
Vol.:(0123456789)

SN Computer Science (2023) 4:748
https://doi.org/10.1007/s42979-023-02186-1

SN Computer Science

ORIGINAL RESEARCH

Access Security Policy Generation for Containers as a Cloud Service

Hui Zhu1 · Christian Gehrmann1 · Paula Roth1

Received: 4 October 2021 / Accepted: 24 July 2023
© The Author(s) 2023

Abstract
The rapid development of containerization technology comes with remarkable benefits for developers and operation teams.
Container solutions allow building very flexible software infrastructures. Although lots of efforts have been devoted to
enhancing containerization security, containerized environments still have a huge attack surface. Completely avoiding
severe security issues have so far not been possible to achieve. However, the security problems due to vulnerabilities in for
instance kernels, can be largely reduced if the container privileges are as restricted as possible. Mandatory access control is
an efficient way to achieve this using for instance AppArmor. As manual AppArmor generation is tedious and error prone,
automatic generation of protection profile is necessary. In previous research, a new tool for tight AppArmor profile generation
was presented. In this paper we show how, in a system setting, such tool can be combined with container service testing, to
provide a cloud based container service for automatic AppArmore profile generation. We present solutions for profile gen-
eration both for centrally collected and generated container logs and for log collection through a local agent. To evaluate the
effectiveness of the profile generation service, we enable it on a widely used containerized web service to generate profiles
and test them with real-world attacks. We generate an exploit database with 11 exploits harmful to the tested web service.
These exploits are sifted from the 56 exploits of Exploit-db targeting the tested web service’s software. We launch these
exploits on the web service protected by the profile. The results show that the proposed profile generation service improves
the test web service’s overall security a lot compared to using the default Docker security profile. This together with the very
user friendly and robust principle for setting up and running the service, clearly indicates that the approach is an important
step for improving container security in real deployments.

Keywords Security-as-a-service · Docker · Container · AppArmor

This article is part of the topical collection “Cloud Computing and
Services Science” guest edited by Donald Ferguson, Markus Helfert
and Claus Pahl.

 * Christian Gehrmann
 christian.gehrmann@eit.lth.se

 Hui Zhu
 hui.zhu@eit.lth.se

 Paula Roth
 dic15pro@student.lu.se

1 Department of Electrical and Information Technology, Lund
University, Box 118, SE-221 00 Lund, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02186-1&domain=pdf
http://orcid.org/0000-0001-8003-200X

 SN Computer Science (2023) 4:748 748 Page 2 of 15

SN Computer Science

Introduction

Full virtualization was often used in earlier cloud deploy-
ments. Currently, containerization is the dominating solution
when building software services, both in large and small
installations. According to a survey by Dell commissioned
Aberdeen Strategy and Research (ASR) in 2021, 50% of all
applications were containerized1 and the adoption is still
increasing. However while enjoying the significant benefits
brought by containerization technology such as portability,
efficiency, and agility, several security issues also arise by
the kernel-sharing property of containerization [1].

To meet these issues, many different behavior-based solu-
tions have appeared in the industry. The goal of these solu-
tions is to monitor a container in real-time with respect to
the container state changes and external interfaces interac-
tions. This we here refer to as runtime behavior. The dif-
ferent container security products’ can monitor the runtime
behavior and detect malicious activities by using rule-based
or machine-learning-based approaches. For example, the
TwistLock runtime offers both static analyses and machine-
learning-based behavioral monitoring [2]. The TwistLock
monitoring and profiling defense work on four levels: the file
system [3], the processes, the system calls, and the network
[4]. Similarly, Aqua’s runtime security for Docker restricts
privileges for files, executables, and OS resources based
on a machine-learned behavioral profile to ensure that only
necessary privileges are given to the container.2 NeuVec-
tor,3 StackRox4 and Sysdig5 also provide similar products.
Another solution in the same direction is a British Telecom-
munication patent for software container profiling, which
can generate runtime profile for the container in execution
[5]. Worth mentioning in this respect are also two open-
source projects for runtime behavioral monitoring of con-
tainers: Falco6 and Dagda7. Falco is a cloud-native runtime
security tool that can detect and alert on any behavior that
involves making system calls such as running a shell inside
a container or unexpected read of sensitive files. Dagda adds
build-time analysis on top of Falco’s runtime analysis. The
academic works in the area are not as many. Some research-
ers propose novel design ideas but lacking implementation
details and experimental results. In the work of [6], a new
security layer with extra security features on top of the

container architecture is proposed to secure the cloud con-
tainer environment. The proposed layer has two features: a
Container Security Profile (CSP) and the Most Privileged
Container (MPC) feature. CSP is responsible for access
control enforcement. It describes the minimum resource
requirements, runtime behavior, and extra privileges for the
container. The MPC is monitoring the system and detects
any attempt to act against assigned permissions. The MPC
alerts the container engine when suspicious processes are
detected. This in turn allows the engine to halt a potentially
dangerous process.

A different strategy to increased security that can be used
as a stand-alone or together with a container behavior analy-
sis tool, is to restrict the access privileges of a container to
a minimum with Mandatory Access Control (MAC) [7]. By
using this, the possibility for a malicious container to utilize
a platform vulnerability is reduced. In line with this direc-
tion, previous work have address the issue of how to gen-
erate suitable MAC profile for a particular container. Two
early approaches in this direction were LicShield [8] and
DockerSec [9]. More recently, as an extension and consider-
able enhancement of these tools, LicSec [10] was presented.
LicSec is a command-line tool called which utilizes Linux
tracing tools: SystemTap8 and Auditd9 to trace the behavior
of the container runtime and generates customized a Linux
security module AppArmor10 profile. Docker container secu-
rity is significantly enhanced by restricting the privileges of
capabilities, network accesses, file accesses, and executables
based on an automatically generated AppArmor profile. The
tool was experimentally evaluated and proved to be efficient
to real-world attacks, especially against several privilege
escalation attacks.

LicSec requires the profiling tool to be run together with
the container, which in turn needs to be triggered under
extensive test conditions, such that as much as possible of
the container behavior can be catch by the tracing tools. This
is needed to avoid generating a too restrictive profile that
otherwise will give false blockings. However, this does not
work well for real deployment scenarios were a profile bet-
ter is generated under extensive test or in early deployment.
To address this, we in this paper investigate how to realize a
cloud profile generation service, which works under realistic
deployment scenarios. We have designed both a service that
allows the user to upload a container to a profile generation
environment as a cloud service and a principle where the
administrator sets up a local client connected to the Docker
engine, which is collecting behavioral data. This data can
then be fed (in real-time) to the policy generation. Our novel
cloud tool for AppArmor profile generation, which utilizes

1 https:// www. dell. com/ en- us/ blog/ conta iner- adopt ion- trends- why-
how- and- where/.
2 https:// blog. aquas ec. com/ topic/ runti me- secur ity.
3 https:// neuve ctor. com/ produ cts/ conta iner- secur ity/.
4 https:// www. stack rox. com/ use- cases/ threat- detec tion/.
5 https:// sysdig. com/ produ cts/ kuber netes- secur ity/ runti me- secur ity/.
6 https:// github. com/ falco secur ity/ falco.
7 https:// github. com/ elias grand erubio/ dagda# monit oring- runni ng-
conta iners- for- detec ting- anoma lous- activ ities.

8 https:// sourc eware. org/ syste mtap/.
9 https:// linux. die. net/ man/8/ auditd.
10 https:// www. openh ub. net/p/ appar mor/.

https://www.dell.com/en-us/blog/container-adoption-trends-why-how-and-where/
https://www.dell.com/en-us/blog/container-adoption-trends-why-how-and-where/
https://blog.aquasec.com/topic/runtime-security
https://neuvector.com/products/container-security/
https://www.stackrox.com/use-cases/threat-detection/
https://sysdig.com/products/kubernetes-security/runtime-security/
https://github.com/falcosecurity/falco
https://github.com/eliasgranderubio/dagda#monitoring-running-containers-for-detecting-anomalous-activities
https://github.com/eliasgranderubio/dagda#monitoring-running-containers-for-detecting-anomalous-activities
https://sourceware.org/systemtap/
https://linux.die.net/man/8/auditd
https://www.openhub.net/p/apparmor/

SN Computer Science (2023) 4:748 Page 3 of 15 748

SN Computer Science

Lic-Sec, allows dynamic and automatic AppArmor profile
generation.

Furthermore, we also wanted to evaluate, how strong
the resulting profiles are with respect to security and we
investigate the strength of a set of profiles generated for
some typical containers. The strength can be verify if a set
of known Docker vulnerabilities, are applicable to the con-
tainer running with the generate profile or not. In particular,
we evaluate the strength of the profiles by benchmarking
against running the sample services with default Docker
AppArmor profiles.

In summary, we make the following contributions:

• We propose, design, and implement a novel, dynamic,
AppArmor profile generator as a cloud service, both for
local and central behavior monitoring.

• We evaluate the efficiency of the profile generation ser-
vice by testing, on widely used containerized web ser-
vices, the generated profile’s strength against real-world
exploits.

The rest of this paper is organized as follows. In “Back-
ground”, we give a background description of Lic-Sec and
the classification for containers. In “Problem Description”,
we formulate the main research problem, i.e., the design
goal of the profile generator cloud service, and the evalu-
ation goal of the performance of the generated profile. In
“Cloud Service Approach”, we introduce the cloud service
approaches of the profile generator in detail, including the
central service-based approach and the client agent-based
approach. In “Implementation”, we describe the imple-
mentation details of those two approaches. In “Experimen-
tal Setup”, we introduce how the microservice used in the
evaluation is designed and how the exploit database is gener-
ated. In “Evaluation”, the profile generator cloud service’s
primary evaluation results are presented, and a detailed anal-
ysis of the results is given. In “Related Work”, we present
and discuss related work. In “Conclusion”, we conclude this
research and identify future work.

Background

As we discussed in Sect. “Introduction”, in this paper we
enhance and extend the previous work done on an AppAr-
mor profile generation tool called Lic-Sec [10]. In this sec-
tion, we give a brief introduction to this tool. In addition, we
also evaluate the strength of the generated profile. In order
to this, we need a container classification framework, which
we also introduce in this section. These classifications will
be used throughout the paper.

Lic‑Sec

Lic-Sec is a command-line tool that can automatically gener-
ate AppArmor profiles based on container runtime behav-
iors. Lic-Sec combines LiCShield [8] and Docker-sec [9],
both of which enhance container security by applying cus-
tomized AppArmor policies. Lic-Sec has two primary mech-
anisms, including tracing and profile generation. SystemTap
collects all kernel operations while Auditd collects mount
operations, capability operations, and network operations.
This information is processed by the rules generator engine,
and eventually, the AppArmor profile is generated. The Lic-
Sec rules generator engine is the entity responsible for the
actual AppArmor policy generation, to generate the set of
policies used by AppArmor to do the MAC enforcement on
the container. by Rules generated by Lic-Sec include capa-
bilities rules, network access rules, pivot root rules, link
rules, file access rules, mount rules, and execution rules.

Container Classification

A container can support almost any type of application. To
design a microservice evaluated by our new AppArmor pro-
file tool, we have searched and classified the major container
use cases. We explored the top 50 most popular Docker
official images from Docker hub11 in 2020 and classified
them based on their labels. The final classification result
is displayed in Table 1. The total amount of images in the

Table 1 A summary of category
for Docker official images

Category Sub-category Amount Percentage

Database Database and Storage System 15 30%
Application service Service and Tool 14 28%
Application infrastructure Web Server 5 20%

Reverse Proxy 3
Frontend 1
Service discovery 1

Programming Programming Language 8 16%
Base image Operating System 5 10%

11 https:// hub. docker. com/ search? q= & type= image.

https://hub.docker.com/search?q=%20&type=image

 SN Computer Science (2023) 4:748 748 Page 4 of 15

SN Computer Science

table is larger than 50 since some images are labeled with
multiple categories. From the table we can conclude that
the containerized database accounts for the largest propor-
tion, followed by the containerized application services and
infrastructures. In the category containerized application
infrastructure, 50% constitute web servers Consequently,
containerization is widely applied to databases and server-
side applications. Other major use cases are containerizing
services, programming languages, and operating systems.

Problem Description

We are considering the scenario in Fig. 1 where an admin-
istrator, A, wants to launch an arbitrary service, S, on a
container. The service can be launched on a local container
infrastructure or a third-party cloud infrastructure utilized
by the administrator. In this scenario, the administrator is
responsible for preparing S and running it on a suitable
container platform. To achieve this goal, the administrator
can leverage different protection schemes to enhance the
container platform’s security. One such scheme is based on
AppArmor security architecture, using MAC to protect the
container from external threats. However, MAC is compli-
cated to configure manually even if the administrator has
good knowledge of the microservices since the MAC rules
are directly related to the Linux kernel. Furthermore, even
if the administrator can configure it, the rules’ scope is still
hard to define since it cannot be too strict to blocking the
microservice’s essential functions nor too generous to open
up for attacks on containers.

Therefore, the aim of this research is to provide a cloud
service to generate tailored AppArmor profiles for the
administrator in order to protect different microservices in
the most user-friendly way. We also want to evaluate the
efficiency of the generated profiles in a real production
environment. To accomplish these goals, we want to solve
the following two main problems: (1) find a user-friendly
cloud service to generate a tailored AppArmor profile for
an arbitrary microservice automatically; (2) find a suitable
methodology and test framework for evaluating the strengths
of the profiles generated by the cloud service.

Cloud Service Approach

Next, we describe our cloud access profile generation service
system solution. The core of the solution, is that a MAC
profile generation is offered as a security service for con-
tainer administrators. The MAC profile generator is based
on Lic-Sec, which has been described in Sect. “Lic-Sec”.
The proposed profile generation service offloads the admin-
istrator of a container service the burden of setting up a
protection profile generation environment. We design two
approaches for the administrator to use the security ser-
vice. The primary difference between the two approaches is
how the container’s behavior data are collected. In the first
approach, we set up a profile generation environment in the
cloud for the administrator. The administrator’s container-
ized service will be running on the cloud while the contain-
ers’ behaviors are collected on the cloud as well. However,
in the second approach, we separate the behavior collection

Fig. 1 Scenario Overview

SN Computer Science (2023) 4:748 Page 5 of 15 748

SN Computer Science

module and apply it as a distributed client-side log collec-
tion agent that works on the administrator’s local environ-
ment and continuously collects behavioral data from local
containerized services. Those data will be securely sent to
the central service for generating the container profile. As a
result, we name these two approaches central service-based
profile generation and client agent-based profile generation.
Below, we describe the details of both approaches.

Central Service‑Based Profile Generation

The central as well as the agent-based approach (see
Sect. “Client Agent-based Profile Generation”) assume
that an administrator of a Docker has an account at a pro-
file cloud service. In the central approach, the administra-
tor must prepare the complete Docker images including a
complete test suit for verifying the image prior to using the
service. The more complete the test suite, the better profile
in terms of robustness against false blocking, will be the
end result. The end-user is required to uploads images, con-
figurations, and test suites to the cloud central service. The
central service automates profile generation and provides
the user with the ready-to-use profile(s). Below, we give a
step-by-step description of the solution (see also overview
Fig. 2):

1. An administrator, A, prepares a new service, S, together
with configuration information, C, including parameters
such as the mounted volumes, the open ports, the needed
capabilities, etc., as well as a test suite, T, for S. S will
be deployed on a container on local or third-party cloud

resources as a new service with the given configurations.
T consists of cases for testing all functions of S.

2. A is assumed to have an agreement with a container
security provider and set up a secure connection (authen-
ticated, confidentiality and integrity protected) with
these providers. The provider evaluates if the requester
has an agreement with the provider. If this is the case,
the provider launches a new Virtual Machine (VM),
including container launch profile and MAC profile gen-
erator on an internal cloud resource. Login credentials
for the VM running container services are created on
the internal resources, and a URL, as well as credentials
for accessing the VM, are returned to the administrator
machine.

3. A uses the credentials received in step 2) to make a
secure connection to the new VM created in the profile
generation service cloud. Using the received credentials,
A logs in to the VM and uploads S, C, and T to the VM.

4. A script on the VM launches container(s) with the
uploaded S and the given C. The functions of S are
tested automatically during the tracing period by run-
ning T. Then, the script generates a MAC protection
profile based on the trace records. T is rerun with profile
enforced to verify no function of S is blocked by the pro-
file. If the verification fails, the service provider informs
A of the failure and discontinues this service.

5. The profile generated in step 4 that is successfully veri-
fied is temporarily stored, and the VM is killed, and all
its data is wiped out from memory.

6. P is returned to A by sending a profile download link to
A.

Fig. 2 Central Service-based
Profile Generator as a Cloud
Service Solution Overview

 SN Computer Science (2023) 4:748 748 Page 6 of 15

SN Computer Science

7. A takes the received MAC profile, P, and launches S
on a local or remote container service with the profile
applied.

Client Agent‑Based Profile Generation

In the client agent approach, the container administrator sets
up a client in the local environment. The client takes charge
of behavior data collection and transmission, and profile
verification. This means that a local agent must be installed
on the cloud environment used by the administrator. This
we refer to as the ”Local Environment”. Different from the
central design, this means that the agent also needs security
configurations to allow secure information transfer between
the local client and the central profile generation system. We
here have used a simple configuration with a client secret
and basic authentication12 in combination with standard
server certificates for server authentication according to the
TLS standard.13 However, the solutions work equally fine
using a client certificate or a pre-shared key for instance. The
workflow for this approach is shown in Fig. 3. We explain
each step in detail below:

1. An administrator, A, has prepared a local microservice
environment in which containers run without any secu-
rity policies. The local environment is required to sup-
port AppArmor. It is also required that A is able to test
all features of the microservice in the local environment.

2. A registers to the cloud service, meanwhile, a client
secret is generated for A and saved in the cloud backend
as belonging to A.

3. A downloads the client from the cloud service and
fetches the client secret.

4. A sets up the local client in the microservice environ-
ment and provides it with the client secret.

5. The client enables the training feature, continuously
collecting the behavioral data D generated by the local
containers. During this period, A is supposed to test all
the functionalities of the local microservice so that the
client is able to record the full containers’ behavior.

6. The client verifies the server identity and proceeds to
validate itself to the cloud service through the client
secret. Then the behavioral data D generated in step 5
is securely transmitted to the server by the client. The
server keeps D in the log storage.

7. The profile generator engine reads D from the storage,
transforms it to the container profile(s) P(s), and saves
P(s) in the profile storage.

8. The server fetches P based on A’s client ID, and securely
sends P back to the local client in A’s environment.

9. The client runs P locally and provides A with feedback
on the results of the applying the profile, i.e. if the ser-
vice runs normally or if legal actions are blocked by
AppArmor. If the profile is judge to be too restrictive,
the client repeats step 5 to 9 until the profile is consid-
ered stable.

Implementation

Here we introduce the implementation details of the two
previously mentioned approaches. Citycloud14 located in
Sweden is used as the internal cloud platform of the profile

Fig. 3 Client Agent-based
Profile Generator as a Cloud
Service Solution Overview

12 https:// datat racker. ietf. org/ doc/ html/ rfc76 17.
13 https:// datat racker. ietf. org/ doc/ html/ rfc84 46. 14 https:// cityc loud. se/.

https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc8446
https://citycloud.se/

SN Computer Science (2023) 4:748 Page 7 of 15 748

SN Computer Science

generation service. Figure 4 shows the end-user interface for
the service. The interface is a web graphical user interface
where the user can upload images, configuration files, and
test suites, replace those files and download ready-to-use
generated profiles.

Central Service‑Based Profile Generation

The implementation framework is displayed in Fig. 5. A
backend server and a data storage with contract users’ infor-
mation are running on the cloud to provide three main func-
tions: user authentication, service launch, and profile fetch.
The detailed description for each function is as follows:

User Authentication: the user is authenticated by the
backend server (username and password). After success-
ful authentication, the backend server sets up a VM with a
ready-to-use profile generation environment on Citycloud.
The profile generation environment includes the following
pre-installed components:

• profile generator: we use the Lic-Sec tool described
in Sect. “Lic-Sec” for tracing behaviors and generating
AppArmor profile for the uploaded service.

• service manager: this is a bash script responsible for
discovering newly uploaded service, launching Docker
service, and enabling the profile generator and verifier,
which automates the profile generation and verification.

• verifier: we use Newman15 as the verifier, which is a
command-line collection runner for Postman.16 It is
responsible for running RESTful API tests in the test
suite uploaded by the user. The test suite is a JSON file
and easy to run with a simple command: $newman run
< testsuite.json >.

• Docker environment: the Docker CLI, the Docker dae-
mon, and the docker-compose package constitute the
Docker environment, which runs the uploaded service
in Docker containers.

Fig. 4 The user interface for the profile generation service

Fig. 5 The implementation framework of central service-based pro-
file generation service

15 https:// www. npmjs. com/ packa ge/ newman.
16 https:// www. postm an. com/.

https://www.npmjs.com/package/newman
https://www.postman.com/

 SN Computer Science (2023) 4:748 748 Page 8 of 15

SN Computer Science

Service Launch: to use the profile generation service,
the user needs to prepare the service and configurations for
running the service in Docker containers and a test suite
script created by the service(s) owner. The script tests all
the service’s functionalities (see also the discussion on test
suit preparation below). For the configurations, the user can
directly use the Docker Compose file. For the test suite, the
user can use the JSON file exported from Postman Collec-
tion. Once the service, configurations, and test suite are
uploaded, the service manager inside the VM runs the ser-
vice with docker-compose and starts the profile generator.
Simultaneously, the service manager enables the training
period and calls the verifier to run the test suite. After the
training phase is over, and the profile is successfully gener-
ated, the service manager calls the verifier again with the
profile enforced. Hence, the two significant phases of service
launch are training and verification. Below, we discuss them
in more detail.

• Training: the profile generator uses Lic-Sec to trace
the runtime behavior of the service, which has been
described in Sect. “Lic-Sec”. At the same time, New-
man runs the test suite, and all the functionalities of the
service are tested.

• Verification: verification ensures that the generated pro-
file does not block any functionality of the service. The
service manager first enforces the generated profile and
then calls Newman to rerun the test suite. If any test case
fails, the service manager restarts the profile generation
service and regenerates the profile. If the verification fails
three times, the service manager stops the profile genera-
tor and sends an error message to the backend server.
The backend server then provides a secure link for users
to check the failed cases. The users can ask for technical
supports from the profile generation service provider.

Profile Fetch: once the verification is successful, the profile
generated inside the VM is uploaded to the backend server
immediately by the service manager. Upon receiving the
profile, the backend server requests Citycloud to kill this
VM completely. Meanwhile, the backend server temporarily
saves the profile locally and provides a secure link for users
to download the profile.

Test Suite Preparation: postman is a popular API client
that has been widely used by developers to create and save
HTTP/s requests, read and verify their responses. The Post-
man Collection is a built-in function that includes a set of
pre-built requests. Newman automates the running and test
of a Postman Collection. Users create a new collection by
merely clicking +NewCollection in the Postman GUI and
then import all pre-built requests against the same service
into this new collection. To run the collection with Newman,
users should export the collection as a JSON file. This file

is the test suite that will be run by the verifier automati-
cally during the training period. The required permissions
and file operations by those requests are traced to generate
the profile. If the test suite misses any request, correspond-
ing permissions, and file operations required to handle the
request will not be generated in the profile. Therefore, the
profile’s effectiveness dramatically relies on the test suite’s
quality, and the generated profile only fits the service that
has been trained. It is the users’ responsibility to guarantee
that the test suite covers all functions of the service. We
consider it not an extra effort since an end-to-end test of a
service is typically required before publishing the service
independently of our cloud profile generation service.

Client Agent‑Based Profile Generation

In order to realize the agent-based profile generation service,
we divided Lic-Sec into two new modules. The first module
is an auditing module and the second module is the actual
profile generator. We accommodate the auditing module to
work as a local client. The profile generator engine module
is integrated with the cloud service to process the behavio-
ral data transmitted from the client. Below, we give further
details of how we realized the local client, the secure log
transmission, and the profile generation parts of the solution.

Local Client: this is a CLI (command-line interface) tool
written using Java Spring Boot.17 In a future version of our
solution, the tool should be possible to download from the
cloud service when the user has registered the service. In
our current solution, we need to manually fetch the tool.
The client is responsible for the trace of containers, the
parsing, and the secure transmission of the logs. The client
consists of five components which are displayed in Fig. 6.
The command-line interface is the entry for end-users to
communicate with the client. The auditing module has been
changed from Lic-Sec to allow the Auditd service to log
AppArmor permission check events for containers. The log

Fig. 6 The implementation details for the local client

17 https:// docs. spring. io/ spring- boot/ docs/ curre nt/ refer ence/ htmls
ingle/.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

SN Computer Science (2023) 4:748 Page 9 of 15 748

SN Computer Science

parser collects, formats, and packages the local logs. The
transmission module sets up a secure connection with the
server using the secret stored in the Keystore. When the cli-
ent has been set up and running in the users’ hosts, they can
enable the training feature of the auditing module through
CLI to trace containers and generate the Auditd logs. Those
logs are saved locally as /var/log/audit/audit.log. The log
parser then reads these logs from the local files, formats
them as JSON, and collects the formatted logs during the
same training period into the same log file. This file is sent
to the server securely by the transmission module according
to the principle below.

Secure Data Transmission: mutual authentication based
on TLS18 (mTLS) is utilized to encrypt logs sent from the
client to the server. Therefore, all communication is over
HTTPS (neither client nor server serves “plain” HTTP
requests). The local client utilizes a client secret for authen-
tication as well as a certificate for verification of the server.
When the user registers to the cloud service, a client secret is
generated and saved in the cloud backend. Users can obtain
their client secret from the cloud service and provide the
secret to the client before running it. The secret is then stored
in a Keystore in PKCS12 format and used for establishing a
secure transmission.

Profile Generation: the profile generating engine module
in Lic-Sec has been modified to process the logs sent by the
client. The engine performs efficient analysis utilizing Pan-
das,19 one of Python’s most popular data science modules for
big data processing. Those logs are saved in the log storage
with the unique client ID as the key. The engine monitors the
newly created log files in the storage and transforms them
into AppArmor profiles. To be more specific, the following
three structures are seen in the Auditd logs, which corre-
spond to file access events, network events, and capability
events, respectively:

• structure 1: [AppArmor] [operation] [info*] [profile]
[name] [pid] [comm] [requested_mask] [fsuid] [ouid]
[target*]

• structure 2: [AppArmor] [operation] [profile] [pid]
[comm] [laddr*] [lport*] [faddr*] [fport*] [family]
[sock_type] [protocol] [requested_mask] [addr*]

• structure 3: [AppArmor] [operation] [profile] [pid]
[comm] [capability] [capname]

The fields with asterisks (*) are optional. In file execution
events, the inheritance fallback will be recorded in field info,
which shows the approach to permission inheritance from
the executed binary, and the target profile will be recorded
in field target, which is the profile for the child process of

the executed binary. Fields faddr and fport in some network
events record foreign addresses and ports, while fields laddr
and lport record local addresses and ports.

Since there would be logs for several containers in the
same log file, the engine first classifies the logs based on the
value in field profile. Then, it further categorizes each con-
tainer’s logs by event type. For the capability-related logs, it
should have capable as the value in the field operation. For
network-related logs, the field sock_type must exist. While
searching for the file access-related logs, different require-
ments apply depending on the existence of the optional fields
mentioned earlier. For execution-related operation on files,
it requires the existence of fields fsuid, info, and target. Con-
versely, non-execution operations on files can be searched
out by the unique existence of the field fsuid. Those sorted
logs are further converted to dataframes20 for efficient pro-
cessing. Dataframe represents a table of data with rows and
columns. In this scenario, each row of the table corresponds
to a log, and each column corresponds to a field in the log.

At this point, the engine starts to generate rules of dif-
ferent types. The patterns for producing the rules are listed
below. The engine extracts the values and combines them
based on the patterns.

• capability rule: capability [capname]
• network rule: network [family] [sock_type] [protocol]
• file access rule:

– non-execution operations: [name] [requested_mask]
– execution operations: [name] [info]

In the end, the engine may generate several different profiles.
It saves those profiles in the profile storage with the key
being the name in the “[profile name]-[client ID]” format
and the value being the corresponding AppArmor profile.
In this way, it is easy to locate the specific profile based on
user and container information.

Experimental Setup

We have experimentally evaluated the profile generator
architecture and design. In this section we describe the
details of the implementations and the evaluations. We start
by discussing the selection and deployment of the microser-
vice used in our evaluation. Then we describe how we have
collected and classified the exploits targeting this micros-
ervice, and finally, we explain how the tests were executed.

Microservice selection and deployment: we decide to
use a web service stack to build the evaluated microservice.

18 https:// datat racker. ietf. org/ doc/ html/ rfc84 46.
19 https:// pandas. pydata. org/.

20 https:// pandas. pydata. org/ pandas- docs/ stable/ user_ guide/ dsint ro.
html.

https://datatracker.ietf.org/doc/html/rfc8446
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html

 SN Computer Science (2023) 4:748 748 Page 10 of 15

SN Computer Science

This stack compiles software that enables the creating and
running of complex websites on any computer. It usually
includes a web server, a database system, an underlying
operating system, and supports for particular programming
languages. It is very suitable to be used as the underlying
stack for building the containerized service since databases,
server-side applications, programming languages, and oper-
ating systems are commonly deployed as microservices in
Docker containers as concluded in Sect. “Container Clas-
sification”. Web services are also among the most widely
deployed container services. The stack we used for the eval-
uation includes a backend service, a reverse proxy service,
and a database service, each of which runs in a separate con-
tainer. We used a simple secret management system to test
the set-up. The chosen service provides four APIs and safe
persistent storage for secret owners to save and manage their
secrets. To be more specific, the four APIs are POST∕path

1

for creating secret and securely saving it to the database,
DELETE∕path

1
< secID > and PUT∕path

1
< secID > for

deleting and updating a specific secret with secID , and

GET∕path
2
< secID > for fetching a specific secret with

secID.
Exploit database collection and classification: we

used the exploit collection and classification method sug-
gested in [11]. According to this methodology, we first gen-
erated a universe exploit database by collecting the latest
100 exploits of each category from Exploit-db.21 Then we
filtered out the exploits which may probably fail on the con-
tainer platform and used a two-dimensional method for clas-
sifying the final set. We generated the final exploit dataset
and classified the exploits based on the method discussed
above but modified it to suit the study’s evaluation goal. We
implement the method from [10] to obtain the exploits which
were effective on the evaluated microservice discussed
before. We first generated the initial universe set of exploits
by searching out the exploits that mainly target the micros-
ervice’s software. Based on this set, we filtered out exploits
that can be defended by default Docker security mechanisms

Table 2 Exploit Database
Collection

Object EDB-ID CVE-ID Category

Redis 48272 N/A Execute code Gain information
47195 N/A Execute code Gain information
40678 CVE-2016-6663 Gain Privilege

MySQL 40360 CVE-2016-6662 Execute code Gain Privilege
39867 CVE-2015-4870 DoS
N/A CVE-2012-2122 Bypass Gain information

PHP 47553 48182 CVE-2019-11043 Execute code
Linux 48052 CVE-2019-18634 Gain Privilege
Docker engine N/A CVE-2020-13401 Gain information DoS
phpMyAdmin 40185 CVE-2016-5734 Execute code

44496 CVE-2018-10188 Execute code

Table 3 Evaluation Result
Overview

1 “Doc” denotes the number of exploits execute successfully on containers launched with Docker, and
“Svc” denotes the number of exploits execute successfully on containers launched with the profile genera-
tion service

Categories Software

Redis MySQL PHP Linux Docker Engine phpMyAdmin

Bypass
(Doc/Svc1)

∖ 1/1 ∖ ∖ ∖ ∖

Gain Privilege
(Inside Container)
(Doc/Svc1)

∖ 2/0 ∖ 1/1 ∖ ∖

DoS
(Doc/Svc1

∖ 1/1 ∖ ∖ 1/0 ∖

Gain Information
(Doc/Svc1)

2/0 1/1 ∖ ∖ 1/0 ∖

Execute Code
(Doc/Svc1)

2/0 1/0 1/0 ∖ ∖ 2/1

21 https:// www. explo it- db. com.

https://www.exploit-db.com

SN Computer Science (2023) 4:748 Page 11 of 15 748

SN Computer Science

by analyzing the exploit codes and launching the exploits
in the Docker containers with default security configura-
tions. Eventually, we obtained the final exploit dataset with
11 exploits published after 2016 out of 56 exploits, which
were harmful to the containerized web service. We classified
these exploits using the targeting object and its impact. The
exploit details and their categories are shown in Table 2.

Test setup: the microservice was set up on a host run-
ning the Linux distribution Ubuntu 18.04.5 LTS with kernel
version 4.15.0-72-generic. This Linux version was chosen
to guarantee that the host is vulnerable to the Linux vulner-
abilities in the selected exploit collection. Docker 19.03.1-ce
was used for the microservice. This version was released on
25th July 2019 and supported Linux kernel security mecha-
nisms, including Capability, Seccomp, and MAC. We imple-
mented the Redis and MySQL database services. While
implementing MySQL, we also deployed phpMyAdmin as
the administrator. Nginx was implemented as the reverse
proxy. PHP was used for the backend service.

Evaluation

Here we present the evaluation results. We start by sum-
marizing the overall results, and then we make a detailed
analysis of the successful and failed defenses, respectively.

Test Results Overview

The evaluation results are listed in Table 3. The results indi-
cate that, first, among all the rules generated by the cloud
service, the file access rules play a much more significant
role in defending exploits than the other rules. Second, the
AppArmor profile-based container protection scheme is
more effective against attacks with a high level of sophistica-
tion, which requires many file manipulations than the simple
attacks, which directly exploit targets’ innate flaws with lim-
ited privileges in the profile. We will explain it in detail by
analyzing the attacking principle of the exploits, the defend-
ing principle of the enforced profiles, and the reasons for the
failed defenses in the following subsections. It should be
noted that limits exist for the evaluation: first, the test profile
is generated based on the designed microservice discussed
in Sect. “Experimental Setup”. It gives the least privileges
for running the service without blocking any functionality
of this service only. Therefore, the exploits defended in this
evaluation setup may not be defended anymore in another
setup. Second, the generated profile cannot remediate the
vulnerability but prevent attacks exploiting the vulnerability.

Successful Defenses

In total, the generated profile successfully defends 7 out of
11 exploits. Among these defenses, 6 defenses are due to
the restriction of permissions to file resources, and only 1
defense is due to the lack of specific capability.

Redis: two exploits targeting Redis are proved to be
vulnerable to the tested microservice. These exploits take
advantage of an unauthorized access vulnerability of Redis
version 4.x and 5.x. It uses the Master-Slave replication to
load remote modules from a Rogue Redis server to a tar-
geted Redis server. It executes arbitrary commands on the
target.22 Successful launch of the exploit requires to create
a malicious exploit module written by the attacker in the
Redis server’s ’/data’ directory. After loading the module,
the attacker can execute arbitrary commands. The exploit
can be launched with the default security mechanism since
the file access rules for ’/data’ directory is quite generous
with no restrictions. However, the exploits are successfully
defended by the enforced profile. Since the profile only
grants ’read’ permission to ’/data’ directory, no files can be
created inside this directory.

MySQL: two exploits (EDB-ID-4067823 and EDB-
ID-40360)24 aiming to gain privilege inside the container
are successfully defended by the generated profile. These
two privilege escalation exploits take advantage of two
critical vulnerabilities (CVE-2016-666225 and CVE-2016-
6663)26 in Oracle MySQL. The former one is a race condi-
tion that allows local users with certain permissions to gain
privileges. The latter creates arbitrary configurations and
bypasses certain protection mechanisms to perform arbitrary
code execution with root privileges. The successful launch
of EDB-40678 needs to create a table named ’exploit_table’
in directory ’/tmp/mysql_privesc_exploit’. Since the profile
does not grant any ’write’ permission to this directory, the
launch of the exploit fails. Similarly, to launch EDB-40360,
the attacker must write to the file ’poctable.TRG’ in direc-
tory ’/var/lib/mysql/demo,’ which also requires ’write’ per-
mission to the directory and the file. The profile defends the
exploit since there is no rule giving such permissions to the
directory and the file.

PHP: there is one attack targeting PHP-fpm exploit-
ing CVE-2019-11043,27 which is a bug in PHP-fpm with
specific configurations. It allows a malicious web user to
get code execution. We used an open tool to reproduce the

22 https:// 2018. zeron ights. ru/ wp- conte nt/ uploa ds/ mater ials/ 15- redis-
post- explo itati on. pdf.
23 https:// www. explo it- db. com/ explo its/ 40678.
24 https:// www. explo it- db. com/ explo its/ 40360
25 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2016- 6662.
26 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2016- 6663.
27 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2019- 11043.

https://2018.zeronights.ru/wp-content/uploads/materials/15-redis-post-exploitation.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/15-redis-post-exploitation.pdf
https://www.exploit-db.com/exploits/40678
https://www.exploit-db.com/exploits/40360
https://nvd.nist.gov/vuln/detail/CVE-2016-6662
https://nvd.nist.gov/vuln/detail/CVE-2016-6663
https://nvd.nist.gov/vuln/detail/CVE-2019-11043

 SN Computer Science (2023) 4:748 748 Page 12 of 15

SN Computer Science

vulnerability of this tool.28 A web shell is written in the
background of PHP-fpm, and any command can be executed
by appending it to all PHP scripts. This attack cannot be
performed with the profile in force since the exploit needs
’write’ permission to directory ’/tmp’ to create new files in
this directory, which is not granted in the profile. The rea-
son is that the evaluated microservice does not provide an
API for users to upload files to the server. Consequently, no
permissions are granted to the directory ’/tmp’.

Docker Engine: a vulnerability, CVE-2020-13401,29 is
discovered in Docker Engine before 19.03.11. An attacker
inside a container with the CAP_NET_RAW capability can
craft IPv6 router advertisements to obtain sensitive infor-
mation or cause a denial of service. The enforced profile
perfectly defends this attack since the profile discards the
CAP_NET_RAW capability.

phpMyAdmin: CVE-2016-573430 is an issue of phpMy-
Admin which may allow remote attackers to execute arbi-
trary PHP code via a crafted string. The attack is written in
Python and uses the function ’system()’ to execute command
after exploiting. This function’s call needs the execution per-
mission of ’/bin/dash’ to prompt a terminal. The enforced
profile successfully defends this attack since it denies the
execution of ’/bin/dash.’

Failed Defenses

In total, the generated profile fails to defend 4 out of 11
exploits. The attacks we could not prevent are generally not
very complicated and do not rely on any specific capability
or network access.

MySQL: Two exploits are targeting on MySQL that can-
not be defended by the profile. One is a DoS attack exploit-
ing vulnerability CVE-2015-487031 to crash the MySQL
server by passing a subquery to function PROCEDURE
ANALYSE(). The attack does not require any extra capabil-
ity to launch. The required network access is only ’network
inet stream’, which is also necessary for running the MySQL
database. Regarding the file accesses, the attack needs ’read’
permission to the directory ’/var/lib/mysql/mysql’, which has
been granted by the profile as it is needed to run the service.

The other uses vulnerability CVE-2012-212232 to log in
to a MySQL server without knowing the correct password.
The vulnerability comes from the incorrect handling of the
return value of the memcmp function, which is an innate
flaw of the software. Hence, the AppArmor profile will not
help here. The first attack’s impact is more severe than the

second one since it completely disrupts the database service.
For the second attack, even if the attacker bypasses authenti-
cation and logs in as an authenticated user, his/her behavior
is still restricted by the enforced profile.

Linux: CVE-2019-1863433 is a bug in Sudo before
1.8.26. Pwfeed-back option is used to provide visual feed-
back while inputting passwords with sudo. The option is
disabled by default, but in some systems, users can trigger
a stack-based buffer overflow in the privileged sudo pro-
cess if this option is enabled. The stack overflow may allow
unprivileged users to escalate to the root account.34 The
enforced profile fails to defend this attack since overflowing
the buffer does not require extra file manipulation or extra
capabilities. However, the attack’s impact is limited since
the attacker gets root privilege only inside the compromised
container. The profile is still effective to the container so that
the attacker is still under supervision.

phpMyAdmin: CVE-2018-1018835 is a Cross-Site
Request Forgery issue in phpMyAdmin 4.8.0, which allows
an attacker to execute arbitrary SQL statements. The vulner-
ability comes from the failure in ’sql.php’ script to prop-
erly verify the source of an HTTP request, which is also an
innate flaw of the software. Similarly, the profile privileges
are enough to launch the attack, which leads to the failed
defense. The impact is relatively high since ’write’ and
’read’ permissions generally should be granted to ensure
the regular operation of a database’s essential functions; the
attacker is unfortunately still able to drop, read or modify an
existing database even if the profile is enforced.

Related Work

There are some researches addressing profiling to enhance
runtime security for containerization environment. In the
work of [12], a security control map, including rate limit,
memory limit, and session limit, as well as a malware detec-
tion system with profiling, is proposed to harden the security
of runtime containers. All of the limit thresholds in this con-
trol map are derived from lab experiments and customer use
case scenarios. The malware detection system is responsible
for detecting malware behavior events, conveying seman-
tic information about malicious behaviors, and predicting
malware intentions. Based on the intentions, corresponding
security policies are created automatically. The proposed
control map is experimentally evaluated to improve con-
tainer security significantly, especially when the attacker
is inside the container. The main difference compared to
our work is that this security control map is profiling the 28 https:// github. com/ neex/ phuip- fpizd am.

29 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2020- 13401.
30 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2016- 5734.
31 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2015- 4870.
32 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2012- 2122.

33 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2019- 18634.
34 https:// www. sudo. ws/ alerts/ pwfee dback. html.
35 https:// nvd. nist. gov/ vuln/ detail/ CVE- 2018- 10188.

https://github.com/neex/phuip-fpizdam
https://nvd.nist.gov/vuln/detail/CVE-2020-13401
https://nvd.nist.gov/vuln/detail/CVE-2016-5734
https://nvd.nist.gov/vuln/detail/CVE-2015-4870
https://nvd.nist.gov/vuln/detail/CVE-2012-2122
https://nvd.nist.gov/vuln/detail/CVE-2019-18634
https://www.sudo.ws/alerts/pwfeedback.html
https://nvd.nist.gov/vuln/detail/CVE-2018-10188

SN Computer Science (2023) 4:748 Page 13 of 15 748

SN Computer Science

malware behavior but not the container runtime behavior.
Hence, the created security policies will only protect the
container from malware attacks that have been detected by
the malware detection system and no other attacks.

Many commercial products are providing container
runtime profiling, as mentioned in Sect. “Introduction”. In
the academic area, LiCShield [8] and Docker-sec [9] men-
tioned in Sect. “Lic-Sec” are two such solutions. Both aim
to secure Docker containers through their whole life-cycle
by automatically generating AppArmor profiles based on
container runtime behavior profiling. The main difference is
that Docker-sec uses Auditd as the tracing tool and generates
capability rules and network access rules, while LiCShield
uses SystemTap and generates rules other than the ones gen-
erated by Docker-sec such as file access rules and mount
rules. However, both are command-line tools to be used
locally and do not provide full dynamic profiling with veri-
fication for the target application. LicSec [10] was created
as a continuation of LicShield and DockerSec. As we have
explained above, this paper is built upon LiSec but extend
it to build a full cloud system profile generation service and
also evaluate the security performance of the created profiles
provided by the generator.

Apart from solutions based on profiling, researchers are
exploring other ways to enhance container security. One
direction is to apply customized LSM modules. Bacis et al.
propose a solution that binds SELinux policies with Docker
container images by adding SELinux policy module to the
Dockerfile. In this way, containerized processes are pro-
tected by pre-defined SELinux policies [13]. This approach
requires the system administrator to have good knowledge of
the service running inside the containers to define the most
suitable SELinux policy. Consequently, it is not an automatic
process. [14] propose the design of security namespace,
which is a kernel abstraction that enables containers to uti-
lize virtualization of the whole Linux kernel security frame-
work to achieve autonomous per-container security control
rather than relying on the system administrator to enforce
the security control from the host. The experimental results
show that security Namespaces can solve several container
security problems with an acceptable performance overhead.
An architecture called DIVE (Docker Integrity Verification
Engine) is proposed by [15] to support integrity verification
and remote attestation of Docker containers. DIVE relies on
a modified version of IMA (Integrity Measurement Archi-
tecture) [16], and OpenAttestation, a well-known tool for
attestation of cloud services. DIVE can detect any specific
compromised container or hosting system and request to
rebuild this single container and report to the manager.

Another direction is to protect containers from the kernel
layer by providing a secure framework or wrapper to run
Docker containers. Charliecloud, which is a security frame-
work based on the Linux user and mount namespaces, is

proposed by [17] to run industry-standard Docker contain-
ers without privileged operations. Charliecloud can defend
against most security risks such as bypass of file and direc-
tory permissions and chroot escape. A secure wrapper called
Socker is described by [18] for running Docker containers on
Slurm and other similar queuing systems. Socker bounds the
resource usage of any container by the number of resources
assigned by Slurm to avoid resource hijacking. Furthermore,
Socker enforces the submitting user instead of the root user
to execute on containers to avoid privileged operations.

Similar client agent-based approaches have been used
in certain studies to enhance container security. Generally,
containers are distributively deployed and centrally man-
aged by an orchestration platform such as Kubernetes. As
a result, client agent-based approaches fit perfectly in this
scenario. KubAnomaly [19] is such a system that utilizes
an agent service to collect monitor logs from Docker-based
containers through Sysdig36 and Falco,37 and sends these
monitor log data back to the center for anomaly detection
based on neural network techniques. The service moni-
tors the container behavior based on a designed event list
including 4 categories of system calls (file I/O, network I/O,
scheduler, and memory). In [20], an ADS (anomaly detec-
tion system) is designed to detect and diagnose anomalies
in microservices. It employs a monitoring module to col-
lect the real-time performance data of containers such as
CPU metrics, memory metrics, and network metrics. The
agent is also utilized in [21] to collect the monitoring data
including container performance metrics, host metrics, and
workloads. Those data are sent to a real-time data storage for
detection of anomalies and identification of possible causes
of the anomalies through Hidden Markov Models. Besides
the agent-based solutions, container monitoring based on
third-party tools is another major way of detecting container
anomalies and monitoring container integrity. In the work
of [22], Prometheus,38 an open-source monitoring and alert-
ing tool, is employed to help microservice administrators to
catch and predict container anomalies earlier. Falco is used
in [23] as the system level monitor for containers to monitor
the system calls. And a novel mechanism is proposed to filter
out expected system calls and detect abnormal mutations to
avoid false alarms in container integrity monitoring.

Besides proposing general security solutions for con-
tainers, many different research works focus on proposing
container security countermeasure or algorithm against a
particular attack category, which includes special investiga-
tions on some common attacks such as DoS attacks [24],
application level attacks [25] and covert channels attacks
[26], as well as some attacks with severe impacts such as

36 https:// sysdig. com/.
37 https:// falco. org/.
38 https:// prome theus. io/.

https://sysdig.com/
https://falco.org/
https://prometheus.io/

 SN Computer Science (2023) 4:748 748 Page 14 of 15

SN Computer Science

container escape attacks [27] and attacks from the underly-
ing compromised higher-privileged system software such as
the OS kernel and the hypervisor [28]. In the work of [24], a
three-tier protection mechanism is applied to defend against
DoS attacks. The mechanism is designed with memory limit
assignment, memory reservation assignment, and default
memory value setting to limit the container’s resource con-
sumption. Regarding the application-level attacks, [25] pro-
pose DATS, a system to run web containerized applications
that require data-access heavy in shared folders. The system
enforces non-interference across containers of data access-
ing and can mitigate data-disclosure vulnerabilities. Covert
channel attacks against Docker containers are analyzed by
[26]. They identify different types of covert channel attacks
in Docker and propose solutions to prevent them by config-
uring Docker security mechanisms. They also emphasize
that deploying a full-fledged SELinux or AppArmor security
policy is essential to protect containers’ security perimeters.
[27] make a thorough investigation of Docker escape attacks
and discover that a successful escape would create different
Namespaces. Therefore, they propose a defense based on
Namespaces status inspection, and once a different Names-
paces tag is detected, the affiliated process is killed imme-
diately, and the malicious user is tracked. The test results
show that this defense can effectively prevent some real-
world attacks. SCONE is proposed by [28], which is a secure
container environment for Docker utilizing Intel Software
Guard eXtension (SGX) [29] for running Linux applications
in secure containers.

Some researches aim to provide secure connections for
Docker containers. In the work of [30] and [31], both of
them propose solutions to build secure and persistent con-
nectivities between containers. The work of Secure Cloud
proposed by [30] is realized with the support of Intel’s
SGX. While the SynAPTIC architecture from [31] is based
on the standard host identity protocol (HIP). Cilium39 is
open-source software for securing the network connectivity
between containerized application services.

Conclusion

In this paper, we have proposed a secure cloud service to
generate runtime AppArmor profiles for Docker containers.
The cloud service is user-friendly and offloads the adminis-
trator of a container service the burden of setting up a protec-
tion profile generation environment. We have provided both
a solution where the administrator of the container uploads
the complete container including a test-suit to our profiling
tool, as well as a version where the container executes at
the administrator domain and sends access logs to the cloud

profiling generator. We evaluated the approach by running
a set of typical microservices on the cloud profile genera-
tor solution. We manually collected 11 most relevant real-
world exploits from Exploit-db, which target the selected
microservice’s software. Even if the number of exploits is
not very large, it still gives us a good view of our approach’s
efficiency compared to the strength of the default Docker
profile. The results show that the profile successfully defends
7 out of 11 exploits not covered by the default profile, a
considerable improvement based on the evaluation set-up.
By analyzing the defending principles, we found that the
profile is more efficient against complicated exploits that
require many file manipulations. The results also indicate
that among all kinds of rules generated in the profile, the file
access rules play a much more significant role in defending
exploits than other rules.

It is left to future work to compare our profile generator
cloud service with other commercial products mentioned in
Section “Introduction” to get a comprehensive understand-
ing of the proposed service’s strengths and weaknesses.

Acknowledgements Work supported by framework grant RIT17-0032
from the Swedish Foundation for Strategic Research as well as the EU
H2020 project CloudiFacturing under grant 768892.

Funding Open access funding provided by Lund University.

Data availability The profiles generated for this research study are
available on https:// github. com/ kikoa shin/ kubes ec. The profiling ser-
vice have since the research study was concluded, been further devel-
oped and transferred to a new start-up company, https:// qurit is. com/,
which offer free of charge AppArmor container profile test generation.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Casalicchio E, Iannucci S. The state-of-the-art in container tech-
nologies: application, orchestration and security. Concurrency and
Computation: Practice and Experience. 2020;5668.

 2. Stopel D, Levin L, Yankovich L. Profiling of container images and
enforcing security policies respective thereof. Google Patents. US
Patent 10,586,042 (2020).39 https:// github. com/ cilium/ cilium.

https://github.com/kikoashin/kubesec
https://quritis.com/
http://creativecommons.org/licenses/by/4.0/
https://github.com/cilium/cilium

SN Computer Science (2023) 4:748 Page 15 of 15 748

SN Computer Science

 3. Levin L, Stopel D, Yanay E. Filesystem action profiling of con-
tainers and security enforcement. Google Patents. US Patent
10,664,590 (2020).

 4. Levin L, Stopel D, Yanay E. Networking-based profiling of con-
tainers and security enforcement. Google Patents. US Patent
10,599,833 (2020).

 5. Daniel J, El-Moussa F. Software container profiling. Google Pat-
ents. US Patent App. 16/300,169 (2019).

 6. Sarkale VV, Rad P, Lee W. Secure cloud container: Runtime
behavior monitoring using most privileged container (mpc). In:
2017 IEEE 4th International Conference on Cyber Security and
Cloud Computing (CSCloud), IEEE; 2017. p. 351–356.

 7. Stallings W, Brown L. Computer security: principles and practice.
3rd ed. USA: Prentice Hall Press; 2014.

 8. Mattetti M, Shulman-Peleg A, Allouche Y, Corradi A, Dolev S,
Foschini L. Securing the infrastructure and the workloads of linux
containers. In: 2015 IEEE conference on communications and
network security (CNS), IEEE; 2015. p. 559–567.

 9. Loukidis-Andreou F, Giannakopoulos I, Doka K, Koziris N.
Docker-sec: A fully automated container security enhancement
mechanism. In: 2018 IEEE 38th international conference on dis-
tributed computing systems (ICDCS), IEEE; 2018. p. 1561–1564.

 10. Zhu H, Gehrmann C. Lic-sec: An enhanced apparmor docker
security profile generator. J Inform Secur Appl. 2021;61.

 11. Lin X, Lei L, Wang Y, Jing J, Sun K, Zhou Q. A measurement
study on linux container security: Attacks and countermeasures.
In: Proceedings of the 34th annual computer security applications
conference, ACM; 2018. p. 418–429.

 12. Pothula DR, Kumar KM, Kumar S. Run time container secu-
rity hardening using a proposed model of security control map.
In: 2019 Global Conference for Advancement in Technology
(GCAT), IEEE; 2019. p. 1–6.

 13. Bacis E, Mutti S, Capelli S, Paraboschi S. Dockerpolicymodules:
mandatory access control for docker containers. In: 2015 IEEE
conference on communications and network security (CNS),
IEEE; 2015. p. 749–750.

 14. Sun Y, Safford D, Zohar M, Pendarakis D, Gu Z, Jaeger T. Secu-
rity namespace: making linux security frameworks available to
containers. In: 27th {USENIX} security symposium ({USENIX}
security 18), 2018. p. 1423–1439.

 15. De Benedictis M, Lioy A. Integrity verification of docker contain-
ers for a lightweight cloud environment. Future Generat Comput
Syst. 2019;97:236–46.

 16. Sailer R, Zhang X, Jaeger T, Van Doorn L. Design and imple-
mentation of a tcg-based integrity measurement architecture. In:
USENIX Security Symposium, 2004. vol. 13, p. 223–238.

 17. Priedhorsky R, Randles T. Charliecloud: Unprivileged contain-
ers for user-defined software stacks in hpc. In: Proceedings of
the international conference for high performance computing,
networking, storage and analysis, 2017. p. 1–10.

 18. Azab A. Enabling docker containers for high-performance and
many-task computing. In: 2017 Ieee international conference on
cloud engineering (ic2e), IEEE; 2017. p. 279–285.

 19. Tien C-W, Huang T-Y, Tien C-W, Huang T-C, Kuo S-Y. Kubanom-
aly: anomaly detection for the docker orchestration platform with
neural network approaches. Eng Rep. 2019;1(5):12080.

 20. Du Q, Xie T, He Y. Anomaly detection and diagnosis for con-
tainer-based microservices with performance monitoring. In:
International conference on algorithms and architectures for par-
allel processing, Springer; 2018. p. 560–572.

 21. Samir A, Pahl C. Anomaly detection and analysis for clustered
cloud computing reliability. Cloud Comput. 2019;2019:120.

 22. Mart O, Negru C, Pop F, Castiglione A. Observability in kuber-
netes cluster: Automatic anomalies detection using prometheus.
In: 2020 IEEE 22nd International Conference on High Perfor-
mance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), IEEE; 2020.
p. 565–570.

 23. Kitahara H, Gajananan K, Watanabe Y. Highly-scalable container
integrity monitoring for large-scale kubernetes cluster. In: 2020
IEEE international conference on big data (Big Data), IEEE;
2020. p. 449–454.

 24. Chelladhurai J, Chelliah PR, Kumar SA. Securing docker contain-
ers from denial of service (dos) attacks. In: 2016 IEEE interna-
tional conference on services computing (SCC), IEEE; 2016. p.
856–859.

 25. Hunger C, Vilanova L, Papamanthou C, Etsion Y, Tiwari M.
Dats-data containers for web applications. In: Proceedings of the
twenty-third international conference on architectural support for
programming languages and operating systems. 2018. p. 722–736.

 26. Luo Y, Luo W, Sun X, Shen Q, Ruan A, Wu Z. Whispers between
the containers: high-capacity covert channel attacks in docker. In:
2016 IEEE Trustcom/BigDataSE/ISPA. IEEE; 2016. p. 630–637.

 27. Jian Z, Chen L. A defense method against docker escape attack.
In: Proceedings of the 2017 international conference on cryptog-
raphy, security and privacy, ACM; 2017. p. 142–146.

 28. Arnautov S, Trach B, Gregor F, Knauth T, Martin A, Priebe C,
Lind J, Muthukumaran D, O’Keeffe D, Stillwell ML, et al. {
SCONE} : Secure linux containers with intel {SGX} . In: 12th {
USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16). 2016. p. 689–703.

 29. Hoekstra M, Lal R, Pappachan P, Phegade V, Del Cuvillo J. Using
innovative instructions to create trustworthy software solutions.
HASP@ ISCA. 2013;11(10.1145):2487726–8370.

 30. Kelbert F, Gregor F, Pires R, Köpsell S, Pasin M, Havet A, Schi-
avoni V, Felber P, Fetzer C, Pietzuch P. Securecloud: Secure big
data processing in untrusted clouds. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE;
2017. p. 282–285.

 31. Ranjbar A, Komu M, Salmela P, Aura T. Synaptic: Secure and
persistent connectivity for containers. In: 2017 17th IEEE/ACM
international symposium on cluster, cloud and grid computing
(CCGRID), IEEE; 2017. p. 262–267.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Access Security Policy Generation for Containers as a Cloud Service
	Abstract
	Introduction
	Background
	Lic-Sec
	Container Classification

	Problem Description
	Cloud Service Approach
	Central Service-Based Profile Generation
	Client Agent-Based Profile Generation

	Implementation
	Central Service-Based Profile Generation
	Client Agent-Based Profile Generation

	Experimental Setup
	Evaluation
	Test Results Overview
	Successful Defenses
	Failed Defenses

	Related Work
	Conclusion
	Acknowledgements
	References

