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Abstract
X-ray images are the most widely used medical imaging modality. They are affordable, non-dangerous, accessible, and can 
be used to identify different diseases. Multiple computer-aided detection (CAD) systems using deep learning (DL) algo-
rithms were recently proposed to support radiologists in identifying different diseases on medical images. In this paper, 
we propose a novel two-step approach for chest disease classification. The first is a multi-class classification step based on 
classifying X-ray images by infected organs into three classes (normal, lung disease, and heart disease). The second step of 
our approach is a binary classification of seven specific lungs and heart diseases. We use a consolidated dataset of 26,316 
chest X-ray (CXR) images. Two deep learning methods are proposed in this paper. The first is called DC-ChestNet. It is 
based on ensembling deep convolutional neural network (DCNN) models. The second is named VT-ChestNet. It is based on 
a modified transformer model. VT-ChestNet achieved the best performance overcoming DC-ChestNet and state-of-the-art 
models (DenseNet121, DenseNet201, EfficientNetB5, and Xception). VT-ChestNet obtained an area under curve (AUC) of 
95.13% for the first step. For the second step, it obtained an average AUC of 99.26% for heart diseases and an average AUC 
of 99.57% for lung diseases.

Keywords X-rays · Computer-aided detection · Deep learning · Deep convolutional neural network · Ensemble learning · 
Vision transformers

Introduction

X-ray radiographies are an affordable and non-invasive 
method of examining different organs of the body [1]. Rec-
ognized as a valuable diagnosis tool for many disorders and 
abnormalities, X-rays can also be used to monitor diseases 
during treatment [2]. Around 3.6 billion X-ray images are 
taken every year worldwide. This number includes over 150 
million chest X-ray radiographies (CXR) performed in the 
United States only. The World Health Organization (WHO) 

stated that CXRs are the most commonly performed clini-
cal imaging technique worldwide [3]. CXRs are grayscale 
images generally produced by projecting X-rays onto the 
human body positioned against a metallic plate. Samples of 
CXR images are shown in Fig. 1.

Although CXRs play a crucial role in the diagnosis of 
thoracic disease, visual inspection by radiologists remains 
complex and error-prone. Previous studies have shown that 
the risk of misdiagnosis increases with the amount of time 
it takes for a radiologist to interpret CXR images. In addi-
tion, even experienced radiologists were at greater risk of 
misdiagnosis because of hidden lesions and symptoms in 
soft tissue and bones [4].

The WHO reports that many chest diseases can be life-
threatening and lead to the death of millions of people if not 
accurately and timely treated [5]. Some chest diseases are of 
high mortality rates such as tuberculosis that kills around 1.4 
million people annually, pneumonia that kills 9 million chil-
dren under the age of 5 years being the world’s leading killer 
disease, and COVID-19 which caused the death of over 6 
million people all over the world as of November 2022.
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The shortage of radiologists in many countries of the 
world remains a considerable problem, especially because 
of the high number of people in need of radiological exam-
inations, faster than it is necessary to train new radiolo-
gists. The long waiting lists for diagnosis at hospitals, the 
high rate of misdiagnosis of CXR images and the spread of 
life-threatening diseases are the main drivers that highlight 
the necessity of developing efficient computer aided detec-
tion (CAD) systems for early detection of chest diseases.

It is not always evident for radiologists to detect chest 
diseases on a CXR due to the lack of clarity of this imag-
ing modality and the fact that many diseases are similar. 
This leads to high error rates for experts who use visual 
methods to diagnose diseases. A lot of research has been 
developed to address this challenge using image-based AI 
systems.

In this paper, we present a dataset we consolidated by 
combining images from two open-access datasets. We 
propose a novel two-step approach for the classification 
of CXR images by implementing two deep learning (DL) 
methods which are: a DCNN based method (DC-ChestNet) 
and a vision transformer based method (VT-ChestNet). 
In the first step of our approach, we classify CXR images 
from our dataset based on the infected organ into three 
classes (normal, lung disease, and heart disease). In the 

second step, we perform a binary classification of the spe-
cific diseases of each organ.

The main contributions of our work are as follows:

• A new dataset is consolidated by merging CXR images 
from two open-access datasets (CheXpert and VinDr-
CXR).

• A novel two-step approach is introduced to perform 
chest disease classification on CXR images.

• Two DL methods (DC-ChestNet and VT-ChestNet) are 
proposed. DC-ChestNet method employs an ensemble 
learning of three different DCNN models (Efficient-
NetB5, DenseNet201, and Xception). VT-ChestNet is 
based on a modified Swin transformer (M-Swin).

The paper is structured as follows: Section “Related 
Works” reviews previous works. Section “Materials and 
Methods” describes the materials and methods used in this 
work including the consolidated dataset and the proposed 
methods. In section “Results and Discussion”, we discuss 
the obtained results and highlight the strengths of the two 
proposed methods. Finally, we summarize this paper in 
section “Conclusion”.

Fig. 1  Samples of CXR images from our consolidated dataset: a Normal; b Cardiomegaly; c Enlarged cardiomediastinum; d Aortic enlargement; 
e Atelectasis; f Pleural effusion; g Pneumothorax; h Pulmonary fibrosis
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Related Works

DL provides powerful solutions for automating medical 
imaging diagnosis. It has the potential to reduce the bur-
den of work for specialists in the practice of radiology [6]. 
The availability of data and high computational resources 
has allowed the use of neural networks and deep learning 
to advance the performance of disease detection in medical 
images. Various studies have investigated the use of DL 
techniques in order to detect diseases using CXR images 
from different datasets such as, NIH [7], ChestX-ray14 [8], 
VinDr-CXR [9], CheXpert [10], PLCO [11], and MIMIC-
CXR [12]. The obtained results show that CAD systems 
based on DL techniques can achieve high performances in 
detecting these harmful diseases.

To address the problem of overlapping chest diseases 
and to overcome the challenges facing radiologists, 
Rajpurkar et al. [13], proposed a modified DenseNet model 
called CheXNet which has 121 convolutional layers to 
detect 14 chest abnormalities. ChestX-ray14 dataset was 
used in this experiment to train and evaluate the model. 
CheXNet showed impressive results surpassing radiolo-
gists level obtaining an average area under curve (AUC) 
of 84.11% and an F1-score of 43.50% on a test set of 420 
images. Sze-To et Wang [14] introduced a DL model 
named tCheXNet with 122 deep layers to identify pneu-
mothorax using CXR images from CheXpert dataset. tCh-
eXNet employs CheXNet model proposed by Rajpurkar 
et al. [13] with transfer learning. This model achieved an 
AUC of 70.80% for the classification of pneumothorax. 
Khoiriya et al. [15], introduced a custom DCNN model 
to detect pneumonia. A dataset of 5,856 CXR images 
collected from Kaggle was used in this experiment. The 
proposed model used with data-augmentation techniques 
(rotation, resize, and flip) achieved high results with an 
accuracy (ACC) of 83.83%. Wang and Xia [16], proposed 
a two-branches pipeline named ChestNet which incor-
porates the attention mechanism into its architecture. 
The first branch in ChestNet is for feature extraction and 
classification of 14 chest diseases using a ResNet152 as 
a backbone. The second branch implements an attention 
mechanism to correlate class labels with disease location. 
ChestX-ray14 dataset was used to train and evaluate Chest-
Net which showed high performance, achieving an average 
AUC of 78.10%.

Pham et al. [17] introduced a multi-label classifica-
tion approach using a DL architecture for the detection of 
14 thoracic abnormalities. The proposed model achieved 
high performance on CheXpert dataset. A mean AUC of 
94.00% was obtained for the detection of five lung dis-
eases (atelectasis, cardiomegaly, edema, consolidation, 
and effusion). Gundel et al. [18] presented a DenseNet121 

model with a location-aware mechanism to classify 12 
chest abnormalities using CXR images from two pub-
licly available datasets (PLCO and ChestX-Ray14). The 
proposed DenseNet121 model achieved an average AUC 
of 87.40% outperforming four other models evaluated on 
the same collection of data including, ResNet50, Goog-
leNet, VGG16, and AlexNet. Kim et al. [19] proposed an 
approach based on EfficientNet-V2M used with transfer 
learning for classification of CXR images from ChestX-
ray14 dataset. The model classified images into three 
classes (normal, pneumonia and pneumothorax). Efficient-
Net-V2M achieved an overall ACC of 82.15%, a specificity 
(SPE) of 91.65%, and a sensitivity (SEN) of 81.40%. This 
model was tested on a dataset with four classes (normal, 
tuberculosis, pneumothorax, pneumonia). It obtained a 
mean ACC of 82.20%. Blais and Akhloufi [20] employed 
different DCNN models to classify CXR images into six 
classes. The best performing model was Xception with 
Adam optimizer. It achieved an average AUC of 95.84% 
surpassing other DCNN models. This model showed high 
performance when evaluated for the classification of 14 
abnormalities from CheXpert dataset. It achieved an over-
all AUC of 94.90%.

Materials and Methods

In this section, we present the structure of our consolidated 
CXR dataset as well as the two DL methods proposed to 
implement the two-step classification approach.

Dataset

In this experiment, we used a consolidated dataset that 
includes 26,316 CXR images acquired from two open 
access datasets. The first is CheXpert which is a large col-
lection of CXR images with a total of 224,316 radiology 
images diagnosed with 14 chest abnormalities. All images 
in CheXpert are labeled using radiology reports with natu-
ral language processing (NLP) algorithms. This dataset was 
collected by Stanford University Hospital where each image 
was diagnosed with one or more anomalies. The second is 
the VinDr-CXR dataset, which comprises a total of 18,000 
CXR images, including the location of findings and clas-
sification of different thoracic diseases. VinDr-CXR was 
collected at H108 Hospital and Hanoi Medical University 
Hospital. Each image in this dataset is diagnosed by one or 
more experienced radiologists. Therefore, one image can 
be diagnosed with two different diseases by one or more 
different radiologists.

In our consolidated dataset, each image corresponds to a 
single disease. For CXR images acquired from CheXpert, 
we selected only those diagnosed with a single disease. For 
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CXR images collected from VinDr-CXR dataset, we retain 
only those images for which three or more radiologists agree 
on the presence of the same disease, and we excluded the 
remaining ones (e.g. if three or more radiologists agree that 
the diagnosed image has cardiomegaly, that same image 
will be added to our dataset; otherwise, the image will be 
excluded). The images in our dataset are grouped in three 
classes (10,606 normal cases, 8,584 with lung disease, and 
7,162 heart disease) for the classification of diseases by 
infected organs and eight classes (normal, pleural effusion, 
pulmonary fibrosis, atelectasis, aortic enlargement, enlarged 
cardiomediastinum, and cardiomegaly) for binary classifica-
tion of specific diseases. Figure 2 gives an overview on the 
distribution of CXR images in our consolidated dataset.

Proposed Methods

In our previous research, we found that the detection of 
CXRs using end-to-end DL pipelines was challenging and 
showed many weaknesses due to the similarities of symp-
toms between diseases, which typically manifest as opaci-
ties around the infected organ. To this end, we proposed a 
two-step process for the classification of CXR images. In 
the first step, we intend to perform a multi-class classifica-
tion of CXRs on the basis of the infected organ (normal, 
lung or heart). In the second step, we aim to binary classify 
CXR images of specific diseases (normal or abnormal), the 
seven diseases in our dataset are: cardiomegaly, enlarged 
cardiomediastinum, and aortic enlargement (heart diseases); 
atelectasis, pneumothorax, pulmonary fibrosis and pleural 
effusion (lung diseases). Two different methods are proposed 
in this paper, in order to perform the two-step classification 
of CXR images. The first method is named DC-ChestNET 
which is based on DCNN models and the second method is 
called VT-ChestNet which implements a modified vision 
transformer model.

DC‑ChestNet Method

As a first method, we proposed an architecture called DC-
ChestNet for chest disease detection using convolutional 
neural network (CNN) models and CXR images. We used 
several DCNN models including ResNet50, DenseNet121, 
DenseNet169, DenseNet201, EfficientNetB5, Efficient-
NetB6, EfficientNetB7, VGG16, VGG19, and Xception. 
After fine-tuning, training, testing and comparing the per-
formance of these models, we selected the best perform-
ing ones (DenseNet201, Xception, and EfficientNetB5) for 
an ensemble learning (EL) pipeline in order to perform an 
accurate classification. The selected models served as back-
bones to extract deep features from each of our classes in the 
two steps of our approach. We used our consolidated CXR 
dataset that has images from two publicly available sources 
(CheXpert and VinDr-CXR datasets) to train in parallel the 
three models in our pipeline.

Through using an EL of DCNN models from different 
families, the power of each model can be leveraged while 
extracting features which can also improve the overall pre-
diction task of the models. This technique is often more 
efficient, robust, and has computational advantage over a 
single model. Using an EL approach also reduces the gener-
alization error of the prediction. In addition, EL techniques 
correct inter-model errors and avoid overfitting, especially 
in the case of scarce data. The three DCNN models in our 
pipeline are described in the following.

DenseNet201 is a DCNN model with 201 deep layers and 
20 million parameters. It was introduced by Huang et al. 
[21] in order to overcome the decreased accuracy resulting 
from the vanishing gradient in deep neural networks. This 
model connects all layers (each layer to every other layer) 
in a feed-forward manner using dense connections through 
dense blocks. DenseNet models showed high performance 
on ImageNet dataset [22].

Fig. 2  Distribution of X-ray images in consolidated dataset
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Xception also called “extreme inception”, is a DCNN 
model with 71 deep layers and a total of 22.8 million 
parameters [23]. It is an extensive version of the Incep-
tion architecture with the implementation of depth-wise 
separable convolutions instead of the standard convolu-
tions in the original model. The convolutional layers in 
Xception architecture have few parameters than regular 
layers in Inception which makes the Xception model less 
likely to overfit. Xception showed high performance on the 
ImageNet dataset, outperforming multiple models includ-
ing Inception and ResNet models.

EfficientNetB5 is part of a family of eight DCNN mod-
els called EfficientNet, introduced by Google AI [24]. The 
eight models of EfficientNet range from B0 to B7 where 
the largest is B7. EfficientNets showed higher accuracy 
and better efficiency in comparison to existing CNNs. The 
EfficientNet architectures are based on a scaling approach 
that uses a compound coefficient to consistently scale 
the three dimensions (resolution, depth, and width). This 
results in higher performance and greater accuracy of the 
models.

In addition to the three DCNN models in DC-ChestNet 
method, two layers were added to this architecture which 
are an average pooling layer to calculate the mean values 
for the feature map patches and dense layer with a softmax 
activation function for the first step (multi-class classifica-
tion based on infected organs). For the second step of our 
approach, a dense layer with a sigmoid activation function 
was used to classify CXR images of specific diseases into 
healthy or unhealthy. Moreover, 20% of the hidden layer 
neurons were randomly ignored when training our model 
using a dropout function. This reduces the dependency 

between neurons and avoids overfitting. Figure 3 depicts the 
architecture of the DC-ChestNet architecture.

VT‑ChestNet Method

Models based on convolutional neural networks have long 
dominated the field of computer vision. After the release 
of the AlexNet model [25] and its impressive results on the 
ImageNet challenge, several DCNN models were released 
with architectures varying in terms of complexity, size, 
depth, number of trainable and non-trainable parameters. 
The concept of convolution in these models was a key suc-
cess factor as it helps to recognize the existing patterns and 
extract the local features of a given image. Nevertheless, 
DCNN models remain limited in terms of the global con-
text modeling, the high computational cost, and the spatial 
invariance to the input data. This makes the models in many 
instances incapable of detecting new features at non-trained 
locations and lacking in ability to understand long-range 
dependencies in images.

To overcome these drawbacks, the first vision trans-
former (ViT) was proposed by Dosovitskiy et al. [26]. ViT 
employs a self-attention mechanism that connects positions 
of a single patch to calculate a representation of that same 
patch. This mechanism enables long-range dependencies to 
be encoded and facilitates the learning of high expressive 
representations. Vision transformers are usually based on 
splitting images into several patches, and embedding posi-
tions as input to the transformer encoder.

Recently, vision transformer models started to play a 
prominent role in many applications in the computer vision 
field such as image classification [27], object detection [28], 

Fig. 3  The proposed DC-ChestNet architecture
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semantic segmentation [29]. They showed impressive results 
compared to DCNN approaches.

To explore the potential of vision transformer, we pro-
posed a novel method, named VT-ChestNet, in order to 
perform the two-step classification approach using our 
consolidated CXR dataset. VT-ChestNet method is based 
on a modified Swin transformer (M-Swin) architecture, as 
illustrated in Fig. 4. M-Swin utilizes a shifted window par-
titioning technique to shift between two partitioning con-
figurations in its successive blocks. It generates hierarchical 
feature maps with linear computational complexity for the 
input CXR images by merging the image patches in its deep 
layers, thereby addressing the high computational complex-
ity problem when using high resolution input images.

M-Swin has four stages (stage 1, stage 2, stage 3, and 
stage 4) each of them implements two blocks that are Swin 
Transformer Block and Patch Merging block. Swin Trans-
former block includes two sub-blocks. Each sub-block com-
prises an attention mechanism, a normalization layers, and a 
MLP layer. The first sub-block employs a W-MSA (Window 
standard multi-head self-attention) mechanism. The second 
adopts a SW-MSA (Shifted Window standard multi-head 
self-attention) technique. The Patch Merging block com-
bines the group of neighboring patches and concatenates 
their characteristics [30]. A dropout strategy was added to 
the M-Swin hidden layers. Then, a fully connected layer 
(FCL) was added to adapt the number of output classes 

by applying a softmax activation function for the first step 
(multi-classification) and a sigmoid activation function for 
the second step (binary classification).

Results and Discussion

Two DL based methods were proposed. The first called DC-
ChestNet which employs three DCNN models using an EL 
technique. The second named VT-ChestNet is a transformer 
based method that implements an M-Swin architecture. For 
the implementation of both solutions, various hyper-parame-
ters were utilized, including a batch size of 32, and Rectified 
Adam as an optimizer. Both methods were developed using 
a TensorFlow framework on a machine with a Tesla P100 
PCIE GPU. The consolidated dataset was divided into three 
subsets by dedicating 80% of the CXR images to training, 
10% to validation and 10% to testing. Various data-augmen-
tation techniques (randomly rotating between −15 and 15◦ , 
shearing between 70% and 100%, flipping, and translating 20 
pixels of CXR images in four directions) were performed to 
diversify the content of the dataset and to prevent the overfit-
ting. This generated a collection of 84,208 CXR images to 
be used as input of our models.

A learning rate that starts at 0.001 and multiplies by 
0.9 while the model is stagnating in learning was used. 
In addition, an early stopping technique was employed to 

Fig. 4  The proposed VT-ChestNet architecture
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terminate training after 15 epochs of unimprovement dur-
ing the validation process of the model. The three DCNN 
models (EfficientNetB5, DenseNet201, and Xception) in 
DC-ChestNet method are pretrained on ImageNet dataset. 
The M-Swin transformer in VT-ChestNet is pretrained on 
ImageNet22k dataset.

Performance of Proposed Methods on Multi‑class 
Classification

In this first step, we evaluate the performance of the two 
proposed methods (DC-ChestNet and VT-ChestNet) with 
four different state-of-the-art DCNN models, three of 
which are implemented in DC-ChestNet as backbones to 
extract features. These models (EfficientNet-B5, Xception, 
DenseNet-121, and DenseNet-201) were selected for their 
high performance in similar classification challenges. They 
were trained, validated, and tested separately on the same 
CXR dataset.

As presented in Table 1, the two proposed methods 
achieved higher results compared to single DCNN mod-
els. VT-ChestNet method showed the highest performance 
with an SPE of 98.60%, an SEN of 84.21%, an ACC of 
82.36%, and an AUC rate of 95.13% outperforming all 
other experiments including DC-ChestNet method which 
achieved a slightly better F1-score with 81.00%. DC-
ChestNet which implements an EL of DCNN models out-
performed the single DCNN models for this multi-class 
classification of CXR images based on infected organs. 
DC-ChestNet obtained an AUC of 94.89%, an ACC of 
81.10%, an SPE of 95.65%, an SEN of 74.35%, and an 
F1-score of 81.00%.

Both methods DC-ChestNet and VT-ChestNet showed 
strengths over single DCNN models. DC-ChestNet which 
employs three different models as backbones in an EL 
architecture allowed extracting a wide variety of charac-
teristics for the three classes at this step (normal, heart 

disease, and lung diseases). VT-ChestNet method with 
M-Swin architecture showed better results thanks to the 
mechanism of self-attention with shifted windowing that 
lowered latency and performed at a linear complexity.

Performance of Proposed Methods on Binary 
Classification

For this step, we performed binary classification of CXR 
images belonging to eight classes, including normal cases, 
three heart diseases (cardiomegaly, aortic enlargement, 
and enlarged cardiomediastinum), and four lung diseases 
(pulmonary fibrosis, pneumothorax, atelectasis, and pleural 
effusion) using DC-ChestNet and VT-ChestNet methods. 
As shown in Table 2, DC-ChestNet achieved the following 
average scores for heart diseases: an F1-score of 96.33%, an 
SPE of 98.14%, an SEN of 90.66%, an ACC of 96.36% and 
AUC of 99.26%. For the lung diseases classification using 
DC-ChestNet method, the obtained average scores are as 
follows: an F1-score of 97.46%, an SPE of 99.57%, an SEN 
of 92.16%, an ACC of 97.58%, and an AUC of 99.57%. 
The second proposed method (VT-ChestNet) showed bet-
ter performance compared to DC-ChestNet as shown in 
Table 3. This method has shown high average scores for 
both heart and lung diseases outperforming DC-ChestNet. 
The obtained results are as follows: an F1-score of 97.04%, 
an SPE of 98.47%, an SEN 95.07%, an ACC of 96.72%, 
and an AUC of 99.35% for heart diseases, and an F1-score 
of 98.79%, an SPE of 99.60%, an SEN 95.72%, an ACC of 
98.55%, and an AUC of 99.83% for lung diseases.

The use of ensemble learning with three different CNN 
models in a single pipeline (DC-ChestNet) improved 

Table 1  Obtained results (in %) of the proposed methods and four 
other models trained and tested separately on our dataset

Bold highlight the best results or the average results obtained by each 
architecture

Methods F1-score Specificity Sensitivity Accuracy AUC 

EfficientNet-
B5

78.87 92.22 72.96 78.91 93.21

DenseNet-201 76.54 93.75 72.83 75.05 92.84
Xception 72.52 97.03 59.55 73.63 90.19
DenseNet-121 71.86 97.40 58.97 73.10 89.92
DC-ChestNet 81.00 95.65 74.35 81.10 94.89
VT-ChestNet 79.34 98.60 84.21 82.36 95.13

Table 2  Binary classification results (in %) of heart and lung diseases 
using DC-ChestNet method

Bold highlight the best results or the average results obtained by each 
architecture
Note: h for heart disease, l  for lung disease

Pathology F1-score Specificity Sensitivity Accuracy AUC 

Aortic 
Enlarge.h

94.55 97.08 85.94 94.59 98.92

Cardiomegalyh 94.64 97.44 86.13 94.69 98.94
Enlarged 

Cardio.h
99.81 99.92 99.91 99.79 99.91

Averageh 96.33 98.14 90.66 96.36 99.26
Atelectasisl 99.41 99.90 95.38 99.41 99.97
Pneumotho-

raxl

99.45 100.00 96.72 99.45 99.98

Pleural Eff.l 96.82 99.35 88.61 96.87 99.31
Pulmonary 

Fib.l
94.18 99.05 87.94 94.60 99.01

Averagel 97.46 99.57 92.16 97.58 99.57
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accuracy, robustness, generalization, feature representa-
tion, and reduced overfitting for both steps of our approach. 
The pipeline achieved high results for multi-classification of 
CXR images based on the infected organ at the first step and 
showed high potential for detecting specific heart and lung 
diseases at the second step, thanks to error compensation 
between the three models. Compared to DC-ChestNet, the 
second method (VT-ChestNet) demonstrated slightly better 
performance due to the attention mechanism implemented in 
the modified Swin transformer. Additionally, the use of data 
augmentation techniques showed high potential in generat-
ing a large number of samples with a wide variety of charac-
teristics, which helps to train the models effectively resulting 
in a significant improvement in the overall performance of 
the two proposed methods.

Conclusion

In this paper, we proposed a novel approach composed of 
two steps for chest disease classification using new DL archi-
tectures. In the first step (multi-classification), we classified 
chest X-ray (CXR) images into three classes (normal, lung 
disease, and heart disease). In the second step (binary clas-
sification), we classified CXR images into specific diseases 
to predict whether it is a normal or abnormal case. A data-
set of 26,316 CXR images was consolidated by merging 
images from two public datasets (VinDr-CXR and CheX-
pert) to train, validate, and test our methods. For this work, 
we implemented two DL methods to perform our two-step 
classification approach. The first is called DC-ChestNet 
which is based on an ensemble learning (EL) of three deep 

convolutional neural network (DCNN) models. The second 
method named VT-ChestNet is based on a modified Swin 
transformer (M-Swin). Our two methods showed high per-
formance outperforming state-of-the-art models trained and 
tested individually on our consolidated dataset including, 
DenseNet121, DenseNet201, EfficientNetB5, and Xcep-
tion. VT-ChestNet outperformed DC-ChestNet by obtain-
ing the best results on our dataset for the two-steps of our 
approach. VT-ChestNet achieved an area under curve (AUC) 
of 95.13% for the first step. For the second step, it obtained 
an average AUC of 99.26% for heart diseases and an average 
AUC of 99.57% for lung diseases.

In future work, we intend to investigate the use of differ-
ent datasets with multi-labeled images. We plan to examine 
the potential of more transformer-based architectures and 
implement an explainability algorithm to show the features 
that our models focused on to classify the images. We aim to 
explore the ability of the proposed methods to be generalized 
to other diseases and test their ability to perform multiple 
classification of chest diseases.
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