 | + ε2η2ε (x)

〈∇2ψ(x)v, v
〉
}

− ε2ζε(x)H(x,∇ψ(x)) + o(ε2).

(2.8)

Part 1. Let us first show (2.5). If ∇ψ(x) �= 0, then by taking v perpendicular to ∇ψ(x),
we get

Sε[ψ](x)≤ψ(x)+ε2η2ε (x)

〈

∇2ψ(x)
∇⊥ψ(x)

|∇ψ(x)| ,
∇⊥ψ(x)

|∇ψ(x)|
〉

− ε2ζε(x)H(x,∇ψ(x)) + o(ε2),

which immediately yields (2.5). If ∇ψ(x) = 0, then (2.8) reduces to

Sε[ψ](x) = ψ(x) + ε2η2ε (x) min|v|=1

〈∇2ψ(x)v, v
〉 − ε2ζε(x)H(x,∇ψ(x)) + o(ε2), (2.9)

which also implies (2.5), since

min|v|=1
〈Xv, v〉 ≤ max|v|=1

〈Xv, v〉 = max|v|=1
tr[(I − v ⊗ v)X ] = −F∗(0, X).

We thus get (2.5) in either case. The modulus in the error term depends only on the continuity
of ∇2ψ near x .

Part 2. Let us now prove (2.6). Suppose that ∇ψ(x) �= 0. Applying Lemma 2.4 with
ξ = v, p = ∇ψ(x)/|∇ψ(x)| and X = ∇2ψ(x), we have

〈∇2ψ(x)v, v
〉 −

〈

∇2ψ(x)
∇⊥ψ(x)

|∇ψ(x)| ,
∇⊥ψ(x)

|∇ψ(x)|
〉

≥ −C
| 〈∇ψ(x), v〉 |

|∇ψ(x)| ,

where C > 0 depends on |∇2ψ(x)|. Adopting this estimate in (2.8), we are led to

Sε[ψ](x) − ψ(x) ≥ min|v|=1
ηε(x)

(√
2ε − Cε2ηε(x)

|∇ψ(x)|
)

|〈∇ψ(x), v〉|

+ ε2η2ε (x)

〈

∇2ψ(x)
∇⊥ψ(x)

|∇ψ(x)| ,
∇⊥ψ(x)

|∇ψ(x)|
〉

− ε2ζε(x)H(x,∇ψ(x)) + o(ε2).

This clearly implies (2.6) for ε > 0 small. When ∇ψ(x) = 0, (2.6) is again an immediate
consequence of (2.9). It is not difficult to see that the error term depends on the continuity
of ∇2ψ around x . ��

The estimate (2.6) in Lemma 2.3 requires the smallness of ε > 0 that depends on local
behavior of ∇ψ and ∇2ψ around x . Let us provide a rough but uniform estimate for more
regular test functions in the following class:

C2,1(�) := {ψ ∈ C2(�) : ∇ψ ∈ W 2,∞(�)}. (2.10)

Lemma 2.5 (Increment bound) Assume (A1) and (A2). Let ηε and ζε be given by (1.10) and
(1.11). Let ψ ∈ C2,1(�) as in (2.10) and Sε be the operator defined in (2.3). Then for any
ε > 0,

|Sε[ψ](x) − ψ(x)| ≤ Cε2, (2.11)

where C > 0 depends on the uniform bound of ∇ψ and ∇ψ2 in �.
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Proof As shown in Part 1 of proof of Lemma 2.3, the error term in (2.5) is uniform for all
x ∈ �, since ∇2ψ is Lipschitz in �. Then (2.5) immediately implies

Sε[ψ](x) ≤ ψ(x) + C1ε
2

for some C1 > 0 depending on the uniform bounds of F∗(∇ψ(x),∇2ψ(x)) and
H(x,∇ψ(x)) for all x ∈ �.

We cannot utilize (2.6) directly to show the existence of C2 > 0 such that

Sε[ψ](x) ≥ ψ(x) − C2ε
2

holds uniformly for all ε > 0 small. However, we can still apply (2.8) to get this estimate
due to the boundedness of ∇ψ and ∇2ψ together with the uniform continuity of ∇2ψ . ��

Wenext show that u and u are respectively a subsolution and a supersolution of (1.1)–(1.2).

Proposition 2.6 (Sub- and supersolution properties) Assume (A1) and (A2). Assume that u0
is bounded and Lipschitz continuous in�. Let uε be the value function defined in (1.12). Let u
and u be defined as in (1.14). Then u and u are respectively a subsolution and a supersolution
of (1.1)–(1.2).

Proof Let us first show that u is a subsolution. Suppose that there exist (x0, t0) ∈ �× (0,∞)

and φ ∈ C∞(�×(0,∞)) such that u−φ attains a strict maximum on�×(0,∞) at (x0, t0).
Then there exists r > 0 such that

u(x0, t0) − φ(x0, t0) > u(x, t) − φ(x, t)

for all (x, t) ∈ Qr with (x, t) �= (x0, t0), where

Qr = Br (x0, t0) ∩ (
� × (0,∞)

)
.

It follows that there exists (xε, tε) ∈ � × (0,∞) such that (xε, tε) → (x0, t0) as ε → 0 and

uε(xε, tε) − φ(xε, tε) ≥ sup
Qr

(uε − φ) − ε3.

By (1.13), we have

φ(xε, tε) ≤ min|v|=1
a∈A

max
b=±1

φ
(
xε + √

2εηε(xε) − ε2ζε(x)ν(xε) + ε2ζε(x) f (x, a), tε − ε2
)

+ ε3.

Adopting Lemma 2.3 with ψ = φ
(·, tε − ε2

)
and x = xε, we get

ε2φt (xε, tε − ε2) ≤ − ε2η2ε (x)F∗(∇φ(xε, tε − ε2),∇2φ(xε, tε − ε2))

− ε2ζε(xε)H(xε,∇φ(xε, tε − ε2)) + o(ε2).

Dividing the inequality above by ε2, we are led to

φt + η2ε F∗(∇φ,∇2φ) + ζεH(xε,∇φ) ≤ o(1) at (xε, tε − ε2). (2.12)

We can easily deduce the viscosity inequality

φt (x0, t0) + F∗(∇φ(x0, t0),∇2φ(x0, t0)) ≤ 0

by sending ε → 0 in (2.12) when x0 ∈ �. In the case x0 ∈ ∂�, there exists 0 ≤ c ≤ 1 such
that ζε(xε) → c by taking a subsequence if necessary and therefore

φt (x0, t0) + (1 − c)F∗(∇φ(x0, t0),∇2φ(x0, t0)) + cH(x0,∇φ(x0, t0)) ≤ 0,
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which implies that

φt (x0, t0) + min
{
F∗(∇φ(x0, t0),∇2φ(x0, t0)), H(x0,∇φ(x0, t0))

} ≤ 0.

Wecomplete the verification thatu is a subsolution. The proof foru is symmetric and therefore
omitted here. ��

Proposition 2.7 (Initial value) Assume (A1) and (A2). Assume that u0 is bounded and Lips-
chitz continuous in �. Let uε be the value function as in (1.12). Let u and u be defined as in
(1.14). Then (1.15) holds.

Proof Fix x0 ∈ �. Since u0 is Lipschitz continuous in �, there exists L > 0 such that

u0(x) ≤ u0(x0) + L|x − x0| ≤ u0(x0) + L(|x − x0|2 + δ2)
1
2 (2.13)

for any δ > 0. Set, for any x ∈ �,

ψ(x) = u0(x0) + L(|x − x0|2 + δ2)
1
2 .

Then it is clear that ψ ∈ C2,1(�).
By Lemma 2.5 together with the monotonicity of Sε, we have

uε(·, ε2) = Sε[u0] ≤ Sε[ψ] ≤ ψ + Cε2

in � for some C > 0 independent of ε > 0. Repeating the estimate, we are led to

uε(x, t) ≤ ψ(x) + Ct

for all (x, t) ∈ � × [0,∞) when ε > 0 is small, which implies

u(x0, 0) ≤ ψ(x0) = u0(x0) + Lδ.

Letting δ → 0, we end up with

u(x0, 0) ≤ u0(x0).

We omit the proof for the part with u(x, 0), since it is symmetric. ��

Proof of Theorem 1.1 If the comparison principle holds, then combining the results in Propo-
sition 2.6 and Proposition 2.7, we have u ≤ u in�×[0,∞). Since u ≥ u holds by definition,
we obtain the locally uniform convergence of uε to the unique solution of (CF) in�×[0,∞).

��

Our game approximation certainly includes the case with the boundary condition (1.9).

Example 2.8 (Game with a boundary driving force, case 1) In particular, when

A = B1, f (x, a) = Ka with 0 ≤ K < 1 for all a ∈ A and x ∈ ∂�, (2.14)

Theorem 1.1 gives an approximation for (1.1) with the boundary condition (1.9).
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2.3 Game convergence in a half plane with linear boundary condition

As stated in ourmain theorems, a comparison principle is needed to conclude the convergence
of the value functions. General uniqueness for the dynamic boundary problem (CF) is a
challenging open problem. We below consider a special case when the boundary condition
is linear, as given by (2.1), and the domain � is a half space.

When (2.1) holds and � ⊂ R
n is a half space, by applying the comparison principle in

Theorem 2.2, we can obtain the following convergence result.

Corollary 2.9 (Game convergence in a half plane) Suppose that � ⊂ R
2 is a half plane.

Assume that u0 is Lipschitz continuous in � and there exists M ∈ R such that u0 − M is
compactly supported in �. For any ε > 0 small, let uε be the value function defined as in
(1.12) with f ≡ 0. Then uε → u locally uniformly in � × [0,∞) as ε → 0, where u is the
unique viscosity solution of (CF).

The assumption that u0−M is compactly supported is used to show that u(·, t) = u(·, t) =
M outside a compact set in �, which is required in Theorem 2.2.

Proposition 2.10 (Constant game values outside compact sets) Assume that (A1) and (A2)
hold. Let u0 be Lipschitz in � and uε be the value function defined as in (1.12) with f ≡ 0.
Assume that there exists M ∈ R and a compact subset K ⊂ � such that

u0 = M in � \ K.

Then for any T > 0, there exists a compact set KT ⊂ � such that

uε(x, t) = M for all ε > 0 small, x ∈ � \ KT and 0 ≤ t ≤ T .

In particular, the relaxed limits u and u satisfy

u(x, t) = u(x, t) = M for all x ∈ � \ KT and 0 ≤ t ≤ T . (2.15)

Proof Let us fix x ∈ � such that dist (x,K) > 1, which implies that B1(x)∩� ⊂ �\K. We
consider the game in Sect. 1.3 starting from x . Suppose that at the k-th step Player I chooses
vk such that 〈vk, yk−1 − x〉 = 0. Then no matter which bk = ±1 is picked by Player II, we
have

|yk − x |2 = ∣
∣yk−1 − x − ε2ζε(yk−1)ν(yk−1)

∣
∣2 + 2ε2η2ε (yk−1) + o(ε2),

which implies that

|yk − x |2 ≤ |yk−1 − x |2 + 2ε2ζε(yk−1)|yk−1 − x | + 2ε2η2ε (yk−1) + o(ε2). (2.16)

It follows that for ε > 0 sufficiently small,

|yk − x |2 ≤ |yk−1 − x |2 + 3ε2, when |yk−1 − x | ≤ 1. (2.17)

We thus have

|yk − x |2 ≤ 3kε2

provided that |y j − x | ≤ 1 for all j = 1, 2, . . . , k−1. The estimate above amounts to saying
that the game position yk stays in B1(x) ∩ � for all k fulfilling 3kε2 ≤ 1. By definition of uε

and the choice of x , we have

uε(x, t) ≤ M, if t ≤ 1/3. (2.18)
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On the other hand, Player II can take bk = ±1 satisfying

bk
〈
vk, yk−1 − x − ε2ζε(yk−1)ν(yk−1)

〉 ≤ 0

so that (2.16) and (2.17) hold for any choices of Player I. This time we have

uε(x, t) ≥ M, if t ≤ 1/3. (2.19)

Combining (2.18) and (2.19), we deduce that uε(x, t) = M for all t ≤ 1/3 and x ∈ �

satisfying dist (x,K) > 1.
We may iterate the argument above to show that for any fixed T > 0 and any ε > 0 small,

uε(x, t) = M for all t ≤ T and x ∈ � \ KT , where KT = {x ∈ � : dist (x,K) ≤ 3T }. The
estimate (2.15) is an immediate consequence. ��

3 General dynamic boundary conditions

Let us discuss several possible choices of H other than that in (1.5).

3.1 Concave boundary Hamiltonians

As already mentioned in Remark 1.2, one may also construct an inverse game for (1.1) with
the dynamic boundary condition (1.17). Let us mention that there is another way to build
games for (1.1) and (1.17). Instead of switching minv,a maxb to maxv,a minb as in the inverse
game, we may keep the original order but move the set A to the control of Player II. More
precisely, the game rules are as follows.

At the k-th step (k = 1, 2, . . . , N = [t/ε2]),
• Player I chooses a unit vector vk ∈ R

2;
• Player II sees the choice of Player I and then picks bk = ±1 and ak ∈ A;
• The game position is moved from yk−1 to

yk = yk−1 + √
2εηε(yk−1)bkvk − ε2ζε(yk−1) (ν(yk−1) − f (yk−1, ak)) ,

where 0 ≤ ηε, ζε ≤ 1 are the functions given in (1.10) and (1.11).

The value function is defined to be

uε(x, t) = min
v1

max
a1,b1

min
v2

max
a2,b2

· · ·min
vN

max
aN ,bN

u0(yN ) (3.1)

for any (x, t) ∈ � × [0,∞), which clearly yields a new DPP as below

uε(x, t) = min|v|=1
max
a∈A
b=±1

uε
(
x + √

2εηε(x)bv − ε2ζε(x) (ν(x) − f (x, a)) , t − ε2
)

.

(3.2)

One can follow the proof in Sect. 2.2 to show the following.

Theorem 3.1 (Game approximation with concave dynamic boundary conditions) Assume
(A1) and (A2). Assume that u0 is bounded and Lipschitz continuous in �. For any ε > 0
small, let uε be the value function defined as in (3.1). Let u and u be the relaxed limits of uε

as in (1.14). Then u and u are respectively a subsolution and a supersolution of (1.1)–(1.2)
with H given by (1.17). Moreover, u and u satisfy (1.15). In addition, if the comparison
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principle for (CF) holds, then uε → u locally uniformly in � × [0,∞) as ε → 0, where u
is the unique viscosity solution of (CF) with (1.17).

Example 3.2 (Game with a boundary driving force, case 2) By applying Theorem 3.1 with
(2.14), we obtain a game interpretation for the curvature flow with a boundary condition
symmetric to (1.9), that is,

ut + 〈∇u, ν〉 − K |∇u| = 0 on ∂� × (0,∞)

with 0 ≤ K < 1.

3.2 General boundary conditions

It is possible to generalize the game interpretation for even more general nonlinear dynamic
boundary conditions such as (1.2) with

H(x, p) = max
α∈A min

β∈B
{〈
p, γαβ(x) − f (x, α, β)

〉 − g(x, α, β)
}
, (3.3)

where A,B are compact metric spaces, γαβ denotes a general outward unit oblique normal
depending on α ∈ A and β ∈ B, and f , g : � × A × B → R are assumed to be bounded
and Lipschitz with respect to x uniformly for α ∈ A and β ∈ B. Concerning γαβ , we assume
that γαβ can be extended to a C2 function in a neighborhood of ∂� and

inf
(x,α,β)∈∂�×A×B

〈
γαβ(x), ν(x)

〉 − sup
(x,α,β)∈∂�×A×B

| f (x, α, β)| > 0 (3.4)

such that (1.7) holds for some ρ > 0 in this general case as well.We remark that the condition
(3.4) can actually be relaxed to

inf
(x,α,β)∈∂�×A×B

〈
γαβ(x) − f (x, α, β), ν(x)

〉
> 0

without losing (1.7).
Based on the setting in Sect. 1.3, we can modify the rules as below. To be more precise,

we start from x ∈ � and end the game after N = [t/ε2] steps. At the k-th step,

• Player I chooses a unit vector vk ∈ R
2 and αk ∈ A;

• Player II sees the choice of Player I and then picks bk = ±1 and βk ∈ B;
• Once the choices of both players are determined, the game position is moved from yk−1

to

yk = yk−1 + √
2εηε(yk−1)bkvk − ε2ζε(yk−1)(γαkβk (yk−1) − f (yk−1, αk, βk)),

where 0 ≤ ηε, ζε ≤ 1 are the functions given in (1.10) and (1.11);
• Meanwhile, Player II receives a payment of the amount ε2ζε(yk−1)g(yk−1, αk, βk) from

Player I.

Suppose that Player I intends to minimize the total cost

J ε(x, t) = u0(yN ) +
N∑

k=1

ε2ζε(yk−1)g(yk−1, αk, βk)

while Player II attempts to maximize it. Under the game rules above, we can define the value
function

uε(x, t) = min
v1,α1

max
b1,β1

min
v2,α2,

max
b2,β2

· · · min
vN ,αN

max
bN ,βN

J ε(x, t), (3.5)
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whose limit as ε → 0, if it exists, formally solves (1.1) and (1.2) with H given by (3.3). A
formal proof can again be easily obtained via the dynamic programming principle, which
reads in this case

uε(x, t)= min
|v|=1
α ∈ A

max
b=±1
β ∈ B

{

uε

(

x+√
2εηε(x)bv − ε2ζε(x)(γαβ(x)− f (x, α, β)), t−ε2

)

+ ε2ζε(x)g(x, α, β)

}

.

(3.6)

Indeed, following the argument in Sect. 1.4, we easily see that the interior part of the Taylor
expansion on (3.6) yields the same Eq. (1.1) and the game dynamics near the boundary is
governed by the terms carrying ζε , which give rise to

0 = min
α∈Amax

β∈B ε2ζε(x)
{〈∇uε(x, t),−γαβ(x) + f (x, α, β)

〉 + g(x, α, β) − uε
t (x, t)

}
.

Then (1.2) with (3.3) follows immediately.

Theorem 3.3 (Game approximation for general dynamic boundary condition) Assume (A1).
Assume that u0 is bounded and Lipschitz continuous in �. Assume that (3.4) holds. For any
ε > 0 small, let uε be the value function associated to the game above, defined as in (3.5). Let
u and u be the relaxed limits of uε as in (1.14). Then u and u are respectively a subsolution
and a supersolution of (1.1)–(1.2) with H given by (3.3). Moreover, u and u satisfy (1.15).
In addition, if the comparison principle holds, then uε → u locally uniformly in � × [0,∞)

as ε → 0, where u is the unique viscosity solution of (CF) with (3.3).

The games in the interior, including the space dimension, can be generalized for a larger
class of curvature flows. We refer to [28] for more details.

4 Convexity preserving property

Convexity preserving property is an important property ofmotion by curvature. In this section,
we discuss this property for the associated dynamic boundary problem (CF) by using a
game-theoretic approach in [34]. Although our method can be generalized for more general
boundary conditions as described in Sect. 3.2, we focus on the case when H is given by
(1.5). We first need to relax the notion of convexity of sets, since we do not assume � to be
convex.

Definition 4.1 (Relative convexity) A closed set E ⊂ � is said to be convex relatively to �

if for any x, y ∈ E ∩ �, we have (x + y)/2 ∈ E provided that σ x + (1 − σ)y ∈ � for all
0 ≤ σ ≤ 1.

Theorem 4.2 (Convexity preserving) Suppose that (A1) and (A2) hold. Assume that u0 is
Lipschitz and convex in �. Assume that u0 satisfies

lim
δ→0

ess sup
x∈Nδ

H(x,∇u0(x)) ≤ 0, (4.1)

where, for any δ > 0,

Nδ := {x ∈ � : dist (x, ∂�) < δ}.
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Let uε be the value function defined as in (1.12) and u, u be the relaxed limits as in (1.14).
Then for any t ≥ 0 and any x, y ∈ �,

u

(
x + y

2
, t

)

≤ max{u(x, t), u(y, t)}

provided that σ x+(1−σ)y ∈ � for all 0 ≤ σ ≤ 1. In particular, if the comparison principle
for (CF) holds, then for each c ∈ R, the sub-level set

Et
c := {x ∈ � : u(x, t) ≤ c}

of the unique solution u of (CF) is convex relatively to � for all t ≥ 0.

Weprove this theorem by investigating the convexity of sub-level sets of the value function
uε constructed in (1.3). Let us first show monotonicity of t �→ uε(x, t) for any x ∈ � and
ε > 0.

Lemma 4.3 (Monotonicity in time) Suppose that (A1) and (A2) hold. Assume that u0 is
Lipschitz and convex in � and satisfies (4.1). Let uε be the value function in (1.12). Then for
all t ≥ s ≥ 0,

uε(x, s) ≤ uε(x, t) + (t − s)ω(ε) for all x ∈ � and ε > 0, (4.2)

where ω is a modulus of continuity.

Proof Let us fix ε > 0. Since u0 is convex, for any x, y ∈ � and unit vector v ∈ R
2, we

have

max
b=±1

u0
(
y + √

2εηε(x)bv
)

≥ 1

2
u0(y + √

2εηε(x)v) + 1

2
u0(y − √

2εηε(x)v) ≥ u0(y).

(4.3)

Moreover, we claim that

min
a∈A

u0
(
x − ε2ζε(x) (ν(x) − f (x, a))

) ≥ u0(x) − ε2ω0(ε) for all x ∈ �, (4.4)

where ω0 is a modulus of continuity. To prove this claim, we use the compatibility condition
(4.1); in fact, by (4.1), we obtain a modulus of continuity ω1 such that

ess sup
x∈Nδ

H(x,∇u0(x)) ≤ ω1(δ)

for any δ > 0. Using the Lipschitz continuity and convexity of u0, we have, for almost every
x ∈ �,

min
a∈A

u0
(
x − ε2ζε(x) (ν(x) − f (x, a))

) − u0(x)

≥ −ε2ζε(x)max
a∈A

〈∇u0(x), ν(x) − f (x, a)〉

= −ε2ζε(x)H(x,∇u0(x)) ≥ −ε2ω1

(√
2ε

)
.

Due to the continuity of u0(x), ζε(x), ν(x) and f (x, a) in x , we obtain the estimate (4.4)

with ω0(s) = ω1

(√
2s

)
for any s ≥ 0.

Combining (4.4) and (4.3) with y = x − ε2ζε(x) (ν(x) − f (x, a)), we are led to

uε(x, ε2) ≥ u0(x) − ε2ω0(ε) for all x ∈ �.

SN Partial Differential Equations and Applications



30 Page 18 of 27 SN Partial Differential Equations and Applications (2021) 2 :30

It follows from (1.13) that for all x ∈ � we have

uε(x, 2ε2) ≥ uε(x, ε2) − ε2ω0(ε
2) ≥ u0(x) − 2ε2ω0(ε).

Iterating this estimate, we obtain

uε(x, τ ) ≥ u0(x) − τω0(ε) for all x ∈ � and τ ≥ 0,

which, by (1.13) again, yields

uε(x, t + τ) ≥ uε(x, t) − τω0(ε).

We thus have completed the proof of (4.2). ��
Proof of Theorem 4.2 Fix t ≥ 0 arbitrarily. We take x, y ∈ � such that σ x + (1 − σ)y ∈ �

for all σ ∈ [0, 1]. Set c := max{u(x, t), u(y, t)}. We aim to show that u((x + y)/2, t) ≤ c.
By definition of u, for any δ > 0, we can take ε > 0 small such that

max{uε(x ′, t), uε(y′, t)} ≤ c + δ for all x ′ ∈ B2ε(x) and y′ ∈ B2ε(y).

We then may let ε > 0 further small to get

max{uε(x ′, s), uε(y′, s)} ≤ c + 2δ for all x ′ ∈ B2ε(x) and y′ ∈ B2ε(y) (4.5)

for all s ≤ t , thanks to Lemma 4.3. In particular, we have u0(x), u0(y) ≤ c + 2δ, which
implies that

u0(σ x + (1 − σ)y) ≤ c + 2δ (4.6)

by convexity of u0 in �.
The relation (4.5) means that for any s ≤ t , there must exist minimizing strategies of

Player I such that for the game starting from x ′ or y′, regardless of the choices of Player II,
the game outcome is bounded from above by c + 2δ.

We next consider the game started from (x + y)/2. Player I may keep choosing v =
(x − y)/|x − y|. By letting ε > 0 further small if necessary, we can let the game position
stay on the line segment between x and y before it enters B2ε(x) or B2ε(y). In fact, ζε = 0
holds during such moves when ε > 0 is small, since the line segment between x and y is
contained in �.

After arrival at B2ε(x) or B2ε(y), Player I may switch to use the minimizing strategy
implied by (4.5) to guarantee an outcome below c + 2δ.

Player II may certainly choose to let the game position wander away from the neighbor-
hoods of x and y. In this case the final position yN must still stay on the line segment between
x and y and therefore by (4.6) the game outcome is again no more than c + 2δ.

Since the above game estimate is for a fixed strategy of Player I, we get

uε

(
x + y

2
, t

)

≤ c + 2δ.

We conclude the proof by passing to the limit as ε → 0 to get

u

(
x + y

2
, t

)

≤ c + 2δ

and then sending δ → 0. ��
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Remark 4.4 Ourmethod above is similar to [34,Theorem5.4],where the convexity preserving
property is discussed for the Neumann problem. It is worth mentioning that a more precise
estimate for uε such as

uε

(
x + y

2
, t

)

≤ max{uε(x, t), uε(y, t)} + O(ε) for all ε > 0 small

can be obtained for the Cauchy problem by using the Lipschitz continuous dependence of
game position on the initial position [34, Theorem 4.2]. We however do not know whether
similar estimates hold for uε in the current case, since the game dynamics for boundary value
problems are much more complicated.

Remark 4.5 The compatibility condition (4.1) on u0 roughly means that all level sets of solu-
tions of (CF) keep moving forward near ∂�. It is not clear to us whether this condition is
necessary to guarantee the convexity of evolving level sets for our dynamic boundary prob-
lem. For the convexity preserving property for curvature flows with the Neumann boundary
condition, such a condition is necessary and cannot be removed, as indicated in [34, Exam-
ple 5.7].

5 Application to the fattening phenomenon

For the level set curvature flow equation, it is called fattening of zero level set if the level
set {x ∈ R

n : u(x, t) = 0} contains interior points for some t > 0 while {x ∈ R
n :

u0(x) = 0} does not. For more details on this issue, we refer the reader to [7,15,20,42]
for the Cauchy problem and [5,19] for the Neumann boundary problem. A game-based
interpretation of fattening for the Cauchy problem is presented in [33]. We next use the
game-theoretic argument to show the occurrence of such behavior for the dynamic boundary
problem (CF).

5.1 An example of instant fattening

We begin with an example, where the fattening phenomenon takes place instantly.We choose
a particularu0 whose zero level set is tangent to the boundary. It can be viewed as an adaptation
of the well-known example for the so-called figure eight type of initial values [15] to our
dynamic boundary problem.

Let � be the half plane, i.e.,

� = {x = (x1, x2) ∈ R
2 : x2 > 0}. (5.1)

Let us also denote e1 = (1, 0) and e2 = (0, 1) for our convenience of notation later. It is
clear that the normal vector ν = −e2.

Fix R > 0. Let z = (0, R) and E = BR(z). We take a triangular region Q contained in E
symmetric about the x2-axis, i.e.,

Q := {(x1, x2) ∈ � : L|x1| ≤ x2 ≤ Lμ} ⊂ E (5.2)

for some L > 1 and μ > 0. For M > 0 large, we take

u0(x) = max{min{sd(x, ∂E), M}, −M} for x ∈ �. (5.3)

Our truncation on the signed distance function of E by ±M is not essential to the example
but only for the boundedness of u0. Under these conditions, we can show that the zero level

SN Partial Differential Equations and Applications



30 Page 20 of 27 SN Partial Differential Equations and Applications (2021) 2 :30

set of the solution u to (CF) with the linear dynamic boundary condition (when H is given by
(2.1)) has an interior near the origin. A more precise description of our result is as follows.

Theorem 5.1 (Fattening for curvature flow with dynamic boundary condition) Suppose that
� is the half plane given by (5.1). Let z = (0, R) and E = BR(z) for R > 0. Let Q be
given by (5.2) with μ > 0 and L > 1. Let u0 be defined as in (5.3) with M > 0 large and
let u be the unique solution of (CF) with H given in (2.1). Then for any r > 0 small, there
exist τ2 > τ1 > 0 and an open subset O of Br ∩ Q such that u(x, t) = 0 for all x ∈ O and
τ1 ≤ t ≤ τ2. Here τ1 → 0 as r → 0 and τ2 > 0 does not depend on r but only on μ and L.

Proof We consider the game described in Sect. 1.3 satisfying (2.14) with K = 0. Suppose
that the game starts at x ∈ Br for some 0 < r < R. Let

Sε = R × [0,√2ε]. (5.4)

We divide the rest of our proof into several steps.
1. A strategy for Player I

Since Player I aims to minimize the final value u0(yN ) with N = [t/ε2], he may take the
following strategy at the k-th step for all k = 1, 2, . . . , N (Fig. 1):

(1) if yk−1 ∈ Sε, then Player I chooses vk = e1;
(2) if yk−1 ∈ � \ Sε, then he takes a unit vector vk tangent to the circle concentric to BR(z),

i.e., vk satisfies

〈vk, yk−1 − z〉 = 0.

Regardless of the choices of Player II, the strategy above enables us to make the next two
assertions regarding yk .

• Once yk ∈ Sε for some k = 1, 2, . . . , N , then despite the effect due to the normal vector ν
in the game, the game trajectory will never leave the region Sε and consequently yN ∈ Sε.

• If yk ∈ � \ Sε for all k = 1, 2, . . . , N , then

|yN − z|2 = |x − z|2 + 2ε2N ≥ (R − r)2 + 2ε2N .

By definition of uε, it follows that either

uε(x, t) ≤ √
2ε

or

uε(x, t) ≤ R −
√

(R − r)2 + 2t .

In particular, we have

uε(x, t) ≤ √
2ε for x ∈ Br and t ≥ 1

2
R2 − 1

2
(R − r)2. (5.5)

2. A strategy for Player II
On the other hand, we may also consider a special strategy in favor of Player II. However,

in this case we need to further restrict the game starting point x . We are interested in the first
exit time

τε(x) := min
{
kε2 : yk ∈ � \ Eε

}
,

where Eε is given by

Eε = {x ∈ � : dist (x, E) ≤ √
2ε}.
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Let L ′ = 2L and

Q′ =
{

(x1, x2) ∈ � : L ′|x1| − L ′√2ε ≤ x2 ≤ Lμ

2

}

.

We next take an open ball Br0(z0) ⊂ Br ∩ Q′ ∩ Q, where z0 is on the x2-axis and r0 <

min{r , μ/4}. The game starts at an arbitrary point x ∈ Br0(z0).
Suppose that Player II adopts the following strategy at the k-th step for all k = 1, 2, . . . , N

(Fig. 2): for any unit vector vk chosen by Player I,

(1) if yk−1 ∈ Q′, then Player II chooses bk = ±1 such that

bk 〈vk, ξ 〉 ≤ 0,

where the vector ξ ∈ R
2 is given by

ξ =
{

(L ′,−1) if 〈yk−1, e1〉 ≥ 0,

(−L ′,−1) if 〈yk−1, e1〉 ≤ 0;
(2) if yk−1 ∈ Q \ Q′, then Player II takes bk = ±1 such that

bk
〈
vk, yk−1 − z′

〉 ≤ 0,

where z′ = (0, L ′μ/4) ∈ ∂Q′. Then

yk = yk−1 + √
2εηε(yk−1)bkvk + ε2ζε(yk−1)e2

satisfies

|yk − z′|2 ≤ |yk−1 − z′|2 + 2ε2η2ε (yk−1) + 2
√
2εηε(yk−1)bk

〈
vk, yk−1 − z′

〉

+ 2ε2ζε(yk−1)
〈
e2, yk−1 − z′

〉 + ζε(yk−1)o(ε
2)

≤ |yk−1 − z′|2 + 2ε2
(5.6)

when ε > 0 is small.

Adopting this strategy in the game, we may observe the following consequences:

• The game position yk ∈ Q′ provided that yk−1 ∈ Q′ unless such a move crosses the top
side of Q′ and yk enters the set

N =
{
y ∈ � \ Q′ : |y − x | <

√
2ε for some x ∈ [−μ/4, μ/4] × {L ′μ/4}

}
.

• If yk exits Q′ for some k and never comes back into Q′ again afterwards, then the first
exit time τε(x) satisfies

τε(x) ≥ 1

2
dist 2(z′, ∂Q) − 1

2

(μ

4
+ √

2ε
)2

= L2μ2

8(1 + L2)
− μ2

32
+ O(ε) ≥ L2μ2

16(1 + L2)

for any ε > 0 small. In fact, starting the game from any point inN , Player II can use the
concentric strategy (2) above to ensure a lower bound of the exit time τε from Q as the
right hand side above, thanks to the estimate (5.6).
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Fig. 1 A strategy for Player I

Fig. 2 A strategy for Player II

It follows that

uε(x, t) ≥ −√
2ε for x ∈ Br0(z0) and t ≤ L2μ2

16(1 + L2)
. (5.7)

3. Application of the game approximation
Hence, combining the estimates (5.5) and (5.7) and using Theorems 1.1 and 2.2 (with

n = 2), we may let r > 0 sufficiently small and let ε → 0 to deduce that u(x, t) = 0 for any
x ∈ Br0(z0) ⊂ Br and any τ1 ≤ t ≤ τ2, where

τ1 = 1

2
R2 − 1

2
(R − r)2, τ2 = L2μ2

16(1 + L2)
.

We thus can take O = Br0(z0) to complete the proof. ��
Remark 5.2 As an immediate consequence of our game arguments above, we can show that
u(0, t) = 0 for all 0 ≤ t ≤ τ2 by letting r → 0. In other words, the zero level set of the
solution u starts becoming fat from the origin.

5.2 An example of nonfattening with nonlinear boundary conditions

We next consider the games for the curvature flow equation (1.1) with a nonlinear boundary
condition (1.9). By means of the game interpretation in Theorem 1.1, we can still observe,
in the discrete level, the effect of the driving force on the boundary.

We discuss the case with (1.9) by using the game introduced in Sect. 1.3 satisfying the
condition (2.14); see Example 2.8. It turns out that in the presence of such a driving force
term, the fattening phenomenon for uε may not occur instantly even if the initial level curve
is set tangential to the boundary.
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Fig. 3 A strategy for Player I controlling v and a

Let � be the half plane (5.1) again. Take two points

z± = (±2, K ) ∈ �, (5.8)

where 0 < K < 1 is the coefficient given in (1.9). Fix

R = |z±| =
√
4 + K 2 (5.9)

and let

E = BR(z+) ∩ BR(z−). (5.10)

We keep the choice of u0 as in (5.3) and take the value function defined as in (1.12) in
Sect. 1.3.

We first use the x2-axis to divide � into two regions:

S+ = {
x ∈ � : 〈x, e1〉 > 0

}
, S− = {

x ∈ � : 〈x, e1〉 < 0
}
.

Starting the game from y0 = x ∈ �, we construct the following strategy of Player I; see
also Fig. 3. At the k-th step,

(1) if yk−1 ∈ S+, Player I chooses ak = e1 and a unit vector vk such that

〈vk, yk−1 − z−〉 = 0;
(2) if yk−1 ∈ S−, Player I chooses ak = −e1 and a unit vector vk such that

〈vk, yk−1 − z+〉 = 0.

Denote

ŷk = yk−1 + √
2εηε(yk−1)bkvk

SN Partial Differential Equations and Applications



30 Page 24 of 27 SN Partial Differential Equations and Applications (2021) 2 :30

with vk determined above. It follows that under the strategy above for yk−1 ∈ S+,

|ŷk − z−|2 = |yk−1 − z−|2 + 2ε2η2ε (yk−1)

no matter which bk is chosen by Player II. This implies that

|yk − z−|2 = ∣
∣ŷk − z− − ε2ζε(yk−1)(ν(yk−1) − Ke1)

∣
∣2

= |ŷk − z−|2 + 2ε2ζε(yk−1)
〈
ŷk − z−, Ke1 − ν(yk−1)

〉 + o(ε2)

= |yk−1 − z−|2 + 2ε2η2ε (yk−1) + 2ε2ζε(yk−1)
〈
ŷk − z−, Ke1 − ν(yk−1)

〉 + o(ε2),

(5.11)

and similarly

|yk − z+|2 = |yk−1 − z+|2 + 2ε2η2ε (yk−1)

+ 2ε2ζε(yk−1)
〈
ŷk − z+,−Ke1 − ν(yk−1)

〉 + o(ε2)
(5.12)

provided that yk−1 ∈ S−.
When yk−1 ∈ S+ ∩ Sε with Sε defined in (5.4), it is not difficult to see that

〈
ŷk − z−, Ke1 − ν(yk−1)

〉

= 〈yk−1 − z−, Ke1〉 − 〈yk−1 − z−, ν(yk−1)〉 + O(ε) ≥ 2K − K + O(ε) = K + O(ε),

which yields

ζε(yk−1)
〈
ŷk − z−, Ke1 − ν(yk−1)

〉 ≥ K ζε(yk−1) + O(ε)

for any yk−1 ∈ S+. By (5.11), we are thus led to

|yk − z−|2 ≥ |yk−1 − z−|2 + 2ε2η2ε (yk−1) + 2K ε2ζε(yk−1) + o(ε2)

≥ |yk−1 − z−|2 + 2K ε2 + o(ε2)

if yk−1 ∈ S+. An analogous estimate from (5.12) gives

|yk − z+|2 ≥ |yk−1 − z+|2 + 2K ε2 + o(ε2)

if yk−1 ∈ S−.
On the other hand, since

|y − z−| ≥ |y − z+| if and only if y ∈ S+ and

|y − z+| ≥ |y − z−| if and only if y ∈ S−,

using the estimates above, we deduce that

max
{|yk − z+|2, |yk − z−|2} ≥ max

{|yk−1 − z+|2, |yk−1 − z−|2} + 2K ε2 + o(ε2).

By iteration it follows that

max
{|yN − z+|2, |yN − z−|2} ≥ R2

x + 2K Nε2 + o(ε2N )

for ε > 0 small, where

Rx := max{|x − z+|, |x − z−|}. (5.13)

Hence, we conclude that

uε(x, t) ≤ u0(yN ) ≤ R −
√

R2
x + 2K Nε2 + o(ε2N ) (5.14)
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for all ε > 0 small, x ∈ � and t ≥ 0. It follows that

u(x, t) = limsup∗
ε→0

uε(x, t) ≤ R −
√

R2
x + 2Kt for all (x, t) ∈ � × [0,∞).

(5.15)

In particular, we have

u(0, t) ≤ R −
√
R2 + 2Kt < 0 for any t > 0. (5.16)

We thus have proven the following result.

Proposition 5.3 (Non-fattening at the origin for a nonlinear boundary problem) Suppose that
� is the half plane as in (5.1). For any 0 < K < 1, take z± as in (5.8) and R > 0 as in (5.9).
Assume that E is a closed subset of � given by (5.10). Let u0 be the initial value as in (5.3)
with M > 0 large. Let uε be the value function associated to the game in Sect. 1.3 with the
condition (2.14); namely, uε is defined as in (1.12). Then uε(x, t) satisfies (5.14) with (5.13)
for all ε > 0 small and (x, t) ∈ � × [0,∞). Moreover, the estimates (5.15) and (5.16) for
u hold.

As a consequence of Proposition 5.3 and Theorem 1.1, if the comparison principle holds
for (1.1) with (1.9), then the game value uε converges to the unique solution u, whose zero
level set does not generate interior near the origin although the level set is initially tangent
to the boundary at the origin.
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