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Abstract
Requirement change management is a challenging issue in software development. One of the main objectives of the Intent-
Defined Adaptive Software program is to verify the satisfaction of requirement changes during software development. In 
this paper, we develop an ontology-based method to detect inconsistencies in Systems Modeling Language (SysML) models 
with Object Constraint Language (OCL) constraints as a first step of requirement change management. Specifically, we map 
the SysML/OCL models to Web Ontology Language (OWL), so that the consistency of the corresponding ontology can be 
checked by OWL reasoners automatically. We propose a set of mapping rules to interpret the components of SysML state 
machine diagrams, along with OCL constraints, to OWL. Toward this objective, we demonstrate three consistency reason-
ing tasks over a state machine diagram using OWL reasoners. In each case, the result of reasoning is accompanied by an 
explanation of the logic behind the decision.
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Introduction

The DARPA-supported Intent-Defined Adaptive Software 
(IDAS) program [1] sought to develop technologies that 
enable rapid adaptation of software to changes in require-
ments and operating environments. The main objective of 
this program was to develop methods for the management 

of requirement changes in software development. The step 
in the change management process that is addressed in this 
paper is the identification of inconsistencies in require-
ments. Building an ontology as a common understanding 
of the structure of information between stakeholders is a 
widely used approach in software engineering for software 
requirements change management [2, 3]. It allows the reuse 
of domain knowledge, and making explicit domain assump-
tions that will allow assumptions to be changed easily when 
the domain knowledge is changed. In the work described in 
this paper, we focus on the verification of the satisfaction of 
changes in the requirements during software development. 
Our approach relies on the use of ontology for this purpose.

There are two main advantages of using ontology in soft-
ware engineering. First, ontologies provide common vocabu-
laries of given domains that can be shared among software 
developers working on different aspects of software applica-
tions. Second, once the model of the software and the user 
requirements are represented as an ontology in OWL [4], 
requirement satisfaction can be verified automatically using 
an inference engine. One of the advantages of using OWL 
is that OWL inference is decidable.

In this paper, we focus on the latter issue. However, 
instead of proving that user requirements are satis-
fied, we will show some “reasonable assurances” to the 
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developer that the model is correct, reserving full verifica-
tion of requirement satisfaction to future work. This paper 
is an extension of the work originally presented in MOD-
ELSWARD 2022 [5]. We will provide a more complete 
picture of the mapping from SysML/OCL models to OWL 
DL, and will show more detailed explanations for the OWL 
reasoning results.

Problem Statement

The Unified Modeling Language (UML) is a widely used 
industry standard language that provides graphical notation 
for software specification and design in the early phases 
of software development. The SysML is an extension of a 
subset of the UML. However, UML/SysML models alone 
are not expressive enough to represent constraints on the 
modeling concepts. The OCL is used to express constraints 
in UML/SysML models. Many UML/SysML tools sup-
port adding OCL constraints in UML class diagrams and 
SysML block diagrams. However, none of the tools supports 
the semantics checking of the constraints. Because UML/
SysML are not formal languages (they have formal syntax 
but lack formal, computer-processable semantics), we can-
not perform theorem proving in UML/SysML to verify the 
consistency of a model. In other words, the UML/SysML 
tools do not check if the model is correct according to these 
constraints.

To support software developers with automated reason-
ing capabilities when developing models of software, we 
develop an ontology-based method to reason about the cor-
rectness of SysML models that include OCL constraints. 
Specifically, we map SysML block diagrams, state machine 
diagrams, and OCL constraints to OWL, and check the con-
sistency of the corresponding ontology by running an OWL 
inference engine. Although significant amount of research 
on mapping UML/SysML models to ontologies has been 
reported (e.g., [6–9]), almost all of the researchers limit their 
scope of investigation to class diagrams. There is a lack of 
widely accepted mapping rules for the mapping of UML/
SysML behavior diagrams to OWL and thus more research 
in this area is needed.

In this paper, we propose a set of mapping rules to inter-
pret the components of SysML state machine diagrams, 
along with OCL constraints, to OWL DL. The novelty of our 
approach is the identification and implementation of a more 
complete mapping of UML/SysML to OWL, than what is 
included with current CASE tools. There are a few papers on 
the mapping of the UML/SysML behavior diagrams to OWL 
DL, however, they either use a non-OCL logic, a restricted 
set of OCL operators and/or do not support formal proof. 
Our mapping rules have two advantages: (1) they show how 
to translate both basic state machine elements (including 

states, transitions, events, actions, guards, and triggers) and 
OCL constraints in the state machine diagrams (including 
the OCL invariants in states and guards) to OWL, and (2) the 
OCL to OWL translation rules cover relational operators (e.g 
equivalent, greater/less than) between variables.

The existing research on consistency checking of UML 
state machine diagrams primarily focuses on the detection of 
contradictions between: (1) the UML metamodel and state 
machine specifications, and (2) state machine diagrams and 
other types of diagrams. Verification that state machine dia-
grams are not contradictory with the requirements expressed 
as OCL constraints is also a very important issue in soft-
ware development. In this paper, we check for contradic-
tions within models that include OCL constraints on state 
machine diagrams. We demonstrate this capability on three 
exemplary inference tasks.

The rest of this paper is organized as follows. In “Related 
work”, we review some of the existing literature that is 
related to our work. In “OWL reasoning about SysML block-
diagrams”, we show the OWL axiom usage in reasoning 
about SysML block diagrams. In “State machine diagram to 
OWL mappingrules”, we propose a set of mapping rules to 
interpret the components of state machine diagrams along 
with OCL constraints to OWL DL, and demonstrate three 
reasoning tasks using the OWL reasoner Pellet. Finally, 
“Conclusions” summarizes our work.

Related Work

Consistency checking of UML/SysML models is an impor-
tant step in MBSE-based system development. The defini-
tions of types of consistency are still an open research topic, 
c.f., [10–12]. One of the UML consistency classifications 
is horizontal vs. vertical consistency. Horizontal consist-
ency, also called intra-model consistency, means the lack of 
contradictions between different diagrams at the same level 
of abstraction. Vertical consistency, also called inter-model 
consistency, means the lack of contradictions between differ-
ent diagrams at different levels of abstraction. Another basic 
classification of consistency in UML is syntactic vs. seman-
tic consistency. Syntactic consistency refers to the relation 
between UML diagram specifications and a UML meta-
model, whether the syntax of a given diagram is compat-
ible with the syntax prescribed by the metamodel. Semantic 
consistency refers to the meaning of UML diagrams, i.e., to 
the notion of truth - whether any contradictions in the model 
do not exist and whether a concept can be instantiated. Other 
methods of consistency classification were also discussed in 
the literature, e.g., static versus dynamic consistency, multi-
level consistency, and the nature of errors.

In this paper, we focus on the consistency of UML mod-
els that include requirements expressed in OCL. Since the 
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OCL constraints capture the semantics of the domain, our 
approach falls in the semantic validation category.

Consistency Checking via Mapping to Formal 
Languages

Many approaches rely on the mapping of UML/SysML mod-
els to a formal languages and the use of automatic proof 
engines for reasoning on these models. We looked at these 
methods with respect to the support of automatic proof, 
model analysis, structural and behavioral modeling, and 
checking for consistency of models that map requirements 
expressed as OCL constraints. While many recent papers 
propose mapping of UML to OWL, most of the papers 
seem to ignore the fact that UML and OWL have differ-
ent semantics. This issue was first discussed in [13], where 
the authors identified similarities and differences between 
UML and DAML (DARPA Agent Markup Language). To 
close the gap between the two representations, the authors 
proposed extending UML by adding two metamodel ele-
ments called Property and Restriction, where a property is 
a grouping of association ends and a restriction is a classifier 
for objects. The recommendation from the [13] paper has 
not materialized primarily due to the fact that UML has not 
been modified as suggested in the paper. Moreover, DAML 
became OWL.

UML2Alloy [14, 15] maps UML/OCL models to Alloy 
notations, and then the Alloy model is automatically ana-
lysed by the Alloy Analyzer. Alloy is an object modeling 
language based on first-order logic (FOL), offering declara-
tion syntax compatible with graphical object-oriented mod-
els, and state-based formulas. However, Alloy models do not 
provide semantic notations which are necessary during the 
analysis phase of software development [16].

USE [17, 18] includes an interpreter for a subset of UML 
and OCL. It provides its own UML/OCL user interface and 
lets one check constraints (invariants and pre- and post-con-
ditions). That is, it checks model states (snapshots) making 
sure invariants are not contradictory. However, this is not a 
formal system and it uses a custom UI that does not support 
XMI import/export.

Rehman et al. [19, 20] modeled a smart parking system 
and a sewage system using UML activity diagrams, translat-
ing them to automata-based models, and then to temporal 
logic of actions. A (TLA)-based formal method was utilized 
to validate and verify system properties using the TLA+ 
toolbox [21]. The toolbox includes a proof system and a 
high level language to generate TLA code. TLA+ is a good 
tool for verifying code simulating state machines, but it is 
not clear how it could be used for model analysis, which was 
our objective.

Automated Reasoning on UML/OCL conceptual Sche-
mas (AuRUS) [22] is a standalone application which allows 

verifying and validating UML/OCL conceptual schemas 
specified in ArgoUML. Verification consists in determin-
ing whether the schema satisfies a set of well-known desir-
able properties such as class liveliness or non-redundancy 
of integrity constraints. Validation consists of allowing 
the user to perform queries about reachable states of the 
schema. However, AuRUS only validates the structural part 
of a schema. Validation of the behavioral part of a schema 
is not supported.

There are many other methods surveyed in [10, 12] that 
are based on a formal language. In particular, the authors 
considered mapping UML models to DL. None of the meth-
ods reviewed in that paper check the consistency of the OCL 
constraints. Some researchers pursue verification of consist-
ency, e.g., [23, 24], but not of UML/SysML models.

Ontology‑Based Consistency Checking

In [25], the authors investigate the method, called TwoUse, 
to integrate a UML model and an OWL ontology. Since 
OWL classes cannot be exploited through OCL expres-
sions, the authors propose an extension to the OCL basic 
library, called OCL-DL, to permit operations to call the 
OWL reasoner. In OCL-DL, the authors propose new opera-
tions which rely on reasoning engine services to extend the 
boundaries of OCL toward OWL. However, their method 
only focuses on UML class diagrams.

In [26], the authors represent class diagram operations 
using three ways: (1) FOL n-ary predicate that has to sat-
isfy some FOL assertions. These are assertions that type 
the input parameters and the return value, and ensure the 
uniqueness of the return value; (2) DLR-ifd (variation of 
DL) operation is represented as an n-ary relation. The same 
assertions as in the previous case are used; (3) ALCQI (vari-
ation of DL) approach is based on reification. An operation 
is expressed as an atomic concept -the ALCQI role. There 
are also assertions that type the input parameters and the 
return value. There is no consideration of names of opera-
tion parameters.

The approach that we are using in this paper is in line 
with [26].

Mapping Behavior Models to OWL DL

The method in [9] translates UML state machines and OCL 
constraints to DLR—an expressive description logic (DL) 
that supports n-ary relations. The basic idea is that the states 
and transitions in a state diagram are mapped to primitive 
concepts in DL. We have not found tool support for the 
translation. Also, the translation of OCL to OWL does not 
allow relational operators between variables.

In [7], the authors describe a transformation of UML 
statechart primitives to OWL DL. In their transformation, 
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a specific state is defined by a class expression constrained 
by transitions and state conditions. A specific transition is 
defined by an intersecting class expression standing for the 
source, target, event and guard of this transition. However, 
this work does not support translation of OCL constraints.

In [27, 28], the authors translate both the UML class and 
statechart diagrams of a model to a single ontology, and 
analyze the consistency and satisfiability of the model using 
OWL reasoners. However, the authors do not provide any 
translation of transitions in the statechart diagram. Moreo-
ver, translation of OCL to OWL does not allow relational 
operators between variables.

The method in [6] represents the state machine using 
OWL individuals. It is difficult to extend this method for 
OCL support, since the mapping of OCL to OWL that we 
use is class based.

The detailed comparison of these mapping rules is shown 
in Table 4.

OWL Reasoning about SysML Block 
Diagrams

Ontology Foundations

Ontology is a field of philosophy dealing with the nature of 
“being”. In computer science, the same term has a some-
what different meaning: an ontology is an explicit, formal 
specification of a shared conceptualization [29]. To represent 
ontologies in computer science, the five basic constructs are 
used to capture knowledge about a specific domain: classes, 
properties, instances, constraints, and axioms.

•	 Classes: also called concepts or types, represent groups 
of things that share common characteristics. They could 
be either concrete objects of the real world or abstract 
concepts.

•	 Properties: are used to express relationships between two 
classes in a given domain. They are the ways in which 
classes and instances can be related to one another.

•	 Instances: are also known as individuals and are the 
things that the ontology describes or potentially could 
describe.

•	 Constraints: determine which values are allowed for 
properties or what relations should hold for specific 
classes of individuals.

•	 Axioms: classes, properties, and constraints can be put 
together to form logical statements or assertions. Axioms 
are formally stated descriptions of what must be true in 
order for some assertions to be accepted.

OWL is a family of standardized ontology languages with 
formal semantics that is used to formalize ontologies. To 

facilitate the representation of ontologies, many visualiza-
tion tools have been developed. Protégé [30] is a popular 
open-source ontology editor and knowledge base framework. 
In this project, we used Protégé to develop our ontologies.

Mapping of SysML Block Diagram to OWL

The Cameo Enterprise Architecture tool is widely used by 
software engineering teams for modeling systems. The usage 
of this tool follows the Model-Based Software Engineering 
process. It includes many useful features; in particular, it is 
useful for the identification of potential design flaws early 
in the development stage, when they are easier to fix rather 
than fixing them in later stages. However, the capabilities 
of Cameo Enterprise Architecture are limited in detect-
ing semantic inconsistencies in SysML/OCL models. For 
instance, when we “validate” a model known to be inconsist-
ent, Cameo Enterprise Architecture shows “validation was 
successful”. The reason for this is that Cameo Enterprise 
Architecture validation function is limited to checking the 
syntax of OCL constraints, but not their semantics. In our 
experiments, we used Cameo Concept Modeler plugin [31] 
for Cameo Enterprise Architecture to translate SysML block 
diagrams to OWL. Then we used rules to translate OCL 
contraints to OWL.

The mapping from UML class diagrams to OWL and DL 
has been studied by many papers, as described in “Related 
work”. We summarize the widely accepted rules described 
in these papers in Table 1. The first column shows UML 
concepts, the second shows to what it is mapped in DL and 
the third shows a corresponding concept in OWL.

The OCL is used to express constraints on UML/SysML 
models, for example, the restrictions on the value of object 
attributes, and the restrictions on the existence of objects. 
In this paper, we only consider a subset of OCL constraints, 
the OCL invariants. The OCL invariant is associated with 
a Classifier (also referred to as a “type”) in UML/SysML 
models. An OCL expression that is an invariant evaluates to 
be true if the condition is met. All invariants of a type must 
be true for all instances of that type at any time. Therefore, 
OCL invariants can help us to check for design contradic-
tions of UML/SysML models. OCL invariants were manu-
ally translated into OWL 2 DL axioms based on [25] and 
[32]. Specifically, for a block diagram, the OCL invariants of 
a block are translated into OWL object property restrictions. 
In addition, our translation introduces relational operators 
between variables. Table 2 shows the mapping principles 
that we follow in this paper. Here, C1 , C2 , C are SysML 
blocks, p is either a block value or an association end, and 
V is a SysML value type. In the case that V is an instance 
of the SysML value type, the mapping of the third invariant 
in Table 2 should be C ⊑ ∃p.{V} , and the mapping of the 
fourth invariant in Table 2 should be C ⊑ ¬∃p.{V}.
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The Use of OWL Axioms for Consistency Checking

The reason for mapping SysML models and OCL con-
straints to OWL is to support the software developers with 
automatic consistency checking by using OWL reasoners. 
Inconsistencies of the OWL axioms indicate that there 
are errors in the models. We could invoke OWL reason-
ers to show expectations when the ontology mapped from 
SysML/OCL models is inconsistent. OWL DL provides 
three types of class axioms to construct a class descrip-
tion—SubclassOf, EquivalentClasses, DisjointClasses—
that can be used for checking consistency.

Generalization associations between two blocks are 
translated into SubclassOf axioms of the corresponding 
OWL classes. Moreover, OCL invariants of a block are 
translated into SubclassOf axioms of the corresponding 
OWL class. In DL, we represent this as C1 ⊑ C2 . When 
such a subclass axiom is part of an OWL model, for any 
individual x of C1 , the fact (x rdf:type C2 ) is inferred by an 
OWL reasoner. If the class description of C1 has conflicts 
with the class description of C2 , the OWL reasoner will 
detect this as an inconsistency.

Generalizations with the “Equivalient Class” stereotype 
in SysML are translated into EquivalentClasses axioms of 
the corresponding OWL classes. In DL, we represent this 
as C1 ≡ C2 . If the class description of C1 has conflicts with 
the class description of C2 (i.e., the sets of the individuals 

from these two classes do not fully overlap), the OWL 
reasoner will detect this as an inconsistency.

Dependencies with the “Disjoint With” stereotype in 
SysML are translated into DisjointClasses axioms of the 
corresponding OWL classes. In DL, we represent this as 
C1 ≡ ¬C2 . In such a case, if the class description of C1 has 
any overlap with the class description of C2 , the OWL rea-
soner will detect this as an inconsistency.

An Example

Here, we consider an example based on the cloud agil-
ity baseline (CAB) model [1] that SNC and Northeastern 
developed to provide an adaptable framework which can be 
molded to meet typical logistics and cloud applications and 
changes to those requirements. This CAB model provided 
the flexibility for the various exercises to promote reuse of 
microservice components. For a logistics example, it might 
be hosted (initially) in AWS and provide a web-based inter-
face for routing military supplies given a certain workflow 
and certain geopolitical realities. Figure 1 shows the SysML 
block diagram of the CAB model. A shipment requests the 
dispatcher to schedule an assignment for it. An assignment is 
a shipment–transporter pair to transit and deliver a shipment. 
Shipments have three possible states: pending, in transit, or 
delivered, and transporters have two possible states: busy or 
idle. The question we are investigating in this paper is - how 
do we verify the correctness of changes in the CAB model, 
e.g., are the state machines of the CAB correct?

Cameo can translate the five blocks in the CAB SysML 
model and the associations between them to the classes and 
properties in the CAB ontology. Figure 2 shows the main 
structure of the CAB ontology in Protégé . However, the 
Cameo mapping-to-OWL capability is very limited and the 
automatic translation loses some information in translation.

We extended the automatically generated CAB ontology 
by mapping the OCL constraints in the Dispatcher block 
and the Shipment block into OWL restrictions for the cor-
responding classes manually (shown in Figs. 3 and 4 ). In 

Table 1   The mapping of 
UML components to OWL 
components

UML Component DL Formalization OWL Component

Class diagram Class Concept Class
Property Role ObjectProperty
Attribute Data property DatatypeProperty
Operation Role ObjectProperty
Association Role ObjectProperty with restriction
Composition Role ObjectProperty with restriction
Aggregation Role ObjectProperty with restriction
Generalization Subsumption rdfs:subClassOf

Object diagram Object Individual Individual
Link Role ObjectProperty assertions

Table 2   Principles of mapping of OCL to OWL

Invariant OWL DL

Context C1 inv: p − > 
forAll(oclIsTypeOf(C2))

C1 ⊑ ∀p.C2

Context C1 inv: p − > 
exists(oclIsTypeOf(C2))

C1 ⊑ ∃p.C2

Context C inv: p = V C ⊑ (∀p.V) ⊓ (∃p.V)

Context C inv: p != V C ⊑ ¬∃p.V
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Fig. 1   SysML block diagram of the CAB model [5]

Fig. 2   Main structure of the 
CAB ontology [5]
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this step, we followed the mapping rules shown in Table 3. 
Finally, we ran Pellet, the OWL reasoner embedded in Proté
gé . It identified the semantic inconsistency of the model 
(shown in Fig. 4): the Shipment block is equivalent to Noth-
ing, i.e., the OWL class is not satisfiable (it cannot have any 
individuals).

State Machine Diagram to OWL Mapping 
Rules

The main concepts of state machines are state, transition, 
event, guard and action. These concepts are mapped to OWL 
following the rules shown in Table 4. A simple state is mapped 
to a class expression in OWL. The classes are constrained by 
transitions and state invariants expressed in OCL. All the state 

classes are disjoint. In OWL, each transition of a state machine 
diagram is represented by an intersection of class expressions 
for the source state, target state, event and guard of this transi-
tion. In addition, our translation introduces relational operators 
between variables.

A Mapping Example

The statechart diagram in Fig. 5 describes the behavior of the 
Dispatcher block from Fig. 1. Each state in the statechart dia-
gram is annotated with a state invariant.

The six states are mapped to six OWL classes. The Allocat-
ing state is a composite state with three sub-states; it has a state 
invariant expressed as an OCL constraint (top right corner of 
the diagram). The OWL DL representation of the constraints 
on the states is shown in the following DL expressions.

The six transitions are also mapped to six OWL classes. The 
transition from Waiting to GettingTransporters is triggered 
by the event shipRequest. So the transition class WaitingTo-
GettingTrans is defined as:

(1)
Allocating ≡ Waiting ⊔ GettingTransporters ⊔MakingAssignment

(2)Allocating ⊑ ∃isRequestedBy.Shipment

(3)Complete ⊑ ∀isRequestedBy.1Shipment

(4)Waiting ⊑ ∀hasAssignment.0Assignment

(5)
GettingTransporters ⊑ ∃hasAssignment.(Assignment

⊓ ≥ hasTransporter.1Transporter)

(6)

MakingAssignment ⊑ ∃hasAssignment.(Assignment

⊓ ∀hasShipment.1Shipment ⊓ ∀hasTransporter.1Transporter)

(7)
WaitingToGettingTrans ≡ ∃fsm.triggeredBy.{shipRequest}

Table 3   Mapping of OCL invariants in CAB SysML model to OWL

OCL Invariants in CAB SysML model OWL DL

Context Shipment inv: self.
shipmentState=Shipment.inTransit implies 
request− >exists(oclIsTypeOf(Dispatcher))

Shipment ⊑ ∃requests.Dispatcher ⊓ ∃shipmentState.{inTransit}

Context Dispatcher inv: assigns− >forAll(oclIsT
ypeOf(Transporter) and transporterState=Trans
porterState.idle)

Dispatcher ⊑ ∀assigns.(Transporter ⊓ ∃transporterState.{idle})

Context Dispatcher inv: isRequest-
edBy− >forAll(oclIsTypeOf(Shipment) and 
shipmentState!=ShipmentState.inTransit)

Dispatcher ⊑ ∀isRequestedBy.(Shipment ⊓ ¬∃shipmentState.{inTransit})

Fig. 3   OWL restrictions for the Dispatcher class mapping from OCL

Fig. 4   OWL restrictions for the Shipment class and the OWL reason-
ing results
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GettingTransporters state has two outgoing transitions. 
After the operation chooseTransporter of the dispatcher is 
invoked, if the returned transporter state is busy, the state 
stays at GettingTransporters. Otherwise, the state transits to 
MakingAssignment. So the two transition classes are defined 
as:

(8)

WaitingToGettingTrans ⊑∃fsm.hasSource.Waiting

⊓ ∃fsm.hasTarget.GettingTransporters

(9)

GettingTrans ≡∃fsm.triggeredBy.chooseTransporter

⊓ ∃(fsm.hasGuard.fsm.EvalCmp.EQ

⊓ ∃fsm.hasLeftExpr.{transporterState}

⊓ ∃fsm.hasRightExpr.{busy})

(10)
GettingTrans ⊑∃fsm.hasSource.GettingTransporters

⊓ ∃fsm.hasTarget.GettingTransporters

Table 4   SysML state machine diagram to OWL mapping rules comparison [5]

State machine component [7] [9] [27] [6] Our mapping rule

State Simple state Class Class Subclass of the class of the 
object

Individual Class

Composite state Superclass 
of substate 
classes

Superclass 
of substate 
classes

Superclass of substate classes Individual Superclass of substate classes

Initial state Class Class Class Individual Class
Final state Class Class Class Individual Class
OCL invariants None None OWL object property restric-

tions
None OWL object property restric-

tions
Transition Class Class None Individual Class
Event Class Class None Individual Class
Action None Class None Individual Class
Guard Class Class None Individual Class
Guard expressed in OCL invariants None None None None OWL object property restric-

tions

Fig. 5   Dispatcher Statechart [5]
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From the state MakingAssignment, after the dispatcher 
invokes the operation assignShipment, if the deliverShip-
ment is true, then the state of the dispatcher goes back to 
Waiting.

OWL Reasoning with State Machine Diagrams

We check the consistency of OCL constraints in a state 
machine to check the consistency between the state machine 
and the requirements expressed as OCL constraints. For this 
purpose, we translate the state machine along with the OCL 
constraints to OWL (as shown in “A mapping example”) and 
run the reasoner to detect inconsistency in the ontology. To 
show different types of inconsistencies of constraints, we 
developed three reasoning tasks.

The first OWL reasoning task is to check if the OCL 
invariants of all the states are consistent. The state invariants 
that may cause the object violate the constraints imposed on 
the state diagrams in the UML superstructure specification 
of state machine are considered to be inconsistent invariants. 
For example, for the composite state Allocating, the OCL 
constraint of the state invariant is:

which means the dispatcher is in Allocating state if it is 
requested by at least one shipment (Fig. 6). The Waiting 
state is a substate of Allocating. The substate should not have 
a conflicting invariant with the composite state. Adding the 
following invariant to the Waiting state:

(11)

GettingTransToMakingAssignment

≡ ∃fsm.triggeredBy.chooseTransporter

⊓ ∃(fsm.hasGuard.fsm.EvalCmp.EQ

⊓ ∃fsm.hasLeftExpr.{transporterState}

⊓ ∃fsm.hasRightExpr.{busy})

(12)

GettingTransToMakingAssignment

⊑ ∃fsm.hasSource.GettingTransporters

⊓ ∃fsm.hasTarget.MakingAssignment

(13)

MakingAssignmentToWaiting ≡ ∃fsm.triggeredBy.assignShipment

⊓ ∃(fsm.hasGuard.fsm.EvalCmp.EQ

⊓ ∃fsm.hasLeftExpr.{deliverShipment}

⊓ ∃fsm.hasRightExpr.{true})

(14)

MakingAssignmentToWaiting ⊑ ∃fsm.hasSource.MakingAssignment

⊓ ∃fsm.hasTarget.Waiting

(15)isRequestedBy− > size() > 0,

(16)isRequestedBy− > size() = 0

would imply being in the Waiting state even if there was 
no request by any shipment (Fig. 7). Thus, such two OCL 
constraints are inconsistent, and thus there cannot be a state 
individual that can satisfy both the constraints of Allocating 
and the constraints of the Waiting states.

When we run the Pellet in Protégé , it will identify the 
semantic inconsistency of the OWL axioms in Allocating 
class and Waiting class. The inconsistency explanations are 
shown in Fig. 8.

The second OWL reasoning task is to check whether only 
one transition can be taken out of a state, i.e., whether the 
state machine is deterministic. For a state with more than 
one possible outgoing transition, e.g., GettingTransporters, 

Fig. 6   OWL restrictions for Allocating state

Fig. 7   OWL restrictions for Waiting state
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the state that has two outgoing transitions GettingTrans and 
GettingTransToMakingAssignment, adding the guard:

to both transitions would make the choice of a transition not 
unique. In OWL, two outgoing transitions are represented 
by two disjoint transition classes and should have disjoint 
guards. Otherwise, the Pellet will identify semantic incon-
sistency because an individual cannot belong to both a type 
and its complement. The inconsistent result is shown in red 
in Figs. 9 and 10 , and the reasoner explanations of inconsist-
ency are shown in Fig. 11.

The third OWL reasoning task is to check if the state 
machine contains deadlocks. A deadlock can happen when 
two or more processes have conflicting resource needs. In 
this paper, we consider a simple deadlock case: for a state 
with only one outgoing transition, the guards on this out-
going transition of a state are mutually exclusive. In other 
words, if the guards on the only outgoing transition of a state 
cannot be satisfied at the same time, the state machine for 
the object will be stuck in this state. For example, for the 
transition from MakingAssignment to Waiting, if we add the 
guards as follows:

(17)assigns.transporterState = busy

(18)
assigns.deliverShipment = true,

assigns.deliverShipment = false.

Once the state machine of the dispatcher object gets into 
MakingAssignment, it will not be able to get out of this state 
because the deliverShipment attribute cannot be both true 
and false at the same time. When we run the Pellet, it will 
identify the semantic inconsistency of the OWL axioms in 
the MakingAssignmentToWaiting class that represents the 
transition, as shown in red in Fig. 12. The reasoner explana-
tions of inconsistency are shown in Fig. 13.

Fig. 8   Inconsistency explanations of the first reasoning task

Fig. 9   OWL reasoning result in GettingTransToMakingAssignment 
transition
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Conclusions

In this paper, we propose an ontology-based method to rea-
son about the correctness of SysML models that include 
OCL constraints. Specifically, we map the SysML models 
with OCL constraints to OWL and check the consistency of 
the corresponding ontology by running an OWL inference 
engine. Although a number of mapping rules from UML 
class diagrams to OWL have been reported in the subject 
literature and accepted by the community, still, there is a 
lack of widely accepted mapping rules from UML behav-
ior diagrams to OWL. In this paper, we propose a set of 
rules for mapping components of SysML state machine 
diagrams along with OCL constraints to OWL DL. We also 

demonstrate three examples of reasoning tasks in which 
OWL axioms are used for consistency checking of state 
machine diagrams. We recognize that our current approach 
is a combination of automated and manual steps, in part 
due to the limitations of the built-in concept modeler. In the 
future, we plan to develop fully automatic procedures for 
mapping SysML/OCL models to OWL DL.

Our work is aimed at providing the software developer 
with some reasonable assurances about the correctness of 
the model in the system modeling stage of software devel-
opment. This is the first step of requirement change man-
agement. In the future, we plan to extend the scope of our 
approach to a more complete and automatic verification of 
SysML state machine specifications with OCL constraints as 
well as both theoretical analysis and experimental validation 
of the correctness of the mapping rules.Fig. 10   OWL reasoning result in GettingTrans transition

Fig. 11   Inconsistency explanation of the second reasoning task

Fig. 12   OWL reasoning result in MakingAssignmentToWaiting transi-
tion
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