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Abstract
Alzheimer’s disease (AD) is the most common form of dementia with physical, psychological, social, and economic impacts 
on patients, their carers, and society. Its early diagnosis allows clinicians to initiate the treatment as early as possible to arrest 
or slow down the disease progression more effectively. We consider the problem of classifying AD patients through a machine 
learning approach using different data modalities acquired by non-invasive techniques. We perform an extensive evaluation 
of a machine learning classification procedure using omics, imaging, and clinical features, extracted by the ANMerge dataset, 
taken alone or combined together. Experimental results suggest that integrating omics and imaging features leads to better 
performance than any of them taken separately. Moreover, clinical features consisting of just two cognitive test scores always 
lead to better performance than any of the other types of data or their combinations. Since these features are usually involved 
in the clinician diagnosis process, our results show how their adoption as classification features positively biases the results.

Keywords Data integration · Alzheimer’s disease · Omics imaging · Transcriptomics · Magnetic resonance imaging

Introduction

Dementia is a syndrome that deteriorates cognitive func-
tions beyond what might be expected from the usual conse-
quences of biological aging. Currently, more than 55 million 
people live with dementia worldwide, and this number is 
envisioned to rise to 78 million in 2030, and 139 million 
in 2050 [1]. Alzheimer’s disease (AD) is the most common 
form of dementia and may contribute to 60–70% of cases. It 
has physical, psychological, social, and economic impacts 
on people living with dementia, their carers, families, and 
society. Its early diagnosis allows clinicians to initiate the 
treatment as early as possible to arrest or slow down the 
disease progression more effectively [2].

Many machine learning approaches have been proposed 
for the automatic classification of AD stages, which go from 
cognitively normal (CN) to the intermediate state of mild 
cognitive impairment (MCI) to the final AD stage. Some 
exploit longitudinal studies to estimate the progression 
from one stage to the other [3–6], as reviewed in recent sur-
veys [7–9]. Other approaches rely on cross-sectional stud-
ies, aiming to classify the degree of the disease based on 
the results of a predetermined visit [10–13]. Some of them 
[12–16] focus on traditional machine learning (ML) tech-
niques and rely on hand-designed features extracted from 
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the data, according to domain-specific knowledge from AD 
research. Other methods [9, 11, 17–26] exploit the ability of 
deep learning (DL) architectures to discover the discriminant 
features in the data automatically. Examples of recent ML- 
and DL-based methods are given in “Comparison with the 
State-of-the-Art”.

Biomedical image analysis has become a significant 
research field for various biomedical applications [27–33]. 
In the case of AD, the most frequently adopted imaging data 
include magnetic resonance images (MRIs) and positron 
emission tomography images (PETs) [9, 11, 17–19, 22, 34, 
35]. Besides, other data modalities are commonly taken into 
account, including omics data (e.g., gene expression (GE) 
data [12, 36, 37]), sometimes coupled with clinical data [2, 
6, 21, 38]. Recently, some research started focusing on the 
integration of omics data with information from biomedical 
images [13, 39–42]. These omics imaging methods, bring-
ing together information from different sources, can reveal 
hidden genotype-phenotype relationships to understand the 
onset and progression of many diseases and identify new 
diagnostic and prognostic biomarkers [43].

In [13], we proposed an ML-based omics imaging 
approach to AD classification that relies on data acquired 
by non-invasive techniques. The multi-modal data, derived 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset,1 consisted of omics and imaging features 
extracted by GE values from blood samples and MRIs, 
respectively. We have shown how a suitable integration of 
these data modalities, using well-known ML techniques, can 
often lead to better results than any of them taken separately.

Here, we explored a different dataset, namely the 
ANMerge dataset2 [3], and performed a thorough perfor-
mance analysis of AD classification results. Specifically, 
we varied the settings of the evaluation procedure based on 
cross-validation (CV), testing three different classifiers, four 
atlases for extracting MRI features, and different criteria for 
extracting the GE features. Analogous experiments have also 
been extended to data from ADNI to perform a fair com-
parison among the two sets of results. Finally, we also con-
sidered the adoption of clinical information (demographic 
features and cognitive tests), exploring the advantages of 
combining them with imaging and omics data types. As an 
added value, we make publicly available the software imple-
menting the evaluation procedure for AD classification to 
simplify the comparison with results from other methods.

The rest of the paper is organized as follows. “Materi-
als and Methods” describes the data adopted in the experi-
ments for classifying AD patients and the procedures used to 
extract their features. “Experiments” presents the evaluation 

procedure and discusses the results achieved with the pro-
posed framework. Finally, “Conclusions” concludes our 
paper and gives some future research directions.

Materials and Methods

The omics imaging data adopted in [13] for AD classifica-
tion come from the ADNI database. For a detailed descrip-
tion of these data and the extraction of the related features, 
the reader can refer to [13]. Here, we considered analogous 
features obtained from the ANMerge dataset [3]. This data-
set is an improved and updated version of AddNeuroMed 
[44]. It provides multi-modal data from more than 1,700 par-
ticipants of a longitudinal study, including clinical assess-
ments, MRIs, genotyping, transcriptomic profiling, and 
blood plasma proteomics.

We adopted GE values extracted by blood samples and 
MRIs, as we aim to use multi-modal information integrat-
ing omics and imaging data acquired by non-invasive tech-
niques. In the ANMerge dataset, these data, available for 
selected subsets of patients, come both from the first visit, 
so they are already aligned in time. Table 1 summarizes 
the number of ANMerge patients having MRI, GE, or both 
types of data for their first visit and their diagnosis (AD, 
MCI, or CN). It can be observed that the three classes of the 
MRI+GE subset of ANMerge data selected for the experi-
ments (in the following, simply referred to as the subset of 
ANMerge data) are very well balanced. This was not the 
case for the subset of ADNI data having both MRI and GE 
data used in [13], consisting of 42 AD, 428 MCI, and 250 
CN patients.

Imaging Data: MRI

Rather than using the imaging features made available in 
ANMerge, to maintain consistency with [13], we extracted 
imaging features from MRIs using the Clinica open-source 
framework [9, 45, 46].

The basic step common to all Clinica pipelines for 
preprocessing and feature extraction involves the conver-
sion of the dataset into the Brain Imaging Data Structure 
(BIDS) format [47]. Although automatic conversion tools 
are provided in Clinica for some publicly available datasets 

Table 1  Number of ANMerge patients having MRI, GE, or both 
types of data, and their diagnosis (AD, MCI, or CN)

Data type AD MCI CN Total

MRI 128 131 116 375
GE 223 219 249 691
MRI+GE 102 112 103 317

1 ADNI: https:// adni. loni. usc. edu.
2 ANMerge: https:// doi. org/ 10. 7303/ syn22 252881.

https://adni.loni.usc.edu
https://doi.org/10.7303/syn22252881
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(including ADNI), there is no tool for ANMerge. Therefore, 
we prepared Matlab/Python scripts for centering the MRIs 
of all ANMerge selected patients and placing them into the 
BIDS structure.

Then, we adopted the Clinica framework to generate the 
voxel-based features from MRIs, which have been shown [9] 
to lead to high-performance results using the Support Vector 
Machine (SVM) [48] classifier. The Unified Segmentation 
procedure [49] is first applied, simultaneously performing 
tissue segmentation, bias correction, and spatial normaliza-
tion of each input image. Next, a group template is created 
using the DARTEL algorithm for diffeomorphic image reg-
istration [50], using the subjects’ tissue probability maps on 
the native space obtained from segmentation. The DARTEL 
to MNI method [50] is then applied, providing the registra-
tion of the native space images into the MNI (Montreal Neu-
rological Institute) space, using routines from the Statistical 
Parametric Mapping3 (SPM) package. These steps transform 
all the images into a common space, providing a voxel-wise 
correspondence across subjects. A set of imaging features 
is finally extracted based on regional measurements, where 
the anatomical regions are obtained from an atlas in the MNI 
space, and the average gray matter density is computed in 
each region. In the experiments, we considered the regional 
features derived from four different atlases: AAL2 [51] (121 
features), AICHA [52] (385 features), Hammers [53, 54] (69 
features), and LPBA40 [55] (57 features).

Omics Data: GE

Normalized gene expression data from blood transcriptom-
ics of ANMerge participants were downloaded via Syn-
apse.4 Post-quality-control and batch-corrected expression 
values, as described in [3], were used for the differential 
abundance analysis. The lumiHumanIDMapping R pack-
age v. 1.10.1 [56] was used to map nuIDs to gene sym-
bols. The dataset contained 5213 nuIDs for 691 under 90 
samples. Multiple probes corresponding to the same gene 
symbol were aggregated by the median value. The Limma 
R package v. 3.46.0 [57] was used for performing differ-
ential expression analysis using linear models and finding 
significant differentially expressed genes (DEGs) from the 
three unpaired two-class contrast matrices (AD vs. CN, AD 
vs. MCI, MCI vs. CN). Several filtering criteria based on 
log-fold change (LogFC), which indicates the difference 
between two conditions in terms of gene expression, and 
the Benjamini–Hochberg adjusted p value (BH-adj.pvalue) 
were applied to each contrast to consider genes significant 
and select the omics features: (1) AD vs. CN: BH-adj.

pvalue ≤ 0.05 , 308 genes (“AD-CN_pv005”); (2) AD vs. 
MCI: BH-adj.pvalue ≤ 0.05 , 6 genes (“AD-MCI_pv005”) 
and BH-adj.pvalue ≤ 0.1 , LogFC ≥∣ 0.3 ∣ , 59 genes (“AD-
MCI_pv01_LFC03”); (3) MCI vs. CN: BH-adj.pvalue 
≤ 0.05 , LogFC ≥∣ 0.3 ∣ , 472 genes (“MCI-CN_pv005_
LFC03”) and BH-adj.pvalue ≤ 0.05 , LogFC ≥∣ 0.4 ∣ , 42 
genes (“MCI-CN_pv005_LFC04”).

Clinical Data: Clin (Dem+Cog)

Often (e.g., [2, 6, 21, 38]) clinical data, eventually together 
with other types of data, are adopted as features for AD clas-
sification. As we already observed in [13], some of them are 
considered by medical doctors to diagnose the disease state 
of each patient, are directly adopted for labeling patients 
belonging to different classes [58], or are used as criteria 
for including/excluding patients from AD datasets, as in [3]. 
Therefore, their use as features for AD classification appears 
to bias the results strongly (and positively). Here, we inves-
tigated their role in classification performance, justifying 
our doubts.

Among the clinical information included in the 
ANMerge dataset, we selected five features that are avail-
able for most of the patients. These include three demo-
graphic features (sex, age, and years of education) and two 
cognitive test scores: the Clinical Dementia Rating Sum 
of Boxes (CDR_SOB) and the Mini-Mental State Exami-
nation (MMSE). Few missing values have been imputed 

Table 2  Summary statistics describing the subset of ANMerge data

Features AD (102) MCI (112) CN (103) Total (317)

Sex
   Male # 

(%)
32 (31.37) 57 (50.89) 44 (42.72) 133 (41.96)

   Female # 
(%)

70 (68.63) 55 (49.11) 59 (57.28) 184 (58.04)

Age (years)
   Mean 

(std)
75.45 (6.60) 73.96 (5.74) 72.54 (6.64) 73.98 (6.4)

   Range [58,88] [56,86] [52,87] [52,88]
Education (years)

   Mean 
(std)

7.99 (3.98) 8.97 (4.29) 11.01 (4.88) 9.32 (4.56)

   Range [2,22] [0,20] [2,25] [0,25]
MMSE

   Mean 
(std)

20.80 (4.67) 27.09 (1.72) 29.07 (1.2) 25.71 (4.54)

   Range [12,30] [24,30] [25,30] [12,30]
CDR_SOB

   Mean 
(std)

6.66 (3.26) 1.43 (0.89) 0.07 (0.19) 2.67 (3.4)

   Range [0.5,15] [0.5,4.5] [0,1] [0,15]

3 SPM: https:// www. fil. ion. ucl. ac. uk/ spm/.
4 Synapse: https:// www. synap se. org.

https://www.fil.ion.ucl.ac.uk/spm/
https://www.synapse.org
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through kNN separately for each class to introduce the 
minimum possible alteration of the data. The statistics of 
the subset of ANMerge data, extracted from the chosen 
clinical features, are reported in Table 2. In the experi-
ments, we considered the results of using demographic 

features, cognitive tests, or both clinical data, also coupled 
with omics and imaging data.

Fig. 1  Scheme of the evaluation procedure
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Experiments

Evaluation Procedure

The evaluation procedure adopted in the experiments, illus-
trated in Fig. 1, is similar to the one adopted in [13].

It consists of NumIter iterations of k-fold cross-valida-
tion, with stratified partitions of the data into training and 
test subsets, using different classifiers. At each iteration, 
data are standardized by z-scoring training folds and using 
their mean and variance to z-score the test fold accordingly. 
The performance results are computed as average over the 
NumIter iterations of a set of well-known metrics: accu-
racy (Acc), sensitivity (Sens), specificity (Spec), precision 
(Prec), F-measure (F1), geometric mean (Gm), area under 
the ROC curve (AUC), Matthews correlation coefficient 
(MCC), and balanced accuracy (BA). For their description, 
please, refer to [13]. The reason for using so many metrics 
is to make the comparison of other methods with our results 
easier. However, most of our conclusions are based on val-
ues achieved for MCC and BA, which provide clear overall 
results regardless of eventual class unbalancing [59, 60]. 
The Matlab scripts implementing the evaluation procedure 
and the computation of the performance metrics are made 
publicly available through our web pages.

Evaluation on ANMerge Data

The described procedure has been applied to the subset 
of ANMerge data for each of the three binary problems. 
We fixed to 5 the number of folds for the CV and to 50 
the number of iterations of the CV and varied the classi-
fier (SVM with linear kernel, kNN with k=5, and logistic 
regression (LR)), the atlas for imaging features (AAL2, 
AICHA, Hammers, and LPBA40, see “Imaging Data: 
MRI”), and the filtering criterion for extracting the GE 

features (AD-CN_pv005 for AD vs. CN, AD-MCI_pv005 
and AD-MCI_pv01_LFC03 for AD vs. MCI, MCI-CN_
pv005_LFC03 and MCI-CN_pv005_LFC04 for MCI vs. 
CN, see “Omics Data: GE”).

The best performance results for each of the ANMerge 
binary problems are reported in Table 3. They are those 
showing the highest MCC and BA values, achieved using 
almost always the SVM classifier except for all the cases of 
MRI data alone and the MRI+GE data for the AD vs. MCI 
task, where LR leads to better performance. The atlas for 
MRI data was AAL2 in all cases, except for the MRI+GE 
data for the AD vs. MCI task, where LPBA40 leads to bet-
ter performance. The chosen criteria for GE data were the 
AD-CN_pv005 for the AD vs. CN task, the AD-MCI_pv005 
for the AD vs. MCI task, and the MCI-CN_pv005_LFC03 
for the MCI vs. CN task.

Based on the described best choices for setting up the 
evaluation procedure, Table 3 suggests that using omics 
imaging data (MRI+GE) from the subset of ANMerge data 
leads to better classification results than imaging or omics 
data alone for all three binary classification tasks.

Comparison with Results on ADNI Data

To better compare the results achieved on the subset of 
ANMerge data with those that can be obtained using the 
ADNI dataset, we repeated the experiments reported in [13], 
but fixing the same parameter values as above (5 folds and 
50 iterations) and varying the classifier and the atlas as done 
for the ANMerge dataset. The method for extracting the GE 
features varied among those described in [13] (SAM-Tstat 
and SAM-Wilc for both AD vs. CN and AD vs. MCI and 
Topvar300 for MCI vs. CN). The best performance results 
are reported in Table 4 for each of the ADNI binary prob-
lems. The highest MCC and BA values have been reached 
using the SVM classifier, except for the GE and MRI+GE 

Table 3  Best performance 
results on the subset of 
ANMerge data

In bold the best MCC and BA results for each binary classification task

Acc Sens Spec Prec F1 Gm AUC MCC BA

AD vs. CN
   MRI 0.813 0.828 0.798 0.808 0.815 0.811 0.879 0.631 0.813
   GE 0.775 0.766 0.785 0.784 0.771 0.772 0.864 0.556 0.775
   MRI+GE 0.874 0.872 0.875 0.879 0.872 0.872 0.949 0.752 0.873

AD vs. MCI
   MRI 0.707 0.707 0.707 0.693 0.695 0.702 0.771 0.419 0.707
   GE 0.588 0.539 0.633 0.577 0.553 0.579 0.636 0.176 0.586
   MRI+GE 0.722 0.720 0.724 0.710 0.710 0.717 0.791 0.449 0.722

MCI vs CN
   MRI 0.611 0.613 0.609 0.634 0.619 0.606 0.650 0.225 0.611
   GE 0.746 0.766 0.725 0.757 0.758 0.741 0.828 0.496 0.745
   MRI+GE 0.778 0.790 0.765 0.790 0.786 0.774 0.855 0.560 0.777
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cases in the MCI vs. CN task, where LR leads to better 
results. As in [13], the best choices for the AD vs. CN task 
are confirmed to be the AICHA atlas and the SAM-Wilc 
method, and the same can be said for the MCI vs. CN task 
with the AAL2 atlas and the Topvar300 method. However, 
for the AD vs. MCI task, the best atlas was LPBA40 (instead 
of AICHA), and the best GE extraction method was SAM-
Tstat (instead of SAM-Wilc).

The overall results obtained in [13] for the ADNI data 
were confirmed, as omics imaging data allow us to achieve 
better performance than imaging or omics data alone for all 
the binary tasks, except the MCI vs. CN. Besides the latter 
task being much more challenging than the others, worse 
results on this dataset (but not on the ANMerge dataset) 
are probably due to the more unbalanced class distribution.

Apart from different choices for the MRI atlas and the 
GE extraction procedure, performance results on ADNI data 
in terms of MCC and BA appear to be similar to those on 
ANMerge data for the AD vs. CN and AD vs. MCI tasks. 
However, probably due to the strong class unbalancing for 
these tasks in the subset of ADNI data, the accuracy for the 
AD minority class (i.e., Sens) is much lower than that of 
the other two (majority) classes (i.e., Spec). This phenom-
enon is absent in the results on the well-balanced subset of 
ANMerge data, where Sens and Spec achieve similar results.

Instead, a significant performance improvement can be 
observed when using data from ANMerge for the MCI vs. 
CN task, which was an open issue already highlighted in 
[13]. This appears to be connected to more significant GE 
features that succeeded in being extracted compared to those 
from the ADNI data.

Evaluation Using Also Clinical Data

Best classification results obtained using demographic 
features (Dem), cognitive tests (Cog), or all Clinical 

(Dem+Cog) data, also in combination with MRI and GE 
data, are reported in Table 5. The best performance values 
have been chosen by fixing the SVM classifier while varying 
the MRI atlas and the GE criterion.

From Table 5, we can observe that clinical data alone, 
mainly just the two cognitive test scores, always lead to bet-
ter performance than any of the other types of data or their 
combinations. This is undoubtedly due to their strong link 
with the medical doctor’s diagnosis and justifies our concern 
in using these features for a fair evaluation. Indeed, cognitive 
test scores confirm being strongly informative of patients’ 
AD status. However, we believe these tests alone cannot 
solve the problem, as patients get acquainted with them over 
time, and their scores, in subsequent visits, would be biased 
by the acquired experience. Therefore, an automatic tool for 
AD classification based on omics imaging data acquired by 
non-invasive techniques, such as the one proposed, could 
help clinicians make their diagnoses.

Comparison with the State‑of‑the‑Art

Being ANMerge relatively recent, we could not find other 
methods using the dataset to evaluate AD classification in 
cross-sectional studies. Nonetheless, to provide a rough per-
formance comparison of the results that could be achieved 
by state-of-the-art approaches, in Table 6, we report the clas-
sification performance of several methods on various data-
sets published in the recent literature. Our best results from 
Table 3 are also reported to make more immediate compari-
sons. For each classification problem, methods are grouped as 
DL-based (top) and ML-based (bottom). For each method, we 
report an acronym (made by the last name of the first author 
and the publication year) and reference, the adopted data-
set, the number of samples for each class, the type(s) of data 

Table 4  Best performance 
results on the subset of ADNI 
data

In bold the best MCC and BA results for each binary classification task

Acc Sens Spec Prec F1 Gm AUC MCC BA

AD vs. CN
   MRI 0.922 0.605 0.975 0.815 0.681 0.760 0.916 0.655 0.790
   GE 0.853 0.476 0.916 0.508 0.476 0.649 0.835 0.401 0.696
   MRI+GE 0.941 0.688 0.984 0.883 0.764 0.817 0.951 0.745 0.836

AD vs. MCI
   MRI 0.884 0.242 0.947 0.320 0.264 0.448 0.773 0.212 0.595
   GE 0.887 0.359 0.939 0.370 0.353 0.560 0.771 0.298 0.649
   MRI+GE 0.918 0.454 0.963 0.560 0.487 0.649 0.880 0.454 0.709

MCI vs. CN
   MRI 0.632 0.732 0.462 0.700 0.715 0.579 0.645 0.198 0.597
   GE 0.591 0.851 0.145 0.630 0.719 0.253 0.514 −0.002 0.498
   MRI+GE 0.617 0.753 0.384 0.677 0.712 0.530 0.614 0.145 0.568
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modality, and the performance values in terms of the most 
commonly used metrics (Acc, Sens, AUC, and BA).

DL-based methods considered in Table 6 include [9, 11, 
17–26]. Aderghal et al. [17] integrate the MRI and DTI (Dif-
fusion Tensor Imaging) modalities from ADNI data. Due 
to the scarcity of DTIs, they adopt cross-modal transfer 
learning from MRIs to DTIs and combine the classification 
results of multiple CNNs by a majority vote. In [18], Back-
strom et al. propose a 3D CNN for AD vs. CN classification 

using ADNI MRIs. Multiple MRIs for individual subjects, 
made at different times, are considered; the results reported 
in Table 6 are those obtained by the authors using a subject-
separated data partitioning strategy. Li et al. [19] propose a 
classification method based on multiple cluster dense con-
volutional neural networks (DenseNets) to learn features 
from MRIs coming from ADNI. Each whole-brain image 
is first partitioned into different local regions, and a fixed 
number of 3D patches is extracted from each region. These 

Table 5  Best performance 
results on the subset of 
ANMerge data using also 
clinical data

In bold the best MCC and BA results for each binary classification task

Acc Sens Spec Prec F1 Gm AUC MCC BA

AD vs. CN
   Dem 0.635 0.698 0.573 0.622 0.654 0.628 0.690 0.277 0.636
   Cog 0.985 0.969 1.000 1.000 0.984 0.984 0.998 0.970 0.984
   Clinical 0.984 0.968 1.000 1.000 0.984 0.984 0.998 0.969 0.984
   MRI+Dem 0.787 0.779 0.795 0.797 0.784 0.784 0.853 0.579 0.787
   MRI+Cog 0.960 0.945 0.974 0.974 0.959 0.959 0.989 0.921 0.959
   MRI+Clin 0.959 0.946 0.971 0.972 0.958 0.958 0.988 0.920 0.959
   GE+Dem 0.804 0.806 0.803 0.807 0.803 0.802 0.895 0.614 0.804
   GE+Cog 0.916 0.895 0.937 0.937 0.913 0.915 0.976 0.835 0.916
   GE+Clin 0.922 0.904 0.941 0.941 0.920 0.921 0.980 0.848 0.922
   MRI+GE+Dem 0.873 0.860 0.885 0.886 0.870 0.871 0.948 0.750 0.873
   MRI+GE+Cog 0.929 0.923 0.934 0.935 0.928 0.928 0.984 0.860 0.929
   MRI+GE+Clin 0.928 0.922 0.933 0.934 0.927 0.927 0.983 0.858 0.928

AD vs. MCI
   Dem 0.586 0.668 0.512 0.557 0.604 0.579 0.606 0.184 0.590
   Cog 0.932 0.902 0.959 0.955 0.926 0.930 0.967 0.867 0.931
   Clinical 0.921 0.879 0.959 0.953 0.913 0.917 0.968 0.845 0.919
   MRI+Dem 0.676 0.656 0.695 0.667 0.657 0.671 0.733 0.356 0.676
   MRI+Cog 0.886 0.885 0.887 0.882 0.881 0.885 0.946 0.776 0.886
   MRI+Clin 0.882 0.880 0.884 0.878 0.877 0.881 0.947 0.768 0.882
   GE+Dem 0.655 0.609 0.697 0.651 0.625 0.647 0.717 0.311 0.653
   GE+Cog 0.927 0.891 0.959 0.954 0.920 0.924 0.968 0.857 0.925
   GE+Clin 0.912 0.886 0.935 0.929 0.905 0.909 0.965 0.827 0.911
   MRI+GE+Dem 0.710 0.685 0.734 0.708 0.691 0.705 0.782 0.424 0.709
   MRI+GE+Cog 0.902 0.891 0.913 0.907 0.896 0.900 0.961 0.808 0.902
   MRI+GE+Clin 0.893 0.877 0.908 0.900 0.886 0.891 0.959 0.790 0.893

MCI vs CN
   Dem 0.587 0.697 0.468 0.588 0.636 0.567 0.615 0.170 0.582
   Cog 0.936 0.974 0.895 0.915 0.942 0.932 0.988 0.879 0.935
   Clinical 0.947 0.973 0.918 0.932 0.951 0.944 0.989 0.898 0.946
   MRI+Dem 0.581 0.597 0.565 0.602 0.595 0.574 0.602 0.164 0.581
   MRI+Cog 0.880 0.876 0.885 0.896 0.883 0.879 0.953 0.765 0.881
   MRI+Clin 0.884 0.890 0.877 0.891 0.888 0.882 0.956 0.772 0.883
   GE+Dem 0.750 0.769 0.729 0.759 0.761 0.745 0.830 0.503 0.749
   GE+Cog 0.916 0.918 0.915 0.924 0.919 0.915 0.978 0.835 0.916
   GE+Clin 0.916 0.917 0.915 0.924 0.919 0.915 0.976 0.835 0.916
   MRI+GE+Dem 0.781 0.795 0.766 0.791 0.790 0.778 0.860 0.566 0.780
   MRI+GE+Cog 0.896 0.916 0.875 0.892 0.902 0.894 0.956 0.796 0.896
   MRI+GE+Clin 0.893 0.913 0.872 0.889 0.899 0.891 0.952 0.790 0.892
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patches are grouped into different clusters with k-means 
clustering, and a DenseNet is constructed to learn the 
patch features for each cluster. The features learned from 

the discriminating clusters of each region are combined for 
classification, and the results from different local regions 
are integrated to enhance the final image classification. Pan 

Table 6  Performance (%) on various datasets of recent methods for AD classification

For each classification problem, methods are grouped as DL- (top) and traditional ML-based (bottom). For each method, we report our acronym 
and reference (Acronym [Ref.] ), the adopted dataset (Dataset), the number of samples for each class (# Samples), the type(s) of data modality 
(Feats.), and the performance values. In boldface/underlined the best/second best AUC and BA values for each classification problem

Acronym [Ref.] Year Dataset # Samples Feats. Acc Sens Spec Prec F1 AUC BA

AD vs. CN
   Aderghal2018 [17] 2018 ADNI 48, 58 MRI, DTI 92.5 94.7 90.4 – – – 92.5
   Backstrom2018 [18] 2018 ADNI 199, 141 MRI 90.1 93.3 86.8 – – – 90.0
   Li2018 [19] 2018 ADNI 199, 229 MRI 89.5 87.9 90.8 – – 92.4 89.4
   Pan2018 [20] 2018 ADNI 428, 205 MRI, PET 92.5 89.9 94.5 – 91.3 85.9 92.2
   Senanayake2018 [21] 2018 ADNI 161, 161 MRI, Cog 78.0 – – – – – –
   Shi2018 [22] 2018 ADNI 51, 52 MRI, PET 97.1 95.9 98.5 – – – 97.2
   Lazni2019 [61] 2019 ADNI 77,82 MRI, PET 93.6 91.4 – –
   Stamate2019 [23] 2019 EMIF-AD 115, 242 Blood metab – – – – 88.0 –
   Bae2020 [11] 2020 ADNI 195, 195 MRI 89.0 88.0 91.0 – – 94.0 89.5
   Bae2020 [11] 2020 SNUBH 195, 195 MRI 88.0 85.0 91.0 – – 91.0 88.0
   Islam2020 [24] 2020 ADNI 98, 105 PET 71.5 – – – – – –
   Jo2020 [25] 2020 ADNI 66, 66 PET 90.8 – – – – – –
   Wen2020 [9] 2020 ADNI 236, 230 MRI – – – – – – 89.0
   Wen2020 [9] 2020 AIBL 76, 429 MRI – – – – – – 88.0
   Wen2020 [9] 2020 OASIS 78, 76 MRI – – – – – – 70.0
   Yu2022 [26] 2020 ADNI 221, 315 MRI 95.9 95.8 – – – 95.9 –

   Hett2018 [14] 2018 ADNI 186, 226 MRI 91.3 93.4 87.6 – – 94.7 90.5
   Zheng2018 [15] 2018 ADNI 142, 165 MRI 98.7 98.6 98.8 – – 99.9 98.7
   Gupta2019 [16] 2019 ADNI 38, 38 MRI, PET, APOE, CSF 98.4 100 96.5 97.9 98.4 98.3 98.3
   Lee2020 [12] 2020 ADNI 63, 136 GE – – – – – 65.7 –
   Lee2020 [12] 2020 ANM1 145, 104 GE – – – – – 87.4 –
   Lee2020 [12] 2020 ANM2 139, 134 GE – – – – – 80.4 –
   Maddalena2022 [13] 2022 ADNI 42, 250 MRI, GE 94.6 72.2 98.3 88.9 78.7 95.5 85.3
   Ours 2022 ANMerge 102, 103 MRI, GE 87.4 87.2 87.5 87.9 87.2 94.9 87.3

AD vs. MCI
   Aderghal2018 [17] 2018 ADNI 48, 108 MRI, DTI 85.0 93.7 79.1 – – – 86.4
   Senanayake2018 [21] 2018 ADNI 161, 193 MRI, Cog 76.0 – – – – – –
   Yu2022 [26] 2022 ADNI 221, 297 MRI 85.7 88.9 – – – 85.4 –

   Zheng2018 [15] 2018 ADNI 142, 221 MRI 73.8 64.1 80.1 – – 77.3 72.1
   Maddalena2022 [13] 2022 ADNI 42, 428 MRI, GE 91.5 39.4 96.6 54.6 44.8 86.9 68.0
   Ours 2022 ANMerge 102, 112 MRI, GE 72.2 72.0 72.4 71.0 71.0 79.1 72.2

MCI vs. CN
   Aderghal2018 [17] 2018 ADNI 108, 58 MRI, DTI 80.0 92.8 73.0 – – – 82.9
   Li2018 [19] 2018 ADNI 403, 229 MRI 73.8 86.6 51.5 – – 77.5 80.2
   Senanayake2018 [21] 2018 ADNI 193, 161 MRI, Cog 75.0 – – – – – –
   Shi2018 [22] 2018 ADNI 99, 52 MRI, PET 87.2 97.9 67.0 – – – 82.5
   Yu2022 [26] 2022 ADNI 297, 315 MRI 89.3 96.7 – – – 88.7 –

   Zheng2018 [15] 2018 ADNI 221, 165 MRI 97.9 98.6 97.0 – – 99.3 97.8
   Maddalena2022 [13] 2022 ADNI 428, 250 MRI 63.6 73.2 47.1 70.4 71.7 65.1 60.1
   Ours 2022 ANMerge 112, 103 MRI, GE 77.8 79.0 76.5 79.0 78.6 85.5 77.7
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et al. [20] propose a DL framework for AD diagnosis based 
on MRI and PET images from the ADNI dataset. Missing 
PET images are imputed from their corresponding MRI 
data by using 3D Cycle-consistent Generative Adversarial 
Networks (3D-cGAN) to capture their relationship. A deep 
multi-modal multi-instance neural network is then used for 
AD classification using subjects with both MRI and PET 
(either real or synthetic). Senanayake et al. [21] use 3D MR 
volumes and neuropsychological measure-based (NM) fea-
ture vectors from ADNI. To combine these two data sources, 
having very different dimensions (35 NM features against 
more than ten million features from 3D MR volumes), they 
propose a DL-based pipeline that reduces the dimension of 
the MRI features to a dimension comparable with that of 
NM, and use the feature vector merging the two sets of fea-
tures. The accuracy values reported in Table 6 have been 
extracted by their bar plots. Shi et al. [22] propose a multi-
modal algorithm based on a stacked deep polynomial net-
work (MM-SDPN). Two SDPNs are first used to learn high-
level features from MRIs and PETs coming from the ADNI 
dataset, taken separately. These are then fed to another 
SDPN to fuse multi-modal neuroimaging information to 
retain the intrinsic properties of both modalities and their 
correlation. Bae et al. [11] develop a CNN-based algorithm 
to classify AD patients using coronal slices of T1-weighted 
MRIs that cover the medial temporal lobe. The performance 
results reported in Table 6 come from the within-dataset val-
idation performed by the authors on data from the ADNI and 
the Seoul National University Bundang Hospital (SNUBH) 
datasets. Islam et al. [24] propose an approach for generat-
ing synthetic brain PET images for building a large-scale 
dataset for training DL models for AD classification. The 
PET images generator exploits Deep Convolutional Genera-
tive Adversarial Networks (DCGANs) [62] learning on the 
three AD stages. A 2D-CNN model using axial, coronal, and 
sagittal slices from the generated PET data is finally adopted 
for classification. Jo et al. [25] propose a 3D CNN-based 
DL model on PET images for AD classification. Random 
under-sampling (RUS) is adopted for class balancing. Wen 
et al. [9] present an open-source framework for AD clas-
sification using CNNs and T1-weighted MRIs and use it to 
compare different CNN architectures. Table 6 reports the 
best results obtained by training the DL models on a subset 
of ADNI data and testing them on the remaining ADNI data, 
as well as on the AIBL5 (the Australian Imaging, Biomark-
ers and Lifestyle Flagship Study of Ageing) and OASIS6 
(Open Access Series of Imaging Studies) datasets. Yu et al. 
[26] propose the THS-GAN (Tensor-train decomposition, 
Higher-order pooling, and Semi-supervised learning-based 
GAN) method for AD classification on ADNI data. The 

tensor-train decomposition is applied to all layers in the clas-
sifier and discriminator, reducing the number of parameters 
and exploiting, at the same time, the structural information 
of the brain. The higher-order pooling leverages the second-
order statistics of the MRIs, effectively capturing long-range 
dependencies between slices of different directions. Moreo-
ver, the model is designed in a semi-supervised manner to 
take advantage of both labeled and unlabeled MRIs.

ML-based methods considered in Table  6 include 
[12–16]. Hett et al. [14] propose a texture-based grading 
framework based on 3D Gabor filters to better capture 
structural alterations caused by AD. An adaptive patch-
based fusion strategy based on a local confidence criterion 
is adopted to combine all the grading maps estimated on 
texture maps. Moreover, contrary to usual grading-based 
methods using the average grading values over the consid-
ered ROI, a classification step is applied based on a non-
parametric grading values distribution representation to 
better discriminate the pathology stages. Zheng et al. [15] 
describe a network-based approach built on multiple mor-
phological features to enhance the MRI-based accuracy of 
AD classification. A multifeature-based network (MFN) is 
constructed for each patient using a sparse linear regression 
performed on six types of morphological features to promote 
the structure-based diagnosis. SVM was adopted to examine 
the diagnostic performance of the MFN by cross-validating 
the results. The performance values reported in Table 6 were 
obtained by combining the properties of the MFN with the 
morphological features. Gupta et al. [16] propose a frame-
work based on SVM and feature selection to discriminate 
the various stages of ADNI patients using a combination of 
FDG-PETs, MRIs, CSF protein levels, and APOE genotype 
data. Stamate et al. [23] evaluate the performance of three 
state-of-the-art machine learning models (XGBoost, Ran-
domForest, and DL) on AD classification based on plasma 
metabolites as potential AD biomarkers. Data samples are 
gathered by the European Medical Information Framework 
for AD Multimodal Biomarker Discovery7 (EMIF-AD) [63]. 
The study demonstrates that XGBoost, whose performance 
is reported in Table 6, is more effective than RF and DL 
for this particular dataset and that this accuracy for clinical 
diagnosis is broadly similar to that achieved by CSF mark-
ers of AD pathology [64]. Lee and Lee [12] classify AD 
vs. CN using blood gene expression data not only from the 
ADNI dataset but also from two AddNeuroMed8 [44] data-
sets (ANM1 and ANM2). Table 6 reports the best results 
obtained using suitable feature selection methods and 
classifiers.

5 AIBL: https:// aibl. csiro. au.
6 OASIS: https:// www. oasis- brains. org.

7 EMIF-AD: http:// www. emif. eu.
8 AddNeuroMed: https:// www. synap se. org/# !Synap se: syn49 07804.

https://aibl.csiro.au
https://www.oasis-brains.org
http://www.emif.eu
https://www.synapse.org/#%21Synapse:syn4907804
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Despite the variability of experimental conditions and, 
consequently, of the performance results, few observations 
can be derived from Table 6. (1) Generally, but not always 
(e.g., see the results of [65] and [15]), DL-based methods 
lead to better performance than those based on traditional 
ML; (2) Different datasets can lead to pretty different per-
formances of the same method (e.g., see the results of [9] 
and [12] varying the dataset); (3) The combination of mul-
tiple data sources appears promising for better performance 
(e.g., [17, 20, 22]); however, it should be taken into account 
that the extraction of further data modalities (e.g., the CSF 
used in [16]) could require quite invasive interventions; (4) 
Our performance results using MRI and GE features appear 
on average compared to those achieved by state-of-the-art 
methods for various classification tasks. Being the only ones 
produced for the ANMerge dataset, they can be used as a 
baseline for evaluating future AD classification methods on 
different data. Moreover, the promising integration of dif-
ferent data modalities obtainable by non-invasive techniques 
could be exploited by future ML- or DL-based methods.

Conclusions

We proposed an extensive evaluation of a machine learning 
procedure for classifying Alzheimer’s patients using data 
from the ANMerge dataset. We considered data from dif-
ferent modalities, including imaging, omics, and clinical 
features, taken alone or combined together.

Overall results suggest that integrating omics and imag-
ing features leads to better performance than any of them 
taken separately. This result holds whichever is the binary 
AD classification problem taken into account, also for 
the most challenging task of distinguishing MCI vs. CN 
patients, differently from what we previously experimented 
on analogous data from the ADNI dataset.

Moreover, we showed that clinical features consisting 
of just two cognitive test scores always lead to better per-
formance than any other types of data or their combina-
tions. Our results show how their adoption as classification 
features positively biases the results, being involved in the 
clinician diagnosis process, thus inhibiting a fair evaluation.

We believe that the results of our extensive experiments 
on the ANMerge dataset can be used as a baseline to com-
pare for the evaluation of future AD classification methods. 
Indeed, as the dataset (at least in its merged and revised 
form) is pretty new, no other methods could be found experi-
encing it. Toward this goal, we believe that the public avail-
ability of the software developed for the experiments makes 
these future comparisons easier.

Future research is directed toward adopting different 
cohort study data for independent training and testing. This 
will certainly require a general method for reducing batch 

effects between different experiments and an ad hoc pro-
cedure for classifier hyperparameter optimization on the 
training set.

Supplementary information
The Matlab scripts implementing the evaluation proce-

dure adopted for AD classification and the computation of 
the performance metrics are made publicly available through 
our web pages.
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