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Abstract
Accurate segmentation of the lungs in CXR images is the basis for an automated CXR image analysis system. It helps radi-
ologists in detecting lung areas, subtle signs of disease and improving the diagnosis process for patients. However, precise 
semantic segmentation of lungs is considered a challenging case due to the presence of the edge rib cage, wide variation 
of lung shape, and lungs affected by diseases. In this paper, we address the problem of lung segmentation in healthy and 
unhealthy CXR images. Five models were developed and used in detecting and segmenting lung regions. Two loss functions 
and three benchmark datasets were employed to evaluate these models. Experimental results showed that the proposed models 
were able to extract salient global and local features from the input CXR images. The best performing model achieved an 
F1 score of 97.47%, outperforming recent published models. They proved their ability to separate lung regions from the rib 
cage and clavicle edges and segment varying lung shape depending on age and gender, as well as challenging cases of lungs 
affected by anomalies such as tuberculosis and the presence of nodules.
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Introduction

Chest X-ray (CXR) image is the most popular diagnosis 
technique among existing medical imaging methods due to 
its low cost, ease of acquisition, and wide availability [1]. 
Each CXR image can identify multiple anomalies simulta-
neously. It requires manual validation by radiologists. How-
ever, the analysis of a large number of CXRs is a heavy task 
on medical personnel, especially radiologists. It takes time 
thus slowing the process of patient diagnosis.

Accurate segmentation of the lungs in CXR images is 
the basis of an automated CXR image analysis system, as 
the lungs are the region of interest for many pulmonary and 
thoracic diseases, such as emphysema, tuberculosis, cardio-
megaly, pneumothorax, and lung cancer. Lung contours can 

also display useful and important information for diagnosis 
of life-threatening illnesses [2].

Lung segmentation has shown impressive results using 
deep learning models to detect the area of the lungs from 
other organs. Nevertheless, the presence of the rib cage and 
clavicles as well as wide variations of lung shape due to age 
and gender still present challenges.

To address this challenge, we use vision Transformers, 
which employ an attention mechanism in extracting impor-
tant features and removing noisy and irrelevant features. 
Five methods, namely TransM, ARSeg [3], TransUNet [4], 
Medical Transformer (MedT) [5], and UNeXt [6], were 
developed to segment the lungs from CXR images. Two 
loss functions that are Dice loss [7] and Combo loss (Cross 
Binary Entropy Dice) [7, 8] were used to reduce detection 
errors using three public datasets, JSRT (Japanese Society of 
Radiological Technology) [9], Shenzhen [10, 11], and MC 
(Montgomery) [10, 11].

The main contributions of this paper are: 

1. We develop and use novel semantic segmentation meth-
ods in detecting and segmenting lung areas in CXR 
images to address the limitations of state-of-the-art 
work.

This article is part of the topical collection “Recent Trends on AI for 
HealthCare” guest-edited by Lydia Bouzar-Benlabiod.
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2. We evaluate and compare the performance of these 
methods using two loss functions (Dice loss and Combo 
loss).

3. Experiments on three public datasets (MC, JSRT, and 
Shenzhen) demonstrate the potential of these methods, 
giving a promising performance compared to recent 
published work.

4. We demonstrate the potential of these methods to dis-
tinguish the lung areas from other tissues or organs and 
to surpass challenging cases such as the presence of the 
clavicles and rib cage, lung affected with tuberculosis 
and nodules (benign and malignant), and the large vari-
ation in lung shape due to age and gender.

The paper is structured as follows: the next section reviews 
previous work on semantic segmentation of lungs in CXR 
images. The subsequent section introduces the proposed 
methods, the dataset used, and the metrics employed in 
training and testing. In the penultimate section, we present 
and discuss the experimental results. The final section sum-
marizes this work.

Related Works

With the development of AI-based computer vision tasks, 
deep learning models have become the most widely used 
technology for lung segmentation. Many studies were pro-
posed in the literature as shown in Table 1. For instance, 
Hwang et al. [12] introduced a deep CNN (Convolutional 
Neural Network) adopting atrous convolutions to detect and 

segment lung areas. An accurate Dice coefficient of 98% was 
achieved using the JSRT dataset and a network-wise learn-
ing strategy. Islam et al. [13] developed a lung segmentation 
approach based on the encoder–decoder U-Net [14]. A Dice 
score of 98.6% was obtained surpassing previous work on 
two datasets, Shenzhen and MC. Liu et al. [15] proposed 
an improved U-Net to accurately identify and segment lung 
zones. This model used a pretrained EfficientNet-B4 [16] as 
an encoder. The leaky activation function [17] and the resid-
ual block [18] were employed in the decoder. They obtained 
Jaccard scores of 95.5%, 95.8%, and 97.4% on MC, JSRT, 
and NIH datasets, respectively. In particular, this model 
proved its ability to segment lung areas in difficult cases 
such as abnormal cases (pleural effusion, lung deformation, 
etc.) and blurred CXR images. Dai et al. [19] presented a 
novel segmentation network, SCAN (Structure Correcting 
Adversarial Network), which contains two models: FCN 
(fully convolutional network) and a critic network. First, the 
FCN generates a predicted mask. Then, the critic network 
model guides the FCN to obtain a segmentation resembling 
the ground truth. This method achieved an IoU (Intersection-
Over-Union) of 95.1%, better than existing models on MC 
and JSRT datasets. Chen et al. [20] exploited the U-Net as a 
lung segmenter to detect lung regions and generate indices 
for different types of lung diseases such as cardiomegaly, 
emphysema, lung nodules, etc. This segmenter was used as 
the first step in the multi-label CXR image classification 
task. The performance of U-Net was evaluated using three 
available CXR datasets that are MC, JSRT, and NIH Chest 
X-ray dataset [21]. It showed its efficiency to improve the 
result of the classification task on CXR images. Mittal et al. 

Table 1  Existing models for lung segmentation

References  Methodology  Dataset Results (%)

[12] Deep CNN JSRT: 247 images Dice = 98.0
[13] U-Net Shenzhen and MC: 753 images Dice = 98.6
[15] Improved U-Net MC: 138 images JSRT: 247 images NIH: 2785 

images
Jaccard = 95.5 Jaccard =  95.8 Jaccard = 97.4

[20] U-Net MC, JSRT, and NIH: 485 images Dice = 97.3
[19] SCAN MC and JSRT: 385 images IoU = 95.1
[22] LF-SegNet MC and JSRT: 385 images Accuracy = 98.73
[23] U-Net with VGG-16 JSRT: 247 images Jaccard = 96.1
[28] InvertedNet JSRT: 247 images Jaccard = 95.0
[30] XNet+ JSRT: 247 images Dice = 97.8
[31] Encoder–decoder with VAE Shenzhen and MC: 704 images Accuracy = 88.15
[33] XLSor MC, JSRT, and NIH: 485 images Accuracy = 97.6
[35] Attention UW-Net NIH: 200 images F1-score = 95.7
[40] U-Net and transfer learning General COVID and CHUAC: 6502 images Accuracy = 97.61
[42] Deep LF-Net MC: 138 images JSRT: 247 images Shenzhen: 662 

imagesIndian: 668 images
Dice = 94.19 Dice = 96.85 Dice = 90.54 

Dice = 97.20
[36] DCNN MC: 138 images JSRT: 247 images Shenzhen: 658 

images
Jaccard = 96.6 Jaccard = 96.8 Jaccard = 96.7
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[22] developed a novel fully convolutional encoder–decoder, 
called LF-SegNet, to detect and segment lungs from CXR 
images. The experimental results showed a high accuracy 
with 98.73% on the MC and JSRT datasets. The U-Net 
model was also adopted by Frid-Adar et al. [23] with three 
methods (FCN [24], Dilated Residual Networks [25], and 
Fully Convolutional DenseNet [26]). This model achieved 
a Jaccard score of 96.1% using a pre-trained VGG-16 [27] 
as the backbone and the JSRT dataset. Novikov et al. [28] 
evaluated three fully convolutional methods (InvertedNet: 
fully-convolutional network with fewer parameters, All-
Convolutional: simplifying fully convolutional network 
by learning pooling, and All-Dropout: fully convolutional 
network with restrictive regularization) in detecting and 
segmenting multi-organs that are lung, heart, and clavicles. 
Based on the Jaccard score result, InvertedNet was selected 
as the best performing model with a Jaccard score of 95% 
using 247 CXR images of the JSRT dataset, surpassing the 
result of the human observer [29] and U-Net as baseline 
methods. Gómez et al. [30] also addressed the problem of 
segmenting multi-organs that are lungs, hearts, and clavicles 
on CXR images. Four deep convolutional networks, XNet, 
XNet+, RX-Net as a simplification of X-Net, and RX-Net+, 
were employed by modifying the baseline of U-Net, and 
InvertedNet methods. XNet+ reached the best Dice score 
of 97.8% for lung segmentation. Selvan et al. [31] devel-
oped a novel lung segmentation method trained on normal 
CXR images to segment lungs on high opacity CXR images. 
This method is an encoder–decoder with VAE (variational 
autoencoders) [32], which was applied to perform data 
imputation. An accuracy of 88.15% was achieved using 704 
images from the MC and Shenzhen datasets. It demonstrated 
the possibility of extending this method to extreme anom-
aly cases. Tang et al. [33] proposed a novel architecture, 
XLSor (X-ray Lung Segmentor), which includes Criss-Cross 
Attention [34] module and data augmentation technique via 
abnormal CXR pairs construction. Experimental results with 
an accuracy of 97.6% validate the robustness of XLSor for 
the lung segmentation task. Pal et al. [35] proposed a new 
method, called attention UW-Net, to improve the segmenta-
tion performance of small lesion areas. Attention UW-Net is 
an encoder–decoder architecture consisting of many densely 
connected convolutional layers, which connect the encoder 
and its corresponding decoder using skip connections. Using 
a NIH dataset (200 manually annotated CXR images), the 
results proved that the UW-Net model reached an efficient 
performance (an F1-score of 95.7%) in segmenting lungs as 
well as small lesions. Maity et al. [36] presented a DCNN 
(Deep Convolution Neural Network) as a semantic lung seg-
mentation method from posteroanterior or anteroposterior 
view CXR images. DCNN was developed based on UNet++ 
[37] with EfficientNet-B4 as backbone and residual blocks as 
decoder to solve the degradation issues and to increase the 

performance with fewer parameters and layers. It achieved 
high Jaccard scores with 96.8%, 96.6%, and 96.7% using 
JSRT, MC, and Shenzhen datasets, respectively, employing 
CLAHE (Contrast Limited Adaptive Histogram Equaliza-
tion) [38] and Top-Bottom-Hat transform [39] as a pre-
processing techniques and data augmentation techniques 
(rotation, width and height shift, shearing, zoom, and flip). 
Vidal et al. [40] also proposed a system to segment lung 
regions, especially lungs affected by COVID-19 on CXR 
images collected from portable X-ray devices. This system 
used the U-Net model as the lung segmenter and two trans-
fer learning stages. Using two COVID-19 datasets (the gen-
eral COVID dataset [41] and the CHUAC dataset acquired 
from portable devices [40]), it obtained a high accuracy of 
97.61% for COVID-19 patients. It demonstrated its robust-
ness in segmenting lung areas from portable X-ray devices 
overcoming the low quality of CXR images and sample 
scarcity. Singh et al. [42] also developed a novel semantic 
lung semantic method, Deep LF-Net, based on DeepLabv3+ 
[43] architecture. A novel dataset was presented consisting 
of 688 CXR images [42]. This dataset contains healthy 
and unhealthy CXR images of patients contaminated with 
tuberculosis, pleural effusion, interstitial lung disease, lung 
cancer, and chronic obstructive pulmonary disease. Deep 
LF-Net obtained Dice values of 96.85%, 94.19%, 90.54%, 
and 97.20% with JSRT, MC, Shenzhen, and their propri-
etary datasets, respectively. They used MobileNetV2 [44] 
as a backbone.

Materials and Methods

In this section, we first present our proposed semantic seg-
mentation models for lung segmentation. Then, we intro-
duce the public datasets employed in this work. Finally, we 
describe the metrics used in this paper.

Proposed Methods

We used five models, namely ARSeg, TransM, Medical 
Transformer (MedT), TransUNet, and UNeXt to determine 
the precise lung segmentation masks.

ARSeg

ARSeg [3] is an encoder–decoder architecture with four skip 
connections, as shown in Fig. 1. Two attention gates are 
used to remove the non-pertinent and noisy characteristics 
transmitted by skip connections. The encoder adopted Reg-
NetY-32GF model [45] as a backbone to extract and generate 
the characteristics of lungs. It comprises five convolutional 
blocks (Stem, stage1, stage2, stage3, and stage4) consisting 
of 3 × 3 and 1 × 1 convolutional layers, pooling layers, ReLU 
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activation, batch normalization, and Squeeze-and-Excitation 
block. The decoder contains three Deconv blocks, which 
consist of a transposed convolution layer, a batch normaliza-
tion layer, and a ReLU activation, then, a 1 × 1 convolutional 
layer, which determines the mask of lungs as output.

Medical Transformer (MedT)

Medical Transformer (MedT) [5] is an encoder–decoder 
model. First, two convolutional blocks, which contains con-
volutional layers, ReLU activation, and batch normalization 
layers are used to extract feature from input CXR images and 
their patches. Then, two branches (local branch and global 
branch) are fed by the generated feature maps. The local 
branch contains five encoders and five decoders. The global 
branch consists of two encoders and two decoders. Each 
encoder comprises 1 × 1 convolutional layers, normalization 
layers, and two gated multi-head attentions. Each decoder 
also includes a convolutional layer, a ReLU activation, and 
a batch normalization layer. Finally, a 1 × 1 convolutional 
layer generates the output lung mask. Figure 2 presents the 
architecture of the proposed MedT.

TransM

TransM is a modified MedT architecture with a dropout 
strategy, as illustrated in Fig. 3. It was developed to reduce 
the number of MedT parameters and help with the MedT 
memory problem. TransM employs gated position-sensitive 
axial attention and a Local-Global training methodology, 
which uses local and global branches to improve the perfor-
mance of lung segmentation. The global branch contains one 
encoder and one decoder. The local branch also consists of 
five encoders and five decoders.

TransUNet

TransUNet [4] is an encoder–decoder based on U-Net archi-
tecture, as depicted in Fig. 4. It employs a pretrained ResNet-
50-ViT as a backbone and three skip connections between 
the encoder and decoder. The encoder is a hybrid CNN-
Transformer. It includes Multihead Self-Attention (MSA), 
Multi-Layer Perceptron (MLP) blocks, and normalization 
layers. The decoder contains five 3 × 3 convolutional layers 
followed by ReLU activation and four upsampling operators.

Fig. 1  The proposed ARSeg 
architecture

Fig. 2  The proposed MedT architecture
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UNeXt

UNeXt [6] is an encoder–decoder architecture with four skip 
connections, as shown in Fig. 5. It employs MLP (multi-
layer perceptron) and convolutional networks to reduce the 
number of parameters and the computational complexity as 
well as improve the performance of medical image segmen-
tation [6]. First, the encoder generates a feature map using 
three convolutional blocks followed by two tokenized MLP 
blocks. Then, the extracted features were passed through 
the decoder, which comprises two tokenized MLP blocks, 

upsampling operator, and three convolutional blocks. Each 
convolutional block includes a 3 × 3 convolutional layer, 
ReLU activation, max-pooling layer, and batch normaliza-
tion layer. Tokenized MLP block consists of Shifted MLP 
blocks, a depth-wise convolutional layer, GELU activation, 
and normalization layers.

Dataset

Three datasets, namely Shenzhen [10, 11], MC (Montgom-
ery) [10, 11], and JSRT (Japanese Society of Radiological 

Fig. 3  The proposed TransM architecture

Fig. 4  The proposed TransUNet architecture
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Technology) [9], were used in learning and evaluating the 
proposed models. 

1. Shenzhen dataset is a public dataset collected by Shen-
zhen No.3 People’s Hospital and Guangdong Medical 
College in China in 2012. It includes 662 CXR images 
with a resolution of 3000 × 3000 and their binary masks, 
annotated manually by the radiologist. It consists of 
336 images with tuberculosis disease and 326 normal 
images. Figure 6 presents examples of Shenzhen dataset.

2. The MC dataset was developed by the Montgomery 
County Department of Health and Human Services, 
USA. It contains 138 CXR images with a resolution of 
4892 × 4020 or 4020 × 4892 and their corresponding 
masks. It was annotated by the supervision of a radiolo-

gist. It consists of 58 images with tuberculosis disease 
and 80 normal images. Figure 7 shows an example of 
MC dataset.

3. JSRT dataset was created by the Japanese Society of 
Radiological Technology and the Japanese Radiologi-
cal Society. It comprises 247 CXR images with a reso-
lution of 2048x2048, including 93 normal images and 
154 images with lung nodules (54 images with a benign 
nodule and 100 images with a malignant nodule). It was 
labeled by two human observers and radiologist. Fig-
ure 8 depicts some examples of the JSRT dataset.

Fig. 5  The proposed UNeXt 
architecture

Fig. 6  Shenzhen dataset example. Top: CXR images; bottom: their binary masks
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Evaluation Metrics

We employed two metrics (accuracy and F1-score) to eval-
uate our proposed segmentation methods with published 
works, using true-positive rate (TP), false-positive rate 
(FP), true-negative rate (TN), and false-negative rate (FN).

• Accuracy is the proportion of correct pixels predictions 
over the total number of predictions obtained by the 
proposed approach, as given by Eq. (1). 

• F1 score combines precision and recall metrics to 
measure the performance of the proposed approach, as 
shown by Eq. (2). 

 where Precision =
TP

TP+FP
 and Recall = TP

TP+FN
.

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
,

Fig. 7  Montgomery dataset example. Top: CXR images; bottom: their binary masks

Fig. 8  JSRT dataset example. Top: CXR images; bottom: their binary masks



 SN Computer Science (2023) 4:414414 Page 8 of 14

SN Computer Science

Results and Discussion

We developed the proposed semantic segmentation models 
using PyTorch [46] on a machine with GPU NVIDIA A100-
SXM. We also mixed and randomly split our learning data-
sets (Shenzhen, MC, and JSRT) into three subsets (training: 
635 CXR images, validation: 105 CXR images, and test: 
211 CXR images).

The proposed models (ARSeg, MedT, TransM, and 
UNeXt) were evaluated from scratch (no pre-training). The 
proposed TransUNet model was also trained using a pre-
trained ResNet50-ViT-16 on a ImageNet dataset [47] as a 
backbone.

For our experiments, we used as input CXR image with 
a resolution of 224 × 224, and two data augmentation tech-
niques, namely rotation of +20 degree and horizontal flip, 
to diversify and augment our learning data. In addition, we 
employed two loss functions, Dice loss [7] and Combo loss, 
to reduce segmentation errors. Dice loss (DC) determines 
the similarity between the predicted CXR images and the 
input CXR mask (see Eq. 3). The Combo loss (BCD) com-
bines the Dice loss and the Cross Binary Entropy loss [8], 
as shown in Eq. 4.

where W is the input CXR mask, Y is the generated mask, 
and 

⋂

 is the intersection of the input and generated masks.

where N is the classes’ number (2 classes, Lung and Non-
Lung, in our case), m is the binary indicator, and p is the 
predicted probability.

We first evaluate the proposed techniques with two loss 
functions and compare their performance to the baseline 
model, U-Net. Then, we show their performance in three 
challenging cases: healthy CXR images of varying lungs, 
CXR images of lungs affected by tuberculosis, and CXR 
images with lung nodules.

Quantitative Results

Table 1 reports the performance (accuracy and F1-score) 
of the proposed ARSeg, TransM, TransUNet, MedT, and 
UNeXt, using different loss functions (DC and BCD). We 
can see that learning using DC loss gives better results for 
ARSeg, TransUNet, and UNeXt. In addition, TransM and 
MedT show high performance with the BCD loss. We can 
also see that all the proposed models achieve better accuracy 

(3)DC = 1 −
2 ∣ W

⋂

Y ∣

∣ W ∣ + ∣ Y ∣
,

(4)BCD = DC −

N
∑

c=1

mb,c log (pb,c),

and F1 score than the baseline model U-Net. They also dem-
onstrate their potential in detecting and segmenting lung 
regions overcoming challenging cases such as wide varia-
tion in lung shape, presence of rib cage and clavicles, and 
lungs affected with tuberculosis and nodules (benign and 
malignant).

Vision Transformers (TransM, MedT, and TransUNet ) 
achieve higher performances compared to UNeXt, ARSeg, 
and U-Net thanks to their potential in extracting finer fea-
tures from input CXR images and in determining long-range 
interactions within generated features. The proposed TransM 
reaches the best F1 score of 97.58% and an accuracy of 
98.22% thanks to its ability in extracting rich feature maps 
using the global branch and local branch. MedT also obtains 
an excellent F1-score of 97.40% compared to TransUNet, 
UNeXt, ARSeg, and U-Net models. However, it requires 
a larger computational capacity and time when learning. 
Using a hybrid CNN- Transformer to extract global and 
local features, TransUNet obtained an F1-score of 96.80% 
and an accuracy of 98.36% outperforming UNeXt, ARSeg, 
and U-Net. However, it needs a pretrained backbone on a 
large dataset. UNeXt and ARSeg obtained F1 score values 
of 96.26% and 95.36%, respectively. They performed better 
than U-Net.

Qualitative Results

Similar to the numerical results shown in Table 2, we can 
see in Fig. 9 that the proposed models (TransUNet, TransM, 
MedT, UNeXt, and ARSeg) with DC loss correctly distin-
guish the normal lungs from the background including tis-
sue and other organs. They determine the precise region of 
normal lungs very close to the input CXR mask annotated 
by a radiologist. They were able to separate the lung areas 
from the edge of the rib cage and clavicles and to segment 
varying lungs according to age and gender. We can also note 

Table 2  Comparative analysis of TransUNet, TransM, MedT, UNeXt, 
and ARSeg using two loss functions

Best results are in bold

Model F1 score (%) Accuracy (%) Loss Function

TransUNet 96.80 98.36 DC loss
TransUNet 96.24 98.34 BCD loss
TransM 97.47 98.14 DC loss
TransM 97.58 98.22 BCD loss
MedT 97.40 98.09 DC loss
MedT 97.35 98.04 BCD loss
UNeXt 96.26 98.10 DC loss
UNeXt 95.86 98.04 BCD loss
ARSeg 95.36 95.69 DC loss
ARSeg 95.32 95.33 BCD loss
U-Net [3] 93.00 93.75 DC loss
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Fig. 9  Results of proposed 
models using normal CXR 
images. From top to bottom: 
CXR images, their correspond-
ing mask, ARSeg results, 
TransUNet results, TransM 
results, MedT results, and 
UNeXt results
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Fig. 10  Results of proposed 
models using CXR images 
with tuberculosis. From top 
to bottom: CXR images, their 
corresponding mask, ARSeg 
results, TransUNet results, 
TransM results, MedT results, 
and UNeXt results
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Fig. 11  Results of proposed 
models using CXR images with 
benign and malignant nodule. 
From top to bottom: CXR 
images, their corresponding 
mask, ARSeg results, Tran-
sUNet results, TransM results, 
MedT results, and UNeXt 
results
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that TransM, TransUNet, MedT, and UNeXt produce smooth 
and clear boundaries of the lung zones compared to ARSeg.

Figure 10 shows some semantic segmentation results of 
TransUNet, MedT, TransM, ARSeg, and UNeXt using CXR 
images with tuberculosis disease. We can see that all pro-
posed methods demonstrate a good performance in detect-
ing and segmenting lung areas in a challenging case (CXR 
images of patients affected by tuberculosis). More precisely, 
TransM and TransUNet produce a lung mask much closer to 
the input mask of the lung affected by tuberculosis. ARSeg, 
MedT, and UNeXt also prove their reliability in segmenting 
lung areas in this challenging case. However, they are still 
incorrectly segmenting some small areas of the background 
as lung zones.

Figure 11 illustrates some lung masks generated by Tran-
sUNet, MedT, TransM, ARSeg, and UNeXt using unhealthy 
CXR images including severe lung anomalies (benign and 
malignant lung nodules) as input. We can note that the 
masks predicted by the proposed models are very similar to 
the manually labeled ground truths, thus, confirming their 
adequate binary segmentation of the lungs in a difficult case 
of CXR images with lung nodules.

Conclusion

In this paper, we proposed new models for lung segmenta-
tion in healthy and unhealthy CXR images. Five models, 
namely TransM, MedT, TransUNet, UNeXt, and ARSeg, 
were used in determining and segmenting precise lung 
zones. We evaluate the performance of the proposed models 
using two loss functions (Dice loss and Combo loss), two 
evaluation metrics (F1 score and accuracy), and public data, 
consisting of 951 CXR images collected from JSRT, MC, 
and Shenzhen datasets. Based on the F1 score, our proposed 
TransM achieved the best F1 score with 97.47%, compared 
to MedT, TransUNet, UNeXt, and ARSeg, which reached 
F1 score values of 97.40%, 96.80%, 96.26%, and 95.36%, 
respectively. These models also outperformed the popular 
U-Net model. They showed their great potential in differ-
entiating lung zones from the rib cage and clavicles, and in 
segmenting varying lung shapes due to the age and gender of 
patients and lungs affected by diseases such as tuberculosis 
and nodules. In future work, we plan to use the developed 
vision Transformers to detect and segment the heart, lungs, 
and clavicles as a multi-class segmentation task.
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