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Abstract
Though continuous advances in the field of human pose estimation, it remains a challenge to retrieve high-quality recordings 
from real-life human motion using commodity hardware. Therefore, this work focuses on predicting and improving estimates 
for human motion with the aim of achieving production quality for skinned mesh animations by off-the-shelf webcams. We 
take advantage of recent findings in the field by employing a recurrent neural network architecture to (1) predict and (2) 
denoise human motion, with the intention of bridging the gap between cheap recording methods and high-quality record-
ing. First, we propose an LSTM to predict short-term human motion, which achieves competitive results to state-of-the-art 
methods. Then, we adapt this model architecture and train it to clean up noisy human motion from two 3D low-quality input 
sources, and hence mimic a real-world scenario of recording human motion which yields noisy estimates. Experiments on 
simulated data show that the model is capable of significantly reducing noise, and it opens the way for future work to test 
the model on annotated data.

Keywords Recurrent neural networks · Reconstruction · Computer vision · Animation denoising

Introduction

Human motion and psychology are interconnected, as move-
ments reflect and express emotions, contribute to cognitive 
development, serve as nonverbal communication, and are 
used in therapeutic applications, highlighting the close rela-
tionship between the mind and the body.

Human motion can be represented as a sequence of 
3D joints connected via lines representing segments, see 

Fig. 1, or as a sequence of angles between the segments 
which we describe in more detail in Section “Human Motion 
Parameterisation.

The creation of a realistic, human motion animation as a 
skinned mesh animation is difficult with the production qual-
ity. The skinned multi-person linear (SMPL) models [2–5] 
express the pose and shape of human bodies in a sparse 
manner. This is accomplished by representing the human as 
a skinned mesh, with blend shapes representing the shape of 
the human, and the underlying skeleton of the skinned mesh 
representing the pose. Having chosen one representation of 
human motion, new samples can be generated using neural 
networks based on different kinds of input [6–11].

3D meshes of the human body are usually built around 
a skeleton for the purpose of animating the human motion. 
These skeletons are then either animated by hand or by 
using motion capture (MoCap) to capture real-life human 
motion as digital animations. Animating skeletons by hand 
is a time-consuming process and requires a skilled animator. 
Likewise, MoCap requires specialised equipment and often 
also requires an animator to clean up the recorded data. Ani-
mating humanoids thus consumes a lot of time and money 
for content creators.

Recently, several solutions allowing for MoCap from a 
single video camera have been published [12–15]. These are 
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not widely used, which is likely because the quality is much 
lower than that of MoCap and handcrafted animations. They 
would require a significant cleanup pass by an animator to 
be of use, even for projects with relatively low animation 
quality requirements.

In this paper, we propose using recent advances in the 
prediction of human motion through neural networks to 
improve the quality of human motion, to bridge the gap 
between cheap recording methods and high-quality record-
ing, see Fig. 1. The main novelty of this paper, however, is 
the proposition to use two inexpensive, low-quality sources 
for human pose in 3D and the smoothing of them to achieve 
high-quality human motion sequences. In other words, the 
model is trained to clean up 3D human motion from two 
low-quality input recordings.

To conclude, the contributions of this work are the 
following.

• We modified the short-term version of QuaterNet [16] by

– using a long short-term memory (LSTM) network 
instead of a gated recurrent unit (GRU) network, 
and,

– redefining the loss function as the L1 distance 
between the predicted and ground truth quaternions.

• We are the first to propose a model which receives two 
noisy 3D human motion sequences to perform a de-nois-
ing, which promotes a cost-efficient imaging solution, 
e.g. using webcams.

• We show that the same architecture can be used for 
two separate tasks: (1) prediction and (2) smoothing of 
human motion.

This paper is organised as follows. First, the related work is 
described in Section “Related Work”. Then prior work on 
predicting human motion is replicated and extended to the 
task of motion smoothing in Section “Methods”. The results 
of the proposed models on both prediction and smoothing of 
human motion can then be seen in Section “Experiments”, 

followed by a section dedicated to limitations in “Limita-
tions”. Finally, we conclude this paper with a thorough dis-
cussion and mention the proposed future work in Section 
“Conclusion”.

Related Work

Human Motion Prediction

Forecasting human motion is an important problem in com-
puter vision. It is a central problem, in addition to creat-
ing digital animations of human motion, in applications 
like human robot interaction, autonomous driving, and 
human tracking. The problem is challenging due to the high 
variability and the complex nature of the human motion. 
Traditional, state–space methods, such as hidden Markov 
models [17] and Gaussian processes [18], have been shown 
to be suitable for the prediction of simple human motion; 
see Table 1 for an overview of the methods used for human 
motion prediction.

In the literature, see e.g. [16, 19], the prediction of 
sequences of 3D joint positions is commonly divided into 
short- and long-term predictions. Specifically, short-term 
refers to predictions limited to under 500 ms, while long-
term tasks focus on motions which lay more than 0.5 s in 
the future, hence often referred to as generation. Recently 
deep neural networks, especially recurrent neural networks 
(RNNs), have made larger advances in the prediction of 
human motion for a longer range [16, 20–23].

QuaterNet [16], as proposed by Pavllo et al., consists 
of a two-layer RNN predicting future human motion from 
past motion, using a forwards kinematics (FK) loss. In 
that work, the rotations are represented by quaternions, 
opposed to previous works, where Euler angles or expo-
nential maps are frequently employed. The choice was 
motivated by the fact that Euler angles and axis-angle rep-
resentations come with several problems: non-uniqueness, 
discontinuity in the representation space, and singularities, 

Fig. 1  In the top row, the input data is shown in red, the bottom row shows the output of our model in green, and the ground truth is in white
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which can be avoided by quaternions. QuaterNet also 
introduces a normalisation loss, as normalised quaterni-
ons are required to represent valid rotations. The FK loss 
is calculated by performing FK and then taking the posi-
tional loss of the joints. FK is when the joint positions are 
calculated from the joint rotations using the pre-defined 
skeleton. FK loss helps against the positional error intro-
duced on the outer limbs by rotational error on the inner 
limbs, as the positional error of the outer limbs is affected 
by the rotational error of all parent limbs in the kinematic 
chain.

Another branch of human motion prediction networks 
are based on graph representation of the human body 
and related graph computations. Li et al. [24] proposed a 
multi-scale graph representation of the human body and 
encoder–decoder framework for motion prediction. An 
alternative, end-to-end multi-scale residual graph convo-
lution network was proposed in [25]. Mao et al. [26] pro-
posed motion attention to a graph convolutional network to 
capture the similarity between the current motion context 
and the historical motion sub-sequences. To encode tem-
poral information, trajectory space was applied instead of 
the traditionally used pose space in [27].

Deep generative models, variational autoencoders 
(VAEs) and generative adversarial networks (GANs) 
have also been used for human motion prediction with 
the special aim of facilitating human motion prediction 
for the long horizon [28]. As an example, the conditional 
variational autoencoder (CVAE) was used to generate a 
diverse set of samples of human postures from a pretrained 
deep generative model in [29]. Spatio-temporal motion 
inpainting was proposed by a GAN prediction model in 
[30] and pedestrian trajectories were learnt with GANs in 

[31]. One more example of long-term human activity and 
location prediction was proposed in [32].

Human Motion Inpainting

Harvey et al. [33] showed that state-of-the-art motion predic-
tion models cannot be easily converted into a robust tran-
sition generator, and proposed a model for human motion 
inpainting, i.e. a method that can fill in gaps of missing 
motion in a given motion sequence. It takes past motion 
and a target frame as input and then generates the frames in 
between using an RNN. To help the model maintain tem-
poral coherency, a time-to-arrival embedding was added to 
the input frames.

To create realistic looking and temporally coherent 
motion, an adversarial loss based on least squares generative 
adversarial network [34] (LSGAN) was introduced.

Additionally, [33] uses a foot contact loss indicating 
whether a foot is touching the ground, thereby stabilising 
the feet as a post-processing step, which helps to combat 
a phenomenon commonly known as foot sliding. Foot loss 
can also be found in another recent work involving human 
motion, such as MotioNet [14].

Human Motion Smoothing

In the previously described work, the application focused 
on prediction or inpainting, which mostly relies on reliable 
estimates of human motion data as a starting point. However, 
raw motion data is often corrupted, i.e. the markers attached 
to the joints may be occluded, or lack precision, and hence 
yield noisy and jittery estimates or even miss data entirely. 

Table 1  Overview of related 
literature for human motion 
prediction

References Architecture Notable merits/limitations

Wang et al. [18] Gaussian Processes Performance limitations due to time steps being correlated
QuaterNet [16] RNN, two-layer GRU Locomotion only
Wolter & Yao [23] Complex gated RNN Prediction error accumulation
Li et al. [24] Multi-scale graph conv. Efficient formulation
Dang et al. [25] Multi-scale graph conv. Additional residual connections
Mao et al. [27] Graph conv. Trajectory space formulation
Mao et al. [26] Graph conv. Attention
Liang et al. [32] LSTM, NN Simultaneous prediction of trajectory and future activity
Yuan and Kitani [42] VAE Diversity-promoting prior
Cao et al. [28] VAE, GAN Uses scene geometry constraints
Ruiz et al. [30] GAN Presented metrics not comparable
Amirian et al. [31] LSTM, InfoGAN Limited to one motion trajectory per person
Martínez et al. [43] Transformer A single pose vector as query



 SN Computer Science           (2023) 4:760   760  Page 4 of 10

SN Computer Science

To overcome these issues, research has been conducted to 
smooth and denoise human motion data; see Table 2.

As to human motion smoothing methods, in [35] used 
traditional filtering methods and [36] proposed Kalman fil-
tering. While these are older works, we found that traditional 
methods are still used these days, e.g. in [37] Bezier curves 
are used and [38] achieves a significant noise reduction by a 
B-spline-based least squares approach on data from a vicon 
motion capture system. Different network-based approaches 
have been employed to tackle the problem of corrupted data. 
In [39], an attention-based bidirectional recurrent neural net-
work [39] was proposed to denoise hand motion data. Simi-
larly, in [40], an attention mechanism was embedded in the 
bidirectional LSTM (BLSTM) yielding a deep bidirectional 
attention network (BAN). However, the current approaches 
for smoothing do not consider multiple input sources which 
is a shortcoming we address in this paper. We propose 
using two corrupted input sequences of 3D human motion 
to retrieve a smoothed version of the recorded motion. Our 
motivation for this approach is that currently several solu-
tions to retrieve estimates for 3D human motion sequences 
are available, e.g. in [41], which come with some errors. 
We aim to take advantage of several of those corrupted 3D 
estimates to retrieve one high-quality sequence of human 
motion.

Methods

In this section, we first introduce two models which are 
designed to perform two separate tasks. First, we describe 
a prediction model, which receives past frames of human 
motion to predict the next frame one step in the future.

Second, we adapt the prediction model such that it will 
be tailored to the task of denoising human motion data aka 
human motion smoothing. Both models are builton an RNN 
architecture.

Human Motion Parameterisation

The human skeleton applied in this work is parameterised 
as follows. The joint locations are represented by 3D joint 
positions where joints are connected to other joints by line 
segments. If the joint positions are estimated for each frame 
separately, the length of the segments may change between 
frames, which is a common problem [44]. However, assum-
ing constant lengths of the line segments, the configuration 
of the human skeleton can be fully defined by the relative 
orientations of the line segments, where each orientation is 
described by the respective quaternion, i.e. 3D angle.

The use of quaternions avoids the gimbal lock problem 
present with Euler angles.

Prediction Model

The proposed prediction model is designed to use past 
frames of a human motion sequence to predict the determin-
istic motion in the next frame. The proposed model is based 
on the short-erm version of QuaterNet [16], which we modi-
fied in two ways: frst, motivated by results from Harvey et al. 
[33], we use a long short-term memory (LSTM) network 
instead of a gated recurrent unit (GRU) network. Secondly, 
we adapted the rotational loss. Instead of using the distance 
between Euler angles calculated from quaternions,we rede-
fine it as the L1 distance between the icted and ground truth 
quaternions as

where T is the sequence length, J is the number of consid-
ered joint rotations of the skeleton, q̂j,t is the joint rotation 
j of the predicted sequence at time step t, and qj,t the cor-
responding ground truth, both represented as quaternions. 
Hence, we combine the rotational error and the quaternion 
normalisation error by dropping the explicit term for nor-
malisation used in [16].

The prediction model is designed as an encoder–decoder 
LSTM, with a two-ayer LSTM encoder with a hidden state 

(1)Lprediction =
1

T

T∑

t=0

J∑

j=0

‖‖‖
q̂j,t − qj,t

‖‖‖1
,

Table 2  Overview of related 
literature for human motion 
smoothing and de-noising

Reference Architecture

Lou et al. [35] Sequence filtering
Piltaver et al. [36] Kalman filter
Brand and Hertzmann [17] HMM
Dagioglou et al. [37] Bezier curves
Memar et al. [38] B-spline-based least squares
Kim et al. [39] Bidirectional recurrent neural network (BRNN)
Cui et al. [40] Deep bidirectional attention network (BAN)
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of size 1000, followed by a feedforward neural network as 
the decoder. The decoder converts the hidden state to the 
target output, size of 4J, see Fig. 2. The model receives the 
past 50 frames to predict the next frame. To train the model, 
this process is repeated ten times to generate the next ten 
frames from the previous model outputs.

Smoothing Model

The process of capturing 3D human motion is not exact 
and yields noisy estimates. To overcome this issue, we 
aim to provide one noise-free estimate from two noisy 
recordings of the same motion. For this purpose, to remove 
the stochastic part of the motion, a smoothing model is 
designed based on the previously introduced prediction 
model, i.e. an encoder–decoder LSTM, where the encoder 
part is defined as a two-layer LSTM with hidden state size 
of 1000, and the decoder as a feedforward neural network. 
This model uses the same loss function as the prediction 
model, as defined in Eq. 1.

In contrast to the prediction model, the smoothing 
model receives two concatenated frames per time step as 
input, thereby reflecting the real-world setting that two 
noisy input streams are provided, e.g. from different cam-
era angles.

From each pair of noisy frames, the network estimates 
one corresponding noise-free frame. See Section “Data Gen-
eration for the Smoothing Model” for details on how the 
training data were generated for this model.

Experiments

Datasets

In this work, we use two 3D human motion capture datasets: 
the CMU [45, 46] and the Human3.6M dataset [47, 48].

The CMU MoCap Dataset [45] consists of 2605 human 
motions of 106 subjects recorded in 3D, totaling 552 min-
utes of motions at varying frame rates and 3.5M frames. We 
use the skeleton model which is fully parameterised by 22 
body segment orientations.

The CMU Mocap Dataset is one of the 15 optical marker-
based MoCap datasets which have been represented in a 
common framework and parameterisation in the Archive of 
Motion Capture as Surface Shapes (AMASS) database [46]. 
Specifically, an SMPL-H [3] variant of the Skinned Multi-
person Linear Model (SMPL) [2] was used.

The Human3.6M dataset [47, 48] contains over 3.6 mil-
lion different human poses, recorded in 2D and 3D from 
seven subjects performing 210 different motions in 15 sub-
categories. This yields a total of 176 min recorded at 50 
frames per second and 0.5M frames. While the database also 
contains high-resolution 3D meshes, we focus on the sparse 
skeleton which consists of a total of 32 joints, and for which 
3D joint positions and joint angles are provided.

Implementation Details

We trained the models as follows. We used Adam as opti-
miser with a learning rate of 0.001, and the gradient norms are 
clipped to 0.1. Training data is batched, with a batch size of 
64. The batches are drawn from the dataset by taking all pos-
sible combinations of 60 consecutive frames for each motion 
and shuffled for each epoch. Additionally, we used teacher 
forcing to improve the prediction and decrease the training 
time. We trained the models until there was very little or no 
improvement, which took several days, close to a week.

Prediction Model

The prediction model proposed in Section “Prediction 
Model” was trained on the Human3.6M dataset; see Sec-
tion “Datasets”. We split the dataset as in [16, 20, 33] by 
using all the motions from subject 5 as test data and the rest 
as training data. Additionally, since the frame rate differs 
between the motions, we resampled them to 25 fps by either 
discarding frames or interpolating new frames, i.e. by down- 
or upsampling the sequence, respectively. The prediction 
is performed by taking 60 frames from a motion and then 
splitting it into 50 past and 10 future frames.

The results were evaluated using the mean absolute error 
between the Euler angles as

Fig. 2  The architecture of the 
prediction model
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where T is the sequence length, J is the number of joint 
rotations, q̂t,j represents the predicted quaternion of the joint 
j in frame t, with corresponding ground truth qt,j , and Φ 
is a function converting quaternions into Euler angles. In 
Table 3, we compare our results with others, which show 
that our proposed prediction model is on par with state-of-
the-art methods.

Data Generation for the Smoothing Model

To our knowledge, there is no dataset which offers noisy 
human motion capture data, along with a non-noisy ground 
truth; therefore, we created our own data based on the CMU 
dataset Section “Datasets” to train the smoothing model, 
described in Section “Smoothing Model”. We employ the 
provided data as ground truth frames and create noisy input 
frames from them to train and evaluate our model. There-
fore, 60 frames from one motion are selected and then split 
into 50 past and 10 future frames. Thereafter, noise is added 
to all frames, i.e. input features, as

where m is the human motion, t is the frame, j is the joint, 
a is the axis, qm,t,j,a is the ground truth quaternion, q̃ is the 
noisy quaternion, and N represents the noise.

When modelling the noise N, we take into account three 
different kinds of noise: systematic bias, imprecision, and 
lost tracking. The noise N is defined as a composition of 
those as

where B is the bias, I is imprecision noise, and L represents 
the noise from lost tracks.

(2)Lmae =
1

T

∑

t,j

‖‖
‖
(
Φ
(
q̂t,j

)
− Φ

(
qt,j

)
+ �

)
mod 2� − �

‖
‖
‖1
,

(3)q̃m,t,j,a = qm,t,j,a + N,

(4)N = B + I + L,

It has been observed that joint rotations captured through 
webcam pose detection systems often have a constant bias, 
depending on the subject captured, which is represented as

where N  denotes the normal distribution. The imprecision 
noise represents small differences from the ground truth that 
occur in the joint rotations captured through webcam pose 
detection models as

The lost tracking noise L represents that sometimes a joint 
is not recognised, giving completely arbitrary values for that 
joint rotation, defined as

where

models the probability that the model lost track of one 
frame, where B denotes the Bernoulli distribution, and

models the amount of noise which is applied if the frame 
suffers from lost tracking. To conclude, to define the noise, 
we use a total of seven parameters.

(5)B ∼N
(
0, �2

B

)
,

(6)�B ∼N
(
�B, �

2
B

)
,

(7)I ∼N
(
0, �2

I

)
,

(8)�I ∼N
(
�I , �

2
I

)
.

(9)L = L1L2,

(10)L1 ∼ B
(
pL
)

(11)L2 ∼ N(0, �2
L
),

(12)�L ∼ N(�L, �
2
L
)

Table 3  Comparison of the mean absolute error between Euler angles, as defined in Eq. 2, between our proposed prediction model and other 
state-of-the-art methods on the Human3.6M dataset

Bold values indicate the best result per column

Milliseconds Walking Eating Smoking Discussion

80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [20] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
QuaterNet [16] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93
TP-RNN [21] 0.25 0.41 0.58 0.65 0.20 0.33 0.53 0.67 0.26 0.47 0.88 0.90 0.30 0.66 0.96 1.04
ERD-QV [33] 0.20 0.34 0.56 0.64 0.18 0.33 0.53 0.63 0.23 0.47 0.96 0.99 0.23 0.59 0.86 0.93
VGRU-rl [22] 0.34 0.47 0.64 0.72 0.27 0.40 0.64 0.79 0.36 0.61 0.85 0.92 0.46 0.82 0.95 1.21
Our model 0.24 0.40 0.61 0.68 0.21 0.37 0.57 0.69 0.23 0.44 0.89 0.88 0.26 0.64 0.93 1.00
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Smoothing Model

The smoothing model, described in Section “Smoothing 
Model”, was trained and evaluated on the CMU dataset, 
see Section “Datasets”, with added noise according to Sec-
tion “Data Generation for the Smoothing Model. To load 
and manipulate the motions from the CMU dataset, we use 
Fairmotion [49]. Since one training step requires at least 
60 frames, motions with less than 60 frames have been 
discarded. The data is split, such that 90% of the motions 
are used for training, 5% for validation, and 5% for testing. 
For training of the smoothing model, the size of each input 
source is limited for batching purposes, but all frames are 
used for evaluation.

The training data were generated according to Sec-
tion 4.4, with �B = �I = 0.005 , �B = �I = 0.002 , �L = 1 , 
�L = 0.01 , and p = 0.01 . To ensure that each motion has 
a unique distribution of noise, each parameter � is only 

sampled once per motion, thereby ensuring that the model 
learns the general composite noise instead of one specific 
distribution. The same procedure and noise function are used 
to generate the test data.

Figure 3 shows the GT, the generated noisy input and the 
estimates from our model, and demonstrates that the model is 
able to recover information loss from lost frames. For a quan-
titative evaluation, we computed the L1 distance between 
quaternions of the ground truth and the noisy inputs, and 
the ground truth and the estimates, accordingly. The results 
are shown in Fig. 4 and illustrated per motion in Fig. 5. In 
both figures, it can be seen that the distances are lower for the 
smoothing model. To summarise, we found that our proposed 
smoothing model is able to reduce the noise to a large extent 
in 3D human motion sequences, thereby confirming that an 
LSTM-based model is suitable to for this task.

Fig. 3  Visualisation of 15 selected frames of subject 6, trial 5 from 
the CMU dataset. The first row shows the ground truth poses, while 
the second and third row show the noisy frames generated from the 
GT, which are concatenated and fed to the model. The fourth row 

shows the resulting output from the smoothing model. Please espe-
cially note the results of the frames 47 and 61, which demonstrate 
that the model is robust against lost frames. A video of the results is 
available at https://i. imgur. com/ gS3Pi n8. mp4

Fig. 4  Comparison of the L1 distance between quaternions of the 
ground truth data (GT) and noisy input A (shown in blue), the GT 
and the noisy input B (shown in red), and the GT and our estimates 
(shown in green). Inputs A and B refer to the two concatenated views, 
which the smoothing model receives as input

Fig. 5  Illustration of the L1 distance between estimated quaternions 
to the ground truth (GT) values per motion of the test data gener-
ated from the CMU dataset. For convenience, the motion categories 
are ordered along the x-axis such that the average distance of the two 
noisy input sequences A and B to the GT increases

https://i.imgur.com/gS3Pin8.mp4
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Limitations

During our experiments, we found that training did not 
converge, which we overcame by hand-tuning the training 
parameters and trying out different activation functions. 
While the smoothing model successfully yields smoothed, 
i.e. denoised, 3D human motion sequences, we found that 
if we provide one non-corrupted sequence, while the sec-
ond input sequence is only noise, the outcome will be a 
jittery human motion sequence.

Conclusion

In this work, we have proposed a novel approach to esti-
mate the human motion by merging and enhancing data 
from two low-quality sources. As a building block, our 
work also proposed an LSTM-based prediction model for 
human motion which was demonstrated to be competitive 
with previous approaches in the field. The key advantage 
of our approach lies in its ability to enable low-cost imag-
ing of human motion without the need for expensive hard-
ware traditionally associated with motion capture.

To the best of our knowledge, no suitable dataset cur-
rently exists for cleaning, i.e. smoothing of skinned human 
motion that would be suitable for pose detection from web-
cam videos.

While training the smoothing network, the lack of a 
dedicated dataset is not problematic, since simulated train-
ing data can be used. However, evaluating the network 
presents challenges due to the susceptibility of neural net-
works to shortcut learning [50], where the network may 
learn unintended shortcuts instead of the desired gener-
alised solution. For instance, a neural network trained to 
classify objects might incorrectly take the background into 
account, leading to mislabelling.

One potential approach to mitigate shortcut learning 
involves evaluating the network using data from a separate 
dataset that was not used for training purposes. Our evalua-
tion data is related to the training data in two ways. Firstly, 
the evaluation data stems from the same dataset, making it 
i.i.d. with respect to the motions it contains. Secondly, the 
noise used to generate the input motions in the evaluation 
is not the actual noise encountered in a webcam-based pose 
estimation pipeline, but rather the same noise estimation 
used during network training. Thus, the validation data 
represents the best possible effort considering the limited 
availability of data for this specific task. However, in the 
event that datasets of skinned human motion smoothing 
become accessible, it would be desirable to re-evaluate the 
model on these out-of-distribution datasets.

Consequently, the lack of annotated data for evaluation 
implies that the performance of the model on real-world 
data is uncertain. Overcoming this limitation and imple-
menting various potential improvements is an interesting 
topic for future work.
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