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Abstract
A general purely crystalline mean curvature flow equation with a nonuniform driving force

term is considered. The unique existence of a level set flow is established when the driving

force term is continuous and spatially Lipschitz uniformly in time. By introducing a

suitable notion of a solution a comparison principle of continuous solutions is established

for equations including the level set equations. An existence of a solution is obtained by

stability and approximation by smoother problems. A necessary equi-continuity of

approximate solutions is established. It should be noted that the value of crystalline cur-

vature may depend not only on the geometry of evolving surfaces but also on the driving

force if it is spatially inhomogeneous.

Mathematics Subject Classification 35K67 � 35D40 � 35K55 � 35B51 � 35K93

1 Introduction

In our previous works [21, 22], we constructed a unique global-in-time level set flow for

the crystalline mean curvature flow of the form

V ¼ gðm; jrÞ:

Here V is the normal velocity of an evolving hypersurface in Rn, n� 2, in the direction of a

unit normal vector field m and jr is a (purely) crystalline mean curvature of the hyper-

surface. The anisotropy r is assumed to be crystalline, that is, r : Rn ! R is a positively

one-homogeneous function such that r\1f g is a bounded convex polytope. The function
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g 2 CðSn�1 � RÞ is a given function that is non-decreasing in the second variable so that

the problem is at least formally degenerate parabolic; here, Sn�1 denotes the unit sphere in

Rn. We are using the convention that V ¼ jr is the usual mean curvature flow when r is

isotropic so that jr is the usual mean curvature.

Our goal is to extend the result in [21] to the problem

V ¼ g
�
m; jr þ f ðx; tÞ

�
; ð1:1Þ

where f ¼ f ðx; tÞ is a continuous function that is Lipschitz continuous in space variable

x uniformly in time t. Namely, we consider a crystalline mean curvature flow with a

nonuniform driving force term. We introduce a suitable notion of viscosity solutions to the

level set equation for (1.1), which looks slightly weaker than those in [21, 22]. Our main

result reads:

Theorem 1.1 Assume that g 2 CðSn�1 � RÞ is Lipschitz continuous in the second variable
uniformly in the first variable and non-decreasing in the second variable, r is a crystalline
anisotropy and f 2 CðRn � RÞ is Lipschitz continuous in space uniformly in time. Then
there is a unique global-in-time level set flow to (1.1) when the initial hypersurface is
compact.

The assumption on g prohibits superlinear growth in jr þ f . However, it is still quite

general since it allows nonlinear dependence in jr þ f .
The general strategy to prove this result is along the line of [22]. However, the problem

is substantially more difficult when f is spatially nonuniform even if f is time-independent.

We have to understand jr þ f at a given time t as one term given as the canonical

restriction of the subdifferential of the functional

GtðEÞ :¼
Z

oE

rðmÞ dSþ
Z

E

ft dx;

where ft :¼ f ð�; tÞ, to be consistent with the formal gradient flow structure, with Chambolle

et al. [8, 9] and previous work in 1D in [15, 16]; see also [6, Section 2.3]. This becomes

important in the proof of stability in Sect. 4.

To establish Theorem 1.1, we study the well-posedness of the level set formulation for

(1.1). Following the convention of [22], we take a level set function u ¼ uðx; tÞ such that its
every sublevel set is the solution of (1.1). Then u is a solution of

ut þ F
�
ru; div ðrrðruÞÞ � f

�
¼ 0; ð1:2Þ

where

Fðp; nÞ :¼ jpjg p

jpj ;�n

� �
: ð1:3Þ

Let us assume that f ¼ f ðxÞ for now to simplify the notation. To define jr þ f for

admissible faceted functions on their facets, we take

Ef ðwÞ :¼
Z

rðrwÞ þ fw dx for w 2 Lip; ð1:4Þ

where the integral is taken over some appropriate domain like Tn, and define
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Kf ½w� ¼ div zmin � f ¼ �o0Ef ðwÞ;

where zmin is a minimizer of

div z� fk kL2

over all z 2 L1, div z 2 L2 such that

z 2 orðrwÞ a.e.

Note that oEf ðwÞ ¼ oE0ðwÞ þ f . Therefore f does not change admissible functions or

admissible facets, only the value of the canonical restriction o0Ef ðwÞ. We will see below

that Kf satisfies a comparison principle, Proposition 2.1.

We define a notion of viscosity solutions for (1.2) (Definition 2.7), which is a gener-

alization of the notion introduced in the previous work [21, 22] to allow for the nonuniform

driving force term. We first establish a comparison principle (Theorem 3.1) for equations

including the level set equation of (1.1). However, our flattening argument [14, 21, 22]

requires that one of sub- and supersolutions is continuous. This requirement is unnecessary

when n ¼ 2 since the set of singular directions of the interfacial energy r is compact [16].

We next prove the existence of a solution by showing the stability for relaxed limits of

solutions of (1.2) with regularized r: both with quadratic growth (Theorem 4.1) and with

linear growth (Theorem 4.4). However, to show the full convergence through the com-

parison principle we need to show that the relaxed semilimit must be continuous. For this

purpose, we establish a uniform Lipschitz bound in space (Theorem 5.1) and a uniform

1/2-Hölder bound in time (Theorem 5.2) for an approximate solution. Although a Lipschitz

bound is well known in the elliptic case even for viscosity solutions [4], it is not trivial to

adapt it in the parabolic case, especially in our setting. We shall give a direct proof for a

spatial Lipschitz bound for viscosity solutions for level set equations without appealing to

the classical theory of quasilinear or fully nonlinear uniformly parabolic equations; see e.g.

[28–30]. See, for example, also [3, 20] for applications to viscosity solutions. We also give

1/2-Hölder bound in time by constructing suitable barriers. Using these results, we deduce

the unique existence of solutions of (1.2) (Theorem 5.3). The proof of Theorem 1.1 is

outlined at the end of Sect. 5.

1.1 Literature overview

The crystalline mean curvature flow was introduced in mathematical community by

Angenent and Gurtin [1] and independently by Taylor [33] around thirty years ago. Since

then, there is a large number of literature. The bibliography of [21, 22] includes several key

references on the crystalline mean curvature flow or flow with constant driving force term.

We here mention references related to the crystalline mean curvature flow with nonuniform

driving force term. The problem is far more difficult than the case of constant driving force

even for the problem of planar motion because the expected speed on facets may not be

constant, which may cause facet bending or splitting. A first global unique existence result

has been established in [13] for a graph-like curve based on the theory of maximal

monotone operators. Several explicit facet splitting solutions are constructed in [13]. In [5]

planar, crystalline flow with nonuniform driving force was constructed but under the

assumtion that the driving force preserves facets, in other words, facet splitting and

bending does not occur. Several conditions for the preservation of facets are given espe-

cially for the Stefan problem when the anisotropy is fixed like its Wulff shape is a cylinder
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[23–25]. An explicit facet bending solution is given in a planar motion under rectangular

anisotropy [17–19, 26, 27]; see also [31, 32]. For a graph-like curve a general global well-

posedness results are established in [15, 16] for a general equation like (1.1). For a closed

curve less is known. In [10] a local-in-time strong solution is constructed when the force

term is Lipschitz in space-time or spatially independent for the crystalline curvature flow in

the plane. It is quite recent that the level set approach is extended to higher dimensional

setting even for constant driving force [21, 22]. In [8], by extending the method in [9] for

V ¼ rðmÞjr, quite general driving force is allowed but the equation is of the form V ¼
MðmÞðjr þ f Þ with ‘‘convex’’ mobility. They proved the unique existence of the level set

flow for any initial hypersurface which may be unbounded. In our notation, they assume

that g is linear in the last variable. Although they allow general anisotropy r, not neces-
sarily purely crystalline, their method essentially depends on linearity of g in the last

variable. Their method is substantially different from ours.

This paper is organized as follows. In Sect. 2, we introduce a notion of a viscosity

solution. In Sect. 3, a comparison principle is established. In Sect. 4, we prove stability of

a solution. In Sect. 5, we prove a necessary Lipschitz bound in space and 1/2-Hölder bound

in time to show the continuity of the limit. In Sect. 6, we warn that our value jr þ f is not a
simple sum of jr and f. In the ‘‘Appendix A’’, we give a proof of a Lipschitz bound of our

resolvent problem.

2 Viscosity solutions

2.1 Facet

Let r be an anisotropy, that is, let r : Rn ! R be positively one-homogeneous function

such that r\1f g is a bounded convex set. Suppose that U � Rn is an open set and

w 2 LipðUÞ. We define the set of Cahn–Hoffman vector fields for w as

CHðw;UÞ :¼ z 2 X2ðUÞ : z 2 orðrwÞ a. e.
� �

:

Here X2ðUÞ :¼ z 2 L1ðUÞ : div z 2 L2ðUÞ
� �

; see [2]. If CHðw;UÞ is nonempty, we

define the r�-(L2) divergence of w for any f 2 L2ðUÞ as

Kf ½w� :¼ div zmin � f on w ¼ 0f g; ð2:1Þ

where zmin 2 CHðw;UÞ minimizes z7! div z� fk kL2ðUÞ. Note that since

div CHðw;UÞ :¼ div z : z 2 CHðw;UÞf g

is a closed, convex and nonempty (by assumption) subset of L2ðUÞ there exists a unique

minimizing div zmin (but zmin might not be unique).

Let us recall the comparison principle for r�-(L2) minimal divergence, proved in [21]

for f 	 0. The generalization to f 6	 0 is straightforward.

Proposition 2.1 (cf. [21, Proposition 4.12]) If w1;w2 are two Lipschitz functions on an

open set U such that their zero sets are compact subsets of U � Rn, f1; f2 2 L2ðUÞ and
Kfi ½wi�, i ¼ 1; 2; are well-defined, then

signw1 
 signw2 on U and f1 � f2 a. e. on U
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imply

Kf1 ½w1� 
Kf2 ½w2�; a. e. on w1 ¼ 0f g \ w2 ¼ 0f g:

The dependence of the minimal divergence only on signw motivates the following defi-

nition. Let F ¼ n j n : Rn ! Rf g be the set of all real-valued functions on Rn. We define

the relation on F as

n1 � n2 , sign n1 ¼ sign n2;

where sign s ¼ þ1; 0;�1, respectively, when s[ 0; s ¼ 0; s\0. The relation � defines an

equivalence relation on F . We refer to the equivalence classes ½n� :¼ w : w� nf g of F
with respect to � as (abstract) facets. We write ½n1� � ½n2� when sign n1 
 sign n2 and this

relation defines a total order on the set of all facets F=� :¼ ½n� : n 2 Ff g.
We say that a facet ½n� is a r�-(L2) Cahn–Hoffman facet if n ¼ 0f g is compact and there

are an open set U � Rn, n ¼ 0f g � U, and a Lipschitz function w 2 ½n� such that

CHðw;UÞ 6¼ ;.

Remark 2.2 The definition of r�-(L2) Cahn–Hoffman facet guarantees that there exists a

periodic Lipschitz function f on Rn and a periodic vector field z 2 L1ðRnÞ such that f ¼ w
in a neighborhood of n ¼ 0f g, z 2 orðrfÞ a. e. and div z 2 L2locðRnÞ. Indeed, we can

assume that U is bounded and hence oU is compact. We set e :¼ minoU jwj=2[ 0 and

consider h :¼ minðe;maxð�e;wÞÞ. Clearly z 2 orðrhÞ a. e. as orðpÞ � orð0Þ for any

p 2 Rn. When n� 2, either h 	 e or h 	 �e outside of a large ball and hence a periodic

extension is trivial. When n ¼ 1 we might have to modify h by an even extension with

respect to some point outside of U to guarantee that h has one sign outside of a large ball.

For details see [21]. This allows us to consider facets as objects on Tn.

For a r�-(L2) Cahn–Hoffman facet ½n� and f 2 L2ðRnÞ we define the r�-(L2) minimal

divergence of the facet ½n�, K½n� 2 L2ð n ¼ 0f gÞ, as

Kf ½n� :¼ div zmin � f on n ¼ 0f g; ð2:2Þ

where zmin 2 CHðw;UÞ minimizes z 7! div z� fk kL2ðUÞ for some U � Rn open,

n ¼ 0f g � U, and Lipschitz w 2 ½n� such that CHðw;UÞ 6¼ ;. Note that Kf ½n� is well-

defined since it does not depend on the choice of w or U by Proposition 2.1, and the

notation is consistent with (2.1) since w 2 ½w�.
If f is locally bounded, by comparison with Wulff functions like maxðr� � c; 0Þ we can

show that Kf ½n� is locally bounded on the interior of n ¼ 0f g by Proposition 2.1 and we

can define

Kf ½n�ðxÞ :¼ lim
d&0

ess infBdðxÞKf ½n�; Kf ½n�ðxÞ :¼ lim
d&0

ess supBdðxÞKf ½n�: ð2:3Þ

These values might differ since Kf ½n� is in general discontinuous.
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Lemma 2.3 For any r�-(L2) Cahn–Hoffman facet ½v� and f 2 L2,

Kfþc½v� ¼ Kf ½v� � c a.e. on v ¼ 0f g for any constant c 2 R: ð2:4Þ

Proof We have Kf ½v� ¼ div zmin � f on v ¼ 0f g where zmin minimizes z 7! div z� fk kL2ðUÞ
over z 2 CHðw;UÞ for some open U 
 v ¼ 0f g and Lipschitz w 2 ½v�. By Remark 2.2 we

can assume that w 2 LipðTnÞ, v 2 L2ðTnÞ. To simplify the notation, let us set C :¼
div z : z 2 CHðw;TnÞf g and let PEx denote the element of E closest to x for E � L2ðTnÞ
closed, convex and x 2 L2ðTnÞ. We have Kf ½v� ¼ PC�f 0 ¼ PCf � f on v ¼ 0f g.

To deduce (2.4), we only need to show that PCf ¼ PCðf þ cÞ for all c 2 R. Observe that

C � 1? where 1? � L2ðTnÞ is the orthogonal subspace to 1 2 L2ðTnÞ. Indeed, by Green’s

theorem [2]

ð1; nÞL2ðTnÞ ¼ ð1; div zÞL2ðTnÞ ¼ 0 for all n ¼ div z 2 C:

In particular, the Pythagorean theorem implies

PCðf þ cÞ ¼ PCP1?ðf þ cÞ ¼ PCP1? f ¼ PCf :

(2.4) follows. h

Let us emphasize that Lemma 2.3 holds only for constant c. It is not in general true that

Kf ¼ K0 � f .

Corollary 2.4 If f1 � f2j j 
M then

Kf1 ½v� � Kf2 ½v�
�� ��
M a.e. on v ¼ 0f g:

Proof We have f1 
 f2 þM and so by the comparison principle Proposition 2.1 and the

dependence of Kf on shifts of f by constants in Lemma 2.3, we have

Kf1 ½v� �Kf2þM ½v� ¼ Kf2 ½v� �M:

The other inequality is analogous. h

Although in this paper we do not use the next Corollary on the stability of K with respect to

f, we give it as a simple application of Corollary 2.4.

Corollary 2.5 If fk�f then

Kfk ½v� � Kf ½v�
		 		

L1ð v¼0f gÞ! 0 as k ! 1:

Proof Clear from Corollary 2.4. h
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2.2 Slicing

From this point on we shall assume that r is a crystalline anisotropy, that is, the set r\1f g
is a polytope. Based on a fixed gradient p̂ 2 Rn, we consider the orthogonal decomposition

of the space Rn ¼ Z � Z? so that Z is the linear subspace parallel to the affine hull

aff orðp̂Þ. In other words, Z is the smallest subspace such that orðp̂Þ � Z þ n for some

n 2 Rn. Let k :¼ dim orðp̂Þ :¼ dim Z. By fixing orthogonal bases of Z and Z?, we can fix

two linear isometries T : Rk ! Z and T?:Rn�k ! Z?. Then we can write every x 2 Rn

uniquely as x ¼ T x0 þ T?x
00, where x0 2 Rk and x00 2 Rn�k. For k ¼ 0 or k ¼ n, we take

x ¼ x00 or x ¼ x0, respectively. Note that x0 ¼ T �x and x00 ¼ T �
?x, where T

� and T �
? are the

adjoints of T and T?, respectively. The precise choice of T and T? for each p̂ 2 Rn is not

important as long as we use it consistently.

Using this decomposition, we introduce the positively one-homogeneous function rslp̂ :

Rk ! R as

rslp̂ ðwÞ :¼ lim
k!0þ

rðp̂þ kT wÞ � rðp̂Þ
k

; w 2 Rk: ð2:5Þ

This function represents the infinitesimal structure of r near p̂, sliced in the direction of Z.

For a ðrslp̂ Þ
�
-ðL2Þ Cahn–Hoffman facet ½v� on Rk and f 2 L2ðRkÞ, we denote Kf ½v� as

defined in (2.2) with r ¼ rslp̂ on Rk by Kp̂;f ½v�.
With p̂, k as above, we say that a function w 2 LipðRkÞ is a p̂-admissible support

function if ½w� is a ðrslp̂ Þ
�
-ðL2Þ Cahn–Hoffman facet.

2.3 Definition of viscosity solutions

We generalize the definition from [22]. We recall the definition of test functions. The

variables x0 ¼ T �x, x00 ¼ T �
?x refer to the sliced decomposition introduced in Sect. 2.2.

Definition 2.6 (cf. [22, Definition 4.7]) Let p̂ 2 Rn, ðx̂; t̂Þ 2 Rn � R, k :¼ dim orðp̂Þ. We

say that uðx; tÞ ¼ wðx0Þ þ hðx00Þ þ p̂ � xþ gðtÞ is an admissible stratified faceted test

function at ðx̂; t̂Þ with slope p̂ if h 2 C1ðRn�kÞ, rhðx̂00Þ ¼ 0, g 2 C1ðRÞ, and w 2 LipðRkÞ is
a p̂-admissible support function with x̂0 2 int w ¼ 0f g. Note that if k ¼ 0, we have

uðx; tÞ ¼ hðxÞ þ gðtÞ for some h 2 C1ðRnÞ, g 2 C1ðRÞ.

Definition 2.7 (Viscosity solution, cf. [21, Definition 5.2]) We say that an upper semi-

continuous function u is a viscosity subsolution of

ut þ Fðx; t;ru; div ðrrðruÞÞ � f Þ ¼ 0 ð2:6Þ

on Rn � ð0; TÞ, T [ 0, if for any p̂ 2 Rn, x̂ 2 Rn, t̂ 2 ð0; TÞ and any admissible stratified

faceted test function u at ðx̂; t̂Þ with slope p̂ of the form uðx; tÞ ¼ wðx0Þ þ hðx00Þ þ p̂ � xþ
gðtÞ such that the function u� uð� � hÞ has a global maximum on Rn � ð0; TÞ at ðx̂; t̂Þ for
all sufficiently small h0 2 Rk and h00 ¼ 0, then

g0ðt̂Þ þ Fðx̂; t̂; p̂;Kp̂;f̂ ½w�ðx̂
0ÞÞ 
 0; ð2:7Þ

where f̂ ðx0Þ :¼ f ðT x0 þ T ?x̂
00; t̂Þ and K is defined in (2.3).
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Viscosity supersolutions are defined analogously as lower semicontinuous functions,

replacing a global maximum with a global minimum, K with K, and reversing the

inequality in (2.7).

A continuous function that is both a viscosity subsolution and a viscosity supersolution

is called a viscosity solution.

Note that (2.7) is weaker than the condition in [21, 22] since

ess infBdðxÞKp̂;f̂ ½w� 
Kp̂;f̂ ½w�ðxÞ for any d[ 0:

This is to allow for the dependence of f on x and it will become important in the proof of

stability in Sect. 4 since the right-hand side of (4.5) is not quite zero. But this relaxed

condition (2.7) is still strong enough for the comparison principle to hold.

3 Comparison principle

We will establish the comparison principle between a viscosity subsolution u and a vis-

cosity supersolution v under the additional assumption that at least one of them is con-
tinuous. This is enough to show the existence of solutions by approximation as we can

obtain a uniform modulus of continuity for the approximating solutions; see Sect. 5. At this

time we do not know how to establish the comparison principle for semicontinuous

solutions.

In this section we allow for an explicit dependence of F on the variables x and t. If we
do not assume further regularity on at least one of the solutions, we will need to also

assume that F satisfies

jFðx; t; p; nÞ � Fðy; s; p; gÞj 
Cðjpj þ 1Þðjx� yj þ jt � sj þ jn� gjÞ ð3:1Þ

for some constant C. This covers both crystalline mean curvature flows with

Fðp; nÞ ¼ �bðpÞn

and anisotropic total variation flows

Fðp; nÞ ¼ �n;

but forbids superlinear growth of F in the last variable.

Theorem 3.1 (Comparison principle) Let r be a crystalline anisotropy, F 2 CðRn � R�
Rn � RÞ be non-increasing in the last variable, and f 2 CðRn � RÞ be Lipschitz contin-
uous in space, uniformly in time. Let u be a viscosity subsolution of (2.6) and let v be a
continuous viscosity supersolution of (2.6) on QT :¼ Rn � ð0; TÞ for some T [ 0 in the
sense of Definition 2.7. Suppose that u and v are bounded and that there exist constants
R[ 0, a
 b such that u 	 a and v 	 b on ðRn n BRð0ÞÞ � ð0; TÞ. Suppose that either

(i) v is Lipschitz continuous in space, uniformly in time; or
(ii) F satisfies (3.1) and f is Lipschitz continuous in both variables.

Then

uð�; 0Þ
 vð�; 0Þ on Rn ð3:2Þ

SN Partial Differential Equations and Applications

39 Page 8 of 26 SN Partial Differ. Equ. Appl. (2020) 1:39



implies

u
 v on QT :

We point out that only the space continuity of v is necessary for the conclusion of the

theorem. It allows us to pass in the limit in the last step of the proof of the Proposition 3.2,

and this lets us control the size of the space gradient of test functions.

Proof Suppose that supQT
ðu� vÞ[ 0. Let us fix l[ 0 such that

sup
QT

w ¼: m0 [ 0:

where

wðx; tÞ ¼ uðx; tÞ � vðx; tÞ � l
T � t

:

Let ðx̂; t̂Þ 2 QT be such that wðx̂; t̂Þ ¼ m0.

Consider

Wf;eðx; t; y; sÞ :¼ uðx; tÞ � vðy; sÞ � jx� y� fj2

2e
� jt � sj2

2e
� l
T � t

:

For e[ 0 small enough and jfj 
 ffiffiffiffiffiffiffiffi
m0e

p
this function has a maximum on QT � QT .

Proposition 3.2 Assume that u and v satisfy all the assumptions in Theorem 3.1. Let
ðxe; te; ye; seÞ be a sequence of maxima of Wfe;e for some sequence jfej 


ffiffiffiffiffiffiffiffi
m0e

p
: Then there

is a constant M, independent of e; so that we have

jxe � ye � fej 

ffiffiffiffiffiffiffi
Me

p
; jte � sej 


ffiffiffiffiffiffiffi
Me

p
; ð3:3Þ

and

jxe � ye � fej2

e
! 0 as e ! 0: ð3:4Þ

Note that if fe ¼ 0 the limit (3.4) is standard in the viscosity theory; see for example [7,

Proposition 3.7]. However, the standard proof does not seem to apply with fe 6¼ 0 and we

need a continuity of u or v to recover (3.4). The proof of Proposition 3.2 uses the idea in

[11]. We need (3.4) to show that the left-hand side of (3.8) below converges to zero as

e ! 0.

Proof By maximality

Wfe;eðxe; te; ye; seÞ�Wfe;eðx̂; t̂; x̂; t̂Þ ¼ wðx̂; t̂Þ � jfej2

2e
� m0

2
[ 0:

We deduce (3.3) as uðx; tÞ � vðy; sÞ is bounded above by some constant M on QT � QT .

Since at least one of ðxe; teÞ and ðye; seÞ must lie in BRð0Þ � ½0; TÞ, we can assume that
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ðxe; te; ye; seÞ ! ð�x; �tÞ 2 BRð0Þ � ð0; TÞ along a subsequence. Indeed, �t[ 0 by (3.2) and
�t\T since supWfe;eð�; t; �; �Þ ! �1 as t ! T�.

Therefore we have

uð�x; �t Þ � vð�x� fe; �tÞ � lðT � �tÞ�1 ¼ Wfe;eð�x; �t; �x� fe; �tÞ

Wfe;eðxe; te; ye; seÞ

¼ uðxe; teÞ � vðye; seÞ �
jxe � ye � fej2

2e
� jte � sej2

2e
� lðT � teÞ�1:

After rearranging,

jxe � ye � fej2

2e
þ jte � sej2

2e

 uðxe; teÞ � uð�x; �tÞ þ vð�x� fe; �t Þ � vðye; seÞ

þ lðT � �tÞ�1 � lðT � teÞ�1:

Taking lim supe!0þ of both sides, and using the upper semicontinuity of u and the con-

tinuity of v, we recover (3.4). Since every subsequence has a subsequence with limit 0, we

conclude that (3.4) holds for the full sequence. h

We showed in [21, Prop. 7.4 ] the following.

Lemma 3.3 There exists e0 [ 0 such that for every fixed 0\e\e0 there is a set Ne � Rn

on which or is constant, and fe 2 Rn, ke [ 0 with jfej þ 2ke\jðeÞ :¼ ffiffiffiffiffiffiffiffi
m0e

p
such that for

every f, jf� fej 
 2ke there is a maximizer (x, t, y, s) of Wfe;e on QT � QT such that

x� y� f
e

2 Ne:

Due to a bit of convex analysis explained in [21], Ne � Ne � ðaff orðpÞÞ? for every p 2 Ne

and therefore aff orðpÞ � ðNe � NeÞ?.
We set Ze :¼ aff orðpÞ for some p 2 Ne, ke :¼ dimZe, with the linear isometries T e :

Rk ! Ze and T ?;e : R
n�k ! Z?

e . Since p ? Ze because r is one-homogeneous, the con-

sequence of the flatness lemma, [21, Lemma 7.6], reduces to:

Lemma 3.4 For fe, ke and Ze as above, we have

‘eðfÞ ¼ const for f 2 fe þ Ze; jf� fej 
 2ke;

where

‘eðfÞ :¼ sup
QT�QT

Wf;e:

Choosing some point of maximum ðxe; te; ye; seÞ 2 QT � QT of Wfe;e and setting

pe :¼ ðxe � ye � feÞ=e, we can follow the construction of pe-admissible faceted test func-

tions in [21, 22]. This gives us two admissible stratified faceted test functions uu, uv for u
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and v at points ðxe; teÞ and ðye; seÞ, respectively, with pe-admissible support functions wu, wv

(see (3.5) below) that satisfy

signwuð� þ x0eÞ
 signwvð� þ y0eÞ;

and there is de [ 0 with Bdeð0Þ � wuð� þ x0eÞ ¼ 0
� �

\ wvð� þ y0eÞ ¼ 0
� �

. Here x0e :¼ T �
exe

and so on as before. Note that uu, uv and wu, wv depend on e.
Let us briefly recall how the test functions are constructed; for more details and a

justification of the construction we refer the reader to [22]. We define

ueðwÞ :¼ uðT ewþ xe; teÞ; veðwÞ :¼ vðT ewþ ye; seÞ;

and

Ue :¼ ue � 0f g; Ve :¼ ve 
 0f g:

We set re :¼ ke=5 and define the facet

vuðwÞ :¼
1; distðw;UeÞ\2re and distðw;VeÞ[ ke � re;

�1; distðw;UeÞ[ 2re;

0; otherwise:

8
><

>:

By the facet approximation result in [22, Th. 1.3] with q ¼ re and anisotropy rslpe , there

exists a ðrslpeÞ
�
-ðL2Þ Cahn–Hoffman facet ½~vu� with ½vu� � ½~vu� � ½supBre ð�Þ vu�. In other

words, the Cahn–Hoffman facet approximates the original facet within re in Hausdorff

distance. We then set

wuðwþ x0eÞ :¼ maxðMdistðw; ~vu ¼ 0f gÞsign ~vuðwÞ;mÞ;

where m\0 and M[ 0 are constants chosen so that ue 
wu. The test function uu can be

then taken as

uuðx; tÞ :¼ wuðx0Þ þ
jx00 � y00e � f00e j

2

2e
þ jt � sej2

2e
þ l
T � t

; ð3:5Þ

with an appropriate modification for ðx00; tÞ away from a neighborhood of ðx00e ; teÞ if nec-
essary to ensure that u� uu has a global maximum at ðxe; teÞ. It is easy to check that uu is

an admissible stratified faceted test function at ðxe; teÞ with slope pe. uv and wv are con-

structed similarly.

Then Proposition 2.1 followed by Corollary 2.4 yield

ess inf Kpe;fuð�þx0eÞ½wuð� þ x0eÞ�
� �


 ess sup Kpe;fuð�þx0eÞ½wvð� þ y0eÞ�
� �


 ess sup Kpe;fvð�þy0eÞ½wvð� þ y0eÞ�
� �

þ Lf jxe � yej þ xf ðjte � sejÞ;

where fuðwÞ :¼ f ðT wþ T ?x
00
e ; teÞ, fvðwÞ :¼ f ðT wþ T ?y

00
e ; seÞ and Lf is the Lipschitz

constant of f in space and xf is the modulus of continuity of f on a sufficiently large

bounded set, and ess inf and ess sup are taken over Bdð0Þ. Since d can be taken arbitrarily

small, we deduce

Kpe;fu ½wu�ðx0eÞ
Kpe;fv ½wv�ðy0eÞ þ Lf jxe � yej þ xf ðjte � sejÞ: ð3:6Þ

Then we have from the definition of viscosity subsolution and supersolution
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l

ðT � teÞ2
þ Fðxe; te; pe;Kpe;fu ½wu�ðx0eÞÞ

� Fðye; se; pe;Kpe;fv ½wv�ðy0eÞÞ
 0:

ð3:7Þ

On the other hand, using (3.6) and the monotonicity of F in the last variable, we can

estimate

Fðxe; te; pe;Kpe;fu ½wu�ðx0eÞÞ � Fðye; se; pe;Kpe;fv ½wv�ðy0eÞÞ
�F

�
xe; te; pe;Kpe;fv ½wv�ðy0eÞ þ Lf jxe � yej þ xf ðjte � sejÞ

�

� Fðye; se; pe;Kpe;fv ½wv�ðy0eÞÞ
¼: I:

If we assume (i), that is, v is Lipschitz in space, uniformly in time, with Lipschitz constant

Lv, we must have jpej 
Lv. Therefore we can find a modulus of continuity xF of F on a

sufficiently large bounded subset of Rn � R� Rn � R and we can estimate

I� � xF

�
jxe � yej þ jte � sej þ Lf jxe � yej þ xf ðjte � sejÞ

�
;

where the right-hand side converges to 0 as e ! 0.

On the other hand, if we assume (ii), that is, that F satisfies (3.1) and f is Lipschitz in

both variables, we can estimate

I� � CðLf þ 1Þðjpej þ 1Þðjxe � yej þ jte � sejÞ

� � Kðjpej þ 1Þ
ffiffi
e

p
;

ð3:8Þ

for some K independent of e, where we used (3.3). But jpej
ffiffi
e

p
! 0 as e ! 0 by (3.4) and so

the right-hand side converges to 0 as e ! 0.

Either way, since by (3.7) we have

I
 � l
T2

\0;

we arrive at a contradiction. We conclude that sup u� v
 0. This finishes the proof of the

comparison principle. h

4 Stability

In this section we assume that F does not depend on the x variable explicitly, and consider

the stability of viscosity solutions of (2.6) with respect to an approximation by solutions of

regularized problems

ut þ F
�
t;ru; div ðrrmðruÞÞ � f

�
¼ 0 ð4:1Þ

as an extension of the proof in [21]. Recall that we consider two modes of regularization of

r:

(a) rm 2 C2ðRnÞ, a�1
m 
r2rm 
 am for some am [ 0, and rm & r; or

(b) rm is an anisotropy, rm 2 C2ðRn n 0f gÞ, rm\1f g is strictly convex, and rm ! r
locally uniformly.

We have the following theorem for the approximation scheme (a).

SN Partial Differential Equations and Applications

39 Page 12 of 26 SN Partial Differ. Equ. Appl. (2020) 1:39



Theorem 4.1 Let r be a crystalline anisotropy, F 2 CðR� Rn � RÞ be non-increasing in
the last variable, and f 2 CðRn � RÞ be Lipschitz continuous in space, uniformly in time.
Let umf g be a locally bounded sequence of viscosity subsolutions of (4.1) on an open set
U � Rn � R with rm as in (a). Then lim sup�m!1um is a viscosity subsolution of (2.6) on
U. Similarly, if um are viscosity supersolutions then lim inf�m!1um is a viscosity super-
solution of (2.6).

Remark 4.2 We can also allow for f to be locally uniformly approximated by a sequence fm
with a uniform Lipschitz constant in space, and for F to be locally uniformly approximated

by continuous functions Fm, nonincreasing in the last variable. This will only figure in (4.2)

where we need to add a subscript ml to F and f. Due to the locally uniform convergence we

recover (4.3).

Remark 4.3 Note that unlike in the comparison principle, Theorem 3.1, we cannot allow F
to explicitly depend on the space variable x. Indeed, in the proof below, we only know that

the accumulation points of xaf ga[ 0 lie in the set N 3 x̂, and it is not clear that x̂ is one of

them to deduce (4.5). Note that a typical perturbation like adding jxj4 to u does not work

since this does not yield an admissible faceted test function.

For the approximating scheme (b) by anisotropies rm we need to assume that the

approximating sequence umf g are solutions with uniformly bounded continuous initial

data.

Theorem 4.4 Let r; F and f be as in Theorem 4.1. Let T[ 0 and let um be a locally
bounded sequence of viscosity solutions of (4.1) on Rn � ð0; TÞ with rm as in (b) with
initial data umð�; 0Þ ¼ u0;m; where u0;m 2 CðRnÞ are uniformly bounded. Then

lim sup�m!1um is a viscosity subsolution of (2.6) and lim inf�m!1um is a viscosity
supersolution of (2.6) on Rn � ð0; TÞ:

Proof As in [21], we approximate each um by solutions um;d of (4.1) with initial data u0;m
and rm;d smooth with quadratic growth, as in (a) in the limit d & 0. The rest follows the

proof of Theorem 4.1. We refer the reader to [21] for further details. h

4.1 Proof of Theorem 4.1

Let

u ¼ lim sup
m!1

�um:

We follow the approach in [22]. We start with the simpler setting when p̂ ¼ 0 and f ¼ f ðxÞ
to explain the structure of the proof.

Suppose that a 0-admissible test function is of the form uðx; tÞ ¼ wðxÞ þ gðtÞ where w is

0-admissible with facet containing 0 in its interior, and suppose that u� uð� � h; �Þ has a
global maximum 0 at ðx; tÞ ¼ ð0; 0Þ for all jhj 
 q for some fixed q[ 0. By Remark 2.2,

we can modify w away from the facet w ¼ 0f g by distance greater than 2q so that w is a

periodic Lipschitz function with a Cahn–Hoffman vector field. We also modify f away
from the facet so that it is periodic and Lipschitz. By rescaling, we can assume that w is Zn
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periodic so that w 2 LipðTnÞ. We have oEf ðwÞ 6¼ ; where Ef is defined as in (1.4) over Tn.

Since K0;f ½w� ¼ �o0Ef ðwÞ on w ¼ 0f g, we can approximate it by the resolvent problems

for Ef and Em;f ,

wa þ aoEf ðwaÞ 3 w; wa;m þ aoEm;f ðwa;mÞ 3 w:

Since the resolvent problem for Em;f is uniformly elliptic, standard regularity yields

wa;m 2 C2ðTnÞ. Moreover, wa and wa;m are Lipschitz continuous with Lipschitz constant

Lþ aLf , where L is the Lipschitz constant of w and Lf is the Lipschitz constant of f; see

Section A. Due to the Mosco convergence of Em;f to Ef , we deduce the convergence

wa;m ! wa in L2. Therefore the convergence is uniform due to the Lipschitz continuity.

Finally, ðwa � wÞ=a ! �o0Ef ðwÞ in L2ðTnÞ.
We define the q-neighborhood of the facet,

O :¼ x : wðyÞ ¼ 0 for some y; jy� xj 
 qf g:

Note that we did not modify w above closer than 2q from the facet w ¼ 0f g and so

wð� � wÞ was not modified on O for all jwj 
q. We define

�uðxÞ :¼ sup
jtj 
 q

½uðx; tÞ � gðtÞ�:

We have �u� wð� � wÞ
 0 on O for jwj 
q, with equality at x ¼ 0.

For d :¼ q=5, we define the set

N :¼ x 2 O : �uðxÞ� 0; wðx� wÞ
 0 for some jwj 
 df g:

Note that N is bounded since O is bounded. Since �u� wðx� zÞ has a maximum 0 for any

jzj 
q ¼ 5d, we showed in [21, Corollary 8.3] that

�uðxÞ
 0 and wðx� zÞ� 0 for all distðx;NÞ
 3d; jzj 
 d;

and distðN; oOÞ� 4d.
The key consequence is that we can modify w away from the facet while preserving its

sign and the fact that all points of maxima of �u� wð� � zÞ in 3d-neighborhood of N all lie

in N, whenever jzj 
 d. In particular, we can assume that w has arbitrarily small Lipschitz

constant L[ 0 by simply multiplying w by a small positive number. It is convenient to

introduce Ms, the s-neighborhood of N � 0f g, as

Ms :¼ ðx; tÞ : distðx;NÞ
 s; jtj 
 sf g:

By adding jtj2 to g(t), we may also assume that u� uð� � z; �Þ takes on its maximum 0 in

the set M3d at t ¼ 0, whenever jzj 
 d.
To be able to conclude (4.4) below, for every a[ 0 we choose za with jzaj 
 d satisfying

waðzaÞ ¼ minjwj 
 d waðwÞ. By the uniform convergence of wa ! w, for all a small enough

all the maxima of u� uað� þ za; �Þ in M3d lie in Md, that is,

argmaxM3d ½u� uað� þ za; �Þ� � Md. For any such small a there exists a point of maximum

ðxa; taÞ in Md and a sequence m‘ ! 1 and a sequence ðx‘; t‘Þ ! ðxa; taÞ of points of

maxima of um‘
� ua;m‘

ð� þ za; �Þ inM3d. Since wa;m are Lipschitz continuous with Lipschitz

constant Lþ aLf , we can also assume thatrwa;m‘
! pa as ‘ ! 1 for some jpaj 
Lþ aLf .

The definition of the viscosity subsolution um implies
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g0ðt‘Þ þ F


t‘;rwa;m‘

ðx‘ þ zaÞ; div
�
rrm‘

ðrwa;m‘
Þ
�
ðx‘ þ zaÞ � f ðx‘Þ

�

 0: ð4:2Þ

But div
�
rrm‘

ðrwa;m‘
Þ
�
� f ¼ �o0Em‘;f ðwa;m‘

Þ ¼ ðwa;m‘
� wÞ=a, and so by the uniform

convergence wa;m‘
! wa we recover in the limit ‘ ! 1 the inequality

g0ðtaÞ þ F ta; pa;
waðxa þ zaÞ � wðxa þ zaÞ

a
þ f ðxa þ zaÞ � f ðxaÞ

� �

 0: ð4:3Þ

Due to the choice of za and [21, Lemma 8.5], we have

wa � w
a

ðxa þ zaÞ
 min
jwj 
 d

wa � w
a

ðwÞ: ð4:4Þ

The monotonicity of F in the last variable, uniform continuity of F on compact sets and the

Lf -Lipschitz continuity of f yields

g0ðtaÞ þ F ta; pa; min
jwj 
 d

wa � w
a

ðwÞ
� �


xFðLf jzajÞ;

for a modulus of continuity xF . We now find a sequence aj ! 0 such that paj ! p for some

jpj 
L, and

lim
j!1

min
jwj 
 d

waj
� w

aj
ðwÞ ¼ lim inf

a&0
min
jwj 
 d

wa � w
a

ðwÞ:

Since taj ! 0 ¼ t̂, we recover

g0ð0Þ þ F 0; p; lim inf
a&0

min
jwj 
 d

wa � w
a

ðwÞ
� �


xFðLf dÞ:

And since ðwa � wÞ=a ! K0;f ½w� in L2ðBdð0ÞÞ, we have by the monotonicity of F in the

last variable

g0ð0Þ þ Fð0; p; ess infjwj 
 dK0;f ½w�ðwÞÞ
xFðLf dÞ:

As we explained above, L[ 0 can be taken arbitrarily small, jpj 
L and so by continuity

g0ð0Þ þ F


0; 0; ess infjwj 
 dK0;f ½w�ðwÞ

�

xFðLf dÞ: ð4:5Þ

Since we can take q[ 0 and therefore d[ 0 arbitrarily small, we deduce (2.7). We have

verified (2.7) for p̂ ¼ 0.

In the case of general p̂, and f ¼ f ðx; tÞ, we have a more complicated p̂-admissible test

function uðx; tÞ ¼ wðx0Þ þ hðx00Þ þ p̂ � xþ gðtÞ. Let k, Z, T and T ? correspond to p̂.

Suppose that u� uð� � T w; �Þ has a global max at ðx̂; t̂Þ for small w 2 Rk. By translation,

we may assume that ðx̂; t̂Þ ¼ ð0; 0Þ. By rotating the coordinate system, we may assume that

Z ¼ Rk � 0f g, Z? ¼ 0f g � Rn�k so that x ¼ ðx0; x00Þ, x0 2 Rk, x00 2 Rn�k.

We proceed as in [21]. First, recalling [21, Corollary 8.3], we note that by adding jx00j2

to hðx00Þ and jtj2 to g(t), we may assume that the maximum of u� uð� � T w; �Þ in M3d is

attained only on M0 ¼ N � 0f g � 0f g for any small w, where
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Ms :¼ ðx; tÞ : distðx0;NÞ
 s; jx00j 
 s; jtj 
 sf g:

By the above mentioned corollary and rhð0Þ ¼ 0, we may also assume that the Lipschitz

constant of w and h on M3d is smaller than any chosen fixed L[ 0. By modifying w away

from N and h away from 0, we can make them periodic, while preserving the Lipschitz

constant L. As N is bounded, scaling allows us to assume that they are 1 periodic and that

diamðNÞ\1. This way we can again consider a resolvent problem on Tn, but with the

reduced energy

�EðvÞ :¼
Z

�rðDvÞ þ �f v; v 2 BVðTnÞ \ L2ðTnÞ;

where

�rðpÞ ¼ lim
k&0

rðp̂þ kpÞ � rðp̂Þ
k

;

and

�f ðxÞ :¼ f ðT x0; 0Þ; distðx0; w ¼ 0f gÞ small;

and �f is extended periodically away from the facet in the directions in Z. Note that �r is

linear on Z?, and �f is constant in the directions in Z?. In fact, T x0 ¼ T T �x is the

orthogonal projection on Z. Dv denotes the vector-valued Radon measure that is the

derivative of a BV function v, in contrast to rv, which often denotes only the absolutely

continuous part with respect to the Lebesgue measure. One way to understand the defi-

nition of �EðvÞ is to define it for W1;1 \ L2 functions with rv and take the lower semi-

continuous envelope with respect to the L2 convergence.

As we showed in [21, Lemma 3.9], the solution �wa of the resolvent problem

�wa þ ao�Eð �waÞ 3 �w

with �wðxÞ ¼ wðx0Þ þ hðx00Þ is of the form

�waðxÞ ¼ waðx0Þ þ hðx00Þ;

where wa is the solution of the sliced resolvent problem

wa þ aoEslðwaÞ 3 w

with the sliced energy

EslðvÞ :¼
Z

rslp̂ ðDvÞ þ f̂ v; v 2 BVðTkÞ \ L2ðTkÞ;

with f̂ ðwÞ :¼ �f ðT wÞ. We recall that

wa � w
a

! Kp̂;f̂ as a ! 0 in L2ð w ¼ 0f gÞ:

Let �wa;m be the solution of the resolvent problem
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�wa;m þ ao�Emð �wa;mÞ 3 �w;

where

�EmðvÞ :¼
Z

rmðrvþ p̂Þ þ �f v; v 2 H1ðTnÞ:

We recall that �Em Mosco-converges to the energy
R
rðDvþ p̂Þ þ �f v, which is equal to �E for

functions with sufficiently small Lipschitz constant since r and �r differ by a constant on a

small neighborhood of p̂ depending only on p̂ since r is crystalline. Thus we have
�wa;m � �wa as long as L; a[ 0 are taken sufficiently small. For more details, see [21].

For each a[ 0, we select za 2 Rk with

waðzaÞ ¼ min
jwj 
 d

waðwÞ:

For a fixed a[ 0, there exist a sequence of points of maximum ðxa;m; ta;mÞ of umðx; tÞ �
�wa;mðxþ T zaÞ � p̂ � x� gðtÞ on M3d and a point of maximum ðxa; taÞ of uðx; tÞ � waðx0 þ
zaÞ � hðx00Þ � p̂ � x� gðtÞ on M3d such that ðxa;m; ta;mÞ ! ðxa; taÞ as m ! 1 along a

subsequence.

By the viscosity subsolution condition for (4.1) we have

g0ðta;mÞ þ F


ta;m;r �wa;mðxaÞ þ p̂;

divrrmðr �wa;m þ p̂Þðxa;m þ T zaÞ � f ðxa;m; ta;mÞ
�

 0:

By the Lipschitz bound for wa;m, there is pa such that r �wa;mðxa;mÞ ! pa along a subse-

quence m ! 1. We also have jpaj 
Lþ aLf . Since

divrrmðr �wa;m þ p̂Þ ¼ ð �wa;m � �wÞ=aþ �f , continuity and uniform convergence yield along

the subsequence m ! 1 that

g0ðtaÞ þ Fðta; pa þ p̂;

ðwaðx0a þ zaÞ � wðx0a þ zaÞÞ=aþ �f ðxa þ T zaÞ � f ðxa; taÞÞ
 0:

Now we estimate

�f ðxa þ T zaÞ � f ðxa; taÞ ¼ f ðT ðx0a þ zaÞ; 0Þ � f ðT x0a þ T ?x
00
a ; taÞ


xf ðjx00a j þ jtaj þ jzajÞ;

where xf is a modulus of continuity of f on a sufficiently large subset of Rn � R. We use

the above estimate and [21, Lemma 8.5] to deduce

g0ðtaÞ þ F


ta; pa þ p̂; min

jwj 
 d
ðwaðwÞ � wðwÞÞ=a

�

xFðxf ðjx00a j þ jtaj þ dÞÞ;

where xF is a modulus of continuity of F on a sufficiently large subset of R� Rn � R.

Now sending a & 0 along a subsequence so that pa ! p for some p with jpj 
L and using

that ðwa � wÞ=a ! Kp̂;f̂ ½w� in L2ðBdð0ÞÞ, jx00a j ! 0 and jtaj ! 0, we recover

g0ð0Þ þ Fð0; pþ p̂; ess inf
jwj 
 d

Kp̂;f̂ ½w�ðwÞÞ
xFðxf ðdÞÞ:
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Since we can take L[ 0 and d[ 0 as small as we want, we deduce

g0ð0Þ þ Fð0; p̂;Kp̂;f̂ ½w�ð0ÞÞ
 0:

Therefore the viscosity solution condition (2.7) is satisfied for any p̂-admissible test

function.

This shows that u is a viscosity subsolution of (2.6). Since the proof that lim inf�m!1um
is a viscosity supersolution of (2.6) is analogous, this finishes the proof of Theorem 4.1.

5 Lipschitz bound

In this section we show that the solutions of the approximating problems (4.1) have a

modulus of continuity uniform in m. We consider a level set equation of V ¼ gðm; jr þ f Þ
of the form

ut þ jrujg
�
ru=jruj;�div rrðruÞð Þ þ f ðx; tÞ

�
¼ 0 in Rn � ð0; TÞ; T [ 0; ð5:1Þ

where the anisotropy r is smooth. For the following Lipschitz estimate we do not need to

assume that r is positively one-homogeneous.

Theorem 5.1 Assume that r 2 C2ðRn n 0f gÞ is convex, g 2 CðSn�1 � RÞ is Lipschitz in
the second variable with a Lipschitz constant Lg uniform in the first variable, g is non-

decreasing in the second variable, and f 2 CðRn � ½0; T �Þ is Lipschitz in space with a
Lipschitz constant Lf uniform in time. Let u 2 C Rn � ½0; T�ð Þ be a solution of (5.1) in

Rn � ð0; TÞ. Assume that u is constant outside B� ½0; T �; where B is a (large) ball. If the
initial data u0 is Lipschitz, then

uðx; tÞ � uðy; tÞj j 
LeMtjx� yj; x; y 2 Rn; t 2 ½0; T � ð5:2Þ

with M ¼ LgLf , L ¼ Lip ðu0Þ.

Proof Suppose that the conclusion were false. Then,

m0 :¼ sup
Q�Q
t¼s

Uðx; t; y; sÞ[ 0; Uðx; t; y; sÞ :¼ uðx; tÞ � uðy; sÞ � LeMtjx� yj;

where Q ¼ Rn � ½0; T �. By uniform continuity of u in Q, for any e[ 0 there is d[ 0 such

that jt � sj 
 d implies that uðx; tÞ � uðx; sÞj j\e for all x 2 Rn. We fix e ¼ m0=8 so that

sup
Q�Q

jt�sj 
 d

Uðx; t; y; sÞ�m0=2:

We take b[ 0 sufficiently small and fix it so that

m1 :¼ sup
Q�Q

jt�sj 
 d

Uðx; t; y; sÞ � b=ðT � tÞð Þ�m0=4:

For a[ 1, we consider

Wðx; t; y; sÞ :¼ Uðx; t; y; sÞ � b=ðT � tÞ � aðt � sÞ2:
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Since u is continuous and is a constant on ðRn n BÞ � ½0; T � with a big ball B, there is a

maximizer ðxa; ta; ya; saÞ 2 Q� Q of W. Moreover, if a is sufficiently large, say a[ a0,
then jta � saj\d. This yields

m1 � max
Q�Q

Wðx; t; y; sÞ; c0 :¼ sup
a[ a0

1=jxa � yaj\1

by uniform continuity of u in Q. Moreover, we see that ta � sa ! 0 as a ! 1 since

m1 [ 0. Since L ¼ Lip ðu0Þ, we observe that Uðx; 0; y; 0Þ
 0 for all x; y 2 Rn. Thus any

accumulation point of ftag should not be zero since ta � sa ! 0. We may assume that ta; sa
are away from zero for sufficiently large a, say a[ a1 � a0. Evidently, ta; sa\T . We

rewrite W as

Wðx; t; y; sÞ ¼ uðx; tÞ � uðy; sÞ � uðx; t; y; sÞ;
uðx; t; y; sÞ :¼ aðt � sÞ2 þ b=ðT � tÞ þ LeMtjx� yj:

Our maximizer za ¼ ðxa; ta; ya; saÞ should be in the interior of Q� Q.
We are now in position to apply a parabolic version of Crandall–Ishii’s lemma [7, 12,

Theorem 3.3.3]. It provides n� n symmetric matrices Xa; Ya such that

utðzaÞ;rxuðzaÞ;Xað Þ; resp. ð�usðzaÞ;�ryuðxaÞ;�YaÞ
� �

can be approximated by super (resp. sub) parabolic semijets of u at ðxa taÞ (resp. ðya; saÞ).
Moreover, Xa þ Ya 
 0 and the norms kXak; kYak are bounded by the spatial second

derivatives of u at za for a[ a1 which are bounded since c0\1. Since u is a sub- and

supersolution and rxuðzaÞ ¼ �ryuðzaÞ ¼: pa, we end up with

ut þ jpajg pa=jpaj;�tr r2rðpaÞXa
� �

þ f ðxa; taÞ
� �


 0 at za

� us þ jpajg pa=jpaj;�tr r2rðpaÞð�YaÞ
� �

þ f ðya; saÞ
� �

� 0 at za:
ð5:3Þ

In the second inequality, we may replace �Ya by Xa since Xa þ Ya 
 0 and g is monotone

in the last variable (ellipticity). The resulting inequality is

�us þ jpajg pa=jpaj;�tr r2rðpaÞXa
� �

þ f ðya; saÞ
� �

� 0 at za: ð5:4Þ

Since

gðp; n1Þ � gðp; n2Þj j 
Lgjn1 � n2j;

subtracting (5.4) from (5.3) yields

utðzaÞ þ usðzaÞ � jpajLg f ðxa taÞ � f ðya; saÞj j 
 0: ð5:5Þ

By a simple manipulation, we get

utðzaÞ ¼ b=ðT � taÞ2 þ LMeMta jxa � yaj þ 2aðta � saÞ;
usðzaÞ ¼ �2aðta � saÞ;

pa ¼ LeMtaðxa � yaÞ=jxa � yaj so that jpaj ¼ LeMta :

Since f is uniformly continuous in B� ½0; T � and spatially Lipschitz uniformly in time,

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:39 Page 19 of 26 39



f ðxa; taÞ � f ðya; saÞj j 
 Lf jxa � yaj þ xðta � saÞ;

where x is a modulus, i.e., x 2 C½0; d�, x� 0 and xð0Þ ¼ 0. Since 1=ðT � taÞ2 
 1=T2,

(5.5) now yields

b=T2 þ LMeMta jxa � yaj � jpajLg Lf jxa � yaj þ xðta � saÞ
� �


 0: ð5:6Þ

Since M ¼ LgLf , we see that

LMeMta jxa � yaj � jpajLgLf jxa � yaj ¼ 0:

Thus (5.6) implies

b=T2 � jpajLgxðta � saÞ
 0:

Sending a ! 1 and using ta � sa ! 0, we obtain b=T2 
 0, which is a contradiction. The

proof is now complete. h

As an application of Lipschitz bound, we further derive a uniform Hölder continuity in

time when r is positively one-homogeneous.

Theorem 5.2 Assume that r; g an f are as in Theorem 5.1 and additionally assume that r
is positively one-homogeneous. Let u be the solution of (5.1) in Rn � ð0; TÞ: Assume the
same hypotheses of Theorem 5.1 concerning u. Assume that f is bounded. Then

uðx; tÞ � uðx; sÞj j 
Ajt � sj1=2; x 2 Rn; t; s 2 ½0; T � ð5:7Þ

with some constant A depending only on positive constants L, M, T, G, kþ, k� such that

sup
r[ 0

sup
p2Sn�1

r g p;�ðn� 1Þ=r þ sup jf jð Þj j 
G;

k�jxj 
 rðxÞ
 kþjxj for all x 2 Rn:

Proof We shall prove this theorem by constructing a barrier. We first observe that

rr rr�ðxÞð Þ ¼ x=jxj

so that divrr rr�ðxÞð Þ ¼ ðn� 1Þ=jxj, where r�ðxÞ is the support function of the set

rðxÞ
 1f g, i.e.,

r�ðxÞ ¼ sup hx; yi j rðyÞ
 1f g:

The function r� satisfies

k�1
þ jxj 
 r�ðxÞ
 k�1

� jxj

and it is convex and positively one-homogeneous. (If r2r is strictly positive on Sn�1, this

r� may not be smooth but in the sense of viscosity solutions the indentity

div rrðrr�ðxÞð Þ ¼ ðn� 1Þ=jxj still holds.)
For a given s 2 ½0; T �, by Theorem 5.1, uð�; sÞ is Lipschitz with a Lipschitz constant

Ls ¼ LeMs. For a given d[ 0 by Young’s inequality, we have
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jxj 
 dþ jxj2=4d:

This implies that

uðx; sÞ � uðx0; sÞð Þ=Ls 
 dþ jx� x0j2=4d
 dþ k2þr
�ðx� x0Þ2=4d:

If we take a constant C large but depending only on G, we observe that

vðx; tÞ :¼ Ls Cðt � sÞ=dþ dþ k2þr
�ðx� x0Þ2=4d


 �
þ uðx0; sÞ

is a supersolution with

uð�; sÞ
 vð�; sÞ:

By the standard comparison theorem [12, Chapter 3], we conclude that

uðx; tÞ
 vðx; tÞ for t� s; x 2 Rn:

In particular,

uðx0; tÞ
Ls Cðt � sÞ=dþ dð Þ þ uðx0; sÞ:

We take d such that d ¼ Cðt � sÞð Þ1=2 to get

uðx0; tÞ � uðx0; sÞ
 2Ls Cðt � sÞð Þ1=2 for all t� s[ 0:

A symmetric argument yields the estimate from below. Since x0; s are arbitrary, this

completes the proof. h

We are ready to prove the existence of solutions of (1.2) for F of the form (1.3).

Theorem 5.3 Let F be of the form (1.3), where g and f are as in Theorem 5.1 for any
T [ 0 and assume that r is a crystalline anisotropy. Then the Eq. (1.2) has a unique global
viscosity solution on Rn � ð0;1Þ for any Lipschitz initial data u0 constant outside a large
ball B. Moreover, u is Lipschitz continuous in space (5.2) and 1/ 2-Hölder continuous in
time (5.7).

Proof We can approximate r by a sequence of positively one-homogeneous functions rm
as in Theorem 4.4, so that they all satisfy the assumptions of Theorem 5.2 with the same

k�. By the classical viscosity solution theory, (4.1) has a unique viscosity solution um with

the initial data u0 for any m. Since f is Lipschitz in space, by comparing um with a barrier,

for instance the rm-Wulff shape expanding exponentially fast with rate Lf , we see that for

any T [ 0 there is a bounded set independent of m such that all um are equal to a constant

outside of this set. Therefore we can assume that f is bounded on Rn � ½0; T� for any T[ 0.

We conclude that for any T [ 0 the sequence umf g is uniformly Lipschitz in space by

Theorem 5.1 and uniformly Hölder in time by Theorem 5.2. Hence any subsequence has a

further subsequence that converges uniformly on Rn � ½0; T � to some continuous function u
with uð�; 0Þ ¼ u0. This limit must be the unique viscosity solution of (1.2) by Theorem 4.4.

In particular, the whole sequence converges to u locally uniformly on Rn � ð0;1Þ. h
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Sketch of the proof of Theorem 1.1 Once we have existence, comparison and stability of

solutions of (1.3), we are able to prove invariance under the change of depending variables

as in [21, 22]. This yields the uniqueness of the level set of a solution. Our existence result

(Theorem 5.3) now yields the unique existence of the level set flow. h

6 Proof of nonexistence with x-dependent F

In this section we show that we cannot allow the operator F to depend on x directly since in
that case a solution might not exist in general. Let us consider the equation

ut þ F
�
x; ðsign uxÞx

�
¼ 0; x 2 R; t[ 0; ð6:1Þ

with Fðx; nÞ ¼ �nþ f ðxÞ and initial condition

uð�; 0Þ ¼ 0:

This corresponds to anisotropy rðpÞ ¼ jpj for p 2 R.

Theorem 6.1 Let f 2 LipðRÞ with compact support, f � 0 but f 6	 0 (see Fig. 1a). Set
L ¼ 1=max f : Assume that

supp f � ð�L; LÞ:

Then there is no continuous solution with compact support.

Proof We show it by contradiction with the comparison principle, Theorem 3.1, which

applies to equation (6.1).

Let u be a solution of (6.1) with initial data 0 and compact support. Let us fix x[ L. For
given a[ 0 set

vðxÞ ¼ vaðxÞ :¼ min


max

�
aðjxj � xÞ; aðL� xÞ

�
; 0
�
:

Note that v has a facet ½�L; L� that contains the support of f. We claim that wðx; tÞ ¼ vaðxÞ
is a viscosity subsolution in the sense of Definition 2.7. Indeed, for any faceted test

function that touches w from above on the facet ½�L; L�, we have K� 1
L and therefore

x

f

R−R

(a)

xR−R−

Z+

Z−

y

(b)

Fig. 1 a An example of the nonuniform forcing f in Theorem 6.1. b The construction of v‘
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Fðx;KÞ ¼ �Kþ f 
 � 1

L
þmax f ¼ �max f þmax f ¼ 0:

For a test function touching anywhere else we always get Fðx;KÞ
 0.

Therefore by the comparison principle we must have va 
 uð�; tÞ for all t and a[ 0 and

so u� 0. On the other hand, f � 0 and therefore u ¼ 0 is a supersolution so we conclude

that u 	 0.

But by testing u from above by a faceted test function with a facet longer than L, we can

show that there are points where Fðx;KÞ ¼ �Kþ f ðxÞ[ � 1
L þ f ðxÞ ¼ 0 and so we see

that u 	 0 is not a viscosity subsolution in the sense of Definition 2.7. h

In fact, this shows that a supremum of subsolutions might not be a subsolution.

One may be interested in what the solution is for ut þ Fððsign uxÞx � f ðxÞÞ ¼ 0 with

FðnÞ ¼ �n. Such a type of problems is studied in the framework of the maximal monotone

operators [13]. Although a Lipschitz bound is studied only for level set equations, it is not

difficult to show uniform Lipschitz bounds and also 1/2-Hölder continuity in time for the

rm-approximation as we did in Sect. 5. By our convergence results we conclude that the

viscosity solution agrees with that in the theory of maximum monotone operators.

We here give an explicit example of the solution. We consider f 2 LipðRÞ with compact

support, f � 0 but f 6	 0. To simplify the explanation we assume that f is even, that is,

f ðxÞ ¼ f ð�xÞ, x 2 R, and that f is non-increasing for f [ 0. We take R[ 0 such that

supp f ¼ ½�R;R�. Let Z� be

Z�ðxÞ ¼ �
Z x

0

f ðzÞ dz� 1:

Since Z� is convex in x for x[ 0 and Z� � �1 is odd, there is a unique ‘ 2 ð0;RÞ such that
the straight segment y ¼ yðxÞ connecting ð�‘; Z�ð�‘ÞÞ, ð‘;Zþð‘ÞÞ has the slope

Z 0
þð‘Þ ¼ �f ð‘Þ; see Fig. 1b. Moreover,

Z�ðxÞ
 yðxÞ
ZþðxÞ

for x 2 ½�‘; ‘�. By definition of Kf , we observe as in [13]

Kf ½v‘� ¼ y0ðxÞ ¼ Zþð‘Þ � Z�ð�‘Þ
2‘

;

if v‘ corresponds to the facet

v‘ðxÞ :¼
1; x 62 ½�‘; ‘�;
0; x 2 ½�‘; ‘�:

�

One is able to characterize ‘ in a slightly different way since y0ð‘Þ ¼ �f ð‘Þ. Since ‘ is the
unique number such that

�Z 0
þð‘Þ ¼

Z�ð�‘Þ � Zþð‘Þ
2‘

;

it is the unique number satisfying
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f ð‘Þ ¼ � 1

‘
þ 1

2‘

Z ‘

�‘

f ðxÞ dx: ð6:2Þ

We consider the initial value problem

ut þ F
�
ðsign uxÞx � f ðxÞ

�
¼ 0 ð6:3Þ

with FðnÞ ¼ �n. By using above ‘ one gets an explicit solution.

Theorem 6.2 Assume that f is as above. Let ‘ 2 ð0;RÞ be a unique number satisfying (6.2).
Then the function

uðx; tÞ ¼ maxð�f ðxÞt;�f ð‘ÞtÞ

is the unique solution of (6.3) with initial data u0 	 0.

Since the facet is v‘ for all t[ 0, it is easy to see that this is a solution. For more examples

of solutions see [13].
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Appendix A: Regularity of the solution of the resolvent problem

In the perturbed test function method in the proof of Theorem 4.1, we need to solve the

resolvent problem for Ef defined in (1.4). Here we show that the solution of this resolvent

problem is Lipschitz continuous. Suppose that w is a Lipschitz function with Lipschitz

constant L and f is a Lipschitz function with Lipschitz constant Lf . Consider the solution f
of

fþ aoEf ðfÞ 3 w:

By shifting fy :¼ fð� � yÞ, etc., we have

fy þ aoEfyðfyÞ 3 wy;

or, equivalently,

fy þ aoE0ðfyÞ 3 wy � afy:

By the Lipschitz continuity, we have
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wy � afy � ðLþ aLf Þjyj 
w� af 
wy � afy þ ðLþ aLf Þjyj

and hence the comparison principle for the elliptic resolvent problem yields

fy � ðLþ aLf Þjyj 
 f
 fy þ ðLþ aLf Þjyj:

We conclude that f is Lipschitz continuous with the Lipschitz constant Lþ aLf .
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