
Vol.:(0123456789)

SN Computer Science (2023) 4:189
https://doi.org/10.1007/s42979-022-01574-3

SN Computer Science

ORIGINAL RESEARCH

Classification for the Concrete Syntax of Graph‑Like Modeling
Languages

Gregor Wrobel1  · Robert Scheffler1 

Received: 12 June 2022 / Accepted: 16 December 2022 / Published online: 2 February 2023
© The Author(s) 2023

Abstract
A classification scheme for Graph-Like Modeling Languages (GLML) is presented in this paper. The novelty of this classifier
lies in its application to a meta-model for GLML that deviates from the simple graph model and underlies a large number
of GLML. The main goal of using this classification scheme is to support the reuse of layout algorithms for GLML. GLML
are used directly or indirectly for the development of software by model-based software engineering techniques. In other
domains, graph-like models are artifacts (e.g., circuit diagrams, energy flow diagrams) that serve as input for downstream
specialized applications (simulators, optimizers). The concrete syntax of a language for creating, editing, and understand-
ing models is highly important for the development of modeling tools. Layout methods for the used languages have to be
implemented to achieve software tools with good usability. Developing layout algorithms is a complex topic that is covered
by the specialized field of Graph Drawing. However, there is no existing procedure to determine which layout algorithm can
be used for a GLML. Matching layout algorithms to GLML can be achieved by applying the presented classification scheme.

Keywords  Concrete syntax of modeling languages · Graph-like modeling languages · Graph drawing · Layout algorithm ·
Domain-specific modeling

Introduction

Abstract models and modeling languages are used in soft-
ware engineering and classical engineering sciences to
describe systems. Graph-like languages were introduced as
suitable modeling tools as early as the turn of the twenti-
eth century. Many inventions in the field of electricity were
published in patent specifications using graph-like visualiza-
tions (e.g., [1]). The prevalence of computer technology and
especially the propagation of model-based design (MBD)
have increasingly led to the rise of GLML in the sciences.

The concrete syntax of a language is of utmost impor-
tance for the understanding of the language [2] and the main
means by which users interface with models [3]. In this con-
text, the comprehensibility of modeling languages strongly
depends on the modeling skills of the users [4]. The users
deploying model-based software development (MBSD) are
typically software engineers with experience in abstract lan-
guages (e.g., programming languages) and general-purpose
modeling languages (GPML) like UML. In model-based
engineering (MBE) the users are often classical engineers
with little modeling experience. They are supported by
domain-specific languages (DSL).

Another important aspect is the usage of the created
models. Applications that only need a single model to be
generated do not have high demands on the usability of the
modeling process. But when models are created and edited
frequently, the modeling itself becomes an important part of
the user’s work. This is then linked to high demands regard-
ing usability, comparable to the demands of UI/UX design.

To meet these requirements, modeling tools have to offer
algorithms both for drawing of and interacting with the
GLML.

This article is part of the topical collection “Advances on Model-
Driven Engineering and Software Development” guest edited by
Luís Ferreira Pires and Slimane Hammoudi.

 *	 Gregor Wrobel
	 wrobel@gfai.de

	 Robert Scheffler
	 scheffler@gfai.de

1	 Graph Based Engineering Systems, Society
for the Advancement of Applied Computer Science,
Volmerstraße 3, Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01574-3&domain=pdf
http://orcid.org/0000-0003-4234-0794
http://orcid.org/0000-0002-3015-0099

	 SN Computer Science (2023) 4:189189  Page 2 of 16

SN Computer Science

The layout of GLML is complex compared to the con-
crete syntax of textual languages. Although graph drawing
is the specialized field that is concerned with the visuali-
zation of graphs, it has not systematically been applied in
MBD yet [5]. There are two reasons for this. On one hand,
the automatic drawing of graphs is less important than the
implementation of layout algorithms and interaction meth-
ods that support the creating and editing of models. Here
aspects such as dynamic graph drawing and layout stabil-
ity are more important than static graph drawing. On the
other hand, graphical models within the scope of MBD are
structurally very varied. They differ from the classic, simple
graph model consisting of vertices and edges. Graph models
in MBD can be port graphs, hypergraphs, nested graphs, and
labeled graphs. In this paper, these models are encapsulated
in the term graph-like.

The multitude of different graph models, which are often
defined in the concrete syntax of the metamodels for GLML,
and the different use cases for layout algorithms complicate
their reuse and adaptation considerably. Reuse and com-
patibility (of languages) are two of the TOP 10 challenges
faced in MDE artifact sharing [6]. Typical artifacts in MDE
include models, metamodels, model transformations, and
modeling tools. In addition, for widely used languages,
especially GPML, the concrete syntax is defined only very
superficially, even though it should be an important part of
the language. For UML 2.5.1, the specification takes up just
20 of 754 pages of documentation [7]. In SysML 1.6 [8],
the concrete syntax describes only the graphical aspects of
the language.

A major shortcoming is that for many languages there
is de facto no sufficient definition of the concrete syntax to
provide state-of-the-art layout algorithms.

This paper presents a classification scheme for the con-
crete syntax of GLML. This provides the possibility to
assign layout algorithms not to a specific language or tool,
but to a class of modeling languages according to the clas-
sification scheme. A classifier provides developers with the
ability to more effectively use existing layout algorithms,
which may be grouped in libraries (e.g., the Eclipse Layout
Kernel [9]), for the layout of GLML. In particular, if lay-
out algorithms can be used via parameters for the layout of
different concrete syntaxes, classifiers enable the mapping
between GLML and layout algorithms. This facilitates the
reuse and adaptation of layout algorithms and greatly simpli-
fies tool development.

The classification scheme as presented contains struc-
tural, geometrical, and topological information. It explicitly
excludes information on the graphical design of the GLML
elements.

The proposed classification scheme is an expansion of
[10] based on a different notation and was applied for a map-
ping between GLML and layout algorithms in [11].

“Related Works” describes the related works. “Features
and Metamodel of GLML” presents a metamodel for GLML.
The metamodel describes the essential model elements, for
which features are listed in the classification scheme. “Lay-
out Aspects of GLML” characterizes layout algorithms for
GLML and differentiates between static graph drawing and
dynamic graph drawing. In “Classification Scheme”, the
classification scheme is detailed. Using the examples of the
classical graph model, a GPML, and a DSL, “Examples”
applies the classification scheme. “Layout Algorithm Reuse”
shows a way to apply the classification scheme for layout
reuse. “Conclusion and Further Work” gives a conclusion
and outlook on further work.

Related Works

The concrete syntax of a GLML is closely related to the
layout of a language also often referred to as visual notation.
The following is a literature review of the related fields and
publications.

User Experience and Aesthetic Aspects of GLML

The importance of aesthetic aspects in graphical languages
is highlighted in many papers. Graphical languages are
the interface between the user and the model of a specific
domain.

Reference to individual language elements and their
concrete syntax occurs repeatedly in the studied aspects
concerning the aesthetics of a language. In [12], six differ-
ent basic principles that improve the quality of information
models are presented. Within the principle of clarity, the lay-
out design is explicitly named as an essential factor; and the
reference to aspects of aesthetics in graph drawing related
to the edge geometry is established in [13].

Extensive research on the importance of aesthetics has
been conducted by Purchase. Especially line crossings
and line bends [14–19], and also, but less significant, line
orthogonality and line angles [16, 19] are crucial properties
of the layout of a diagram, which are directly related to the
concrete syntax.

In [4], the positions of language elements of domain-
specific graphical languages are highlighted as an impor-
tant aspect for coping with complex modeling scenarios.
As an example, the positions of ports for incoming (left)
and outgoing (right) connections are given. Position proper-
ties (especially of ports) are part of the concrete syntax of
a language.

Recent studies apply machine learning methods to evalu-
ate the layout quality of diagrams [19] or refer to aspects of
aesthetics for special domains, e.g., business process mod-
eling [20, 21].

SN Computer Science (2023) 4:189	 Page 3 of 16  189

SN Computer Science

Unlike the extensive earlier work, this paper is not con-
cerned with examining aspects of the aesthetics of the lay-
out of GLML. Rather, the presented scheme introduces
an approach not to limit the aesthetic aspects to a specific
language or a few parameters of language elements (e.g.,
length, bends, and crossings of lines), but to relate them
to the concrete syntax of languages. Investigations on the
aesthetics or usability of languages that refer to the con-
crete syntax and already existing study results that can be
transferred to a concrete syntax can then be used for a whole
class of GLML.

Graphs and Graph Drawing

A great number of works on graph drawing originated in the
1990s. As an example, we mention the works of Di Battista
et al. [22, 23]. Graph drawing methods exist for different
classes of graphs. In [23], a general framework for graph
drawing is presented, which contains parts of the features of
the presented classification scheme (e.g., edge direction and
routing classification). That framework, however, is strongly
focused on concrete layout aspects (planarity) and properties
of graphs (connectivity). Ports, nested graphs, hypergraphs,
and labeling are not mentioned in this framework. In [22],
algorithms for drawing graphs are classified (into the classes
trees, general graphs, planar graphs, and directed graphs),
and a literature study on this differentiation is conducted.
In addition, a few structural feature distinctions were con-
sidered (hypergraphs, compound graphs). There are other
classification approaches for other special properties of
graphs. For port graphs, there is a classification regarding
an important feature, the port position, in connection with
the development of specific layout methods [24].

Problems of labeling were researched intensively in the
environment of geographic maps. In [25], a model with
9 different possibilities for the placement of axis-parallel
enveloping label rectangles is presented. An overview of
publications on map labeling is provided by [26].

Label orientation is also a relevant and widely researched
topic in traffic maps. An overview of existing work is pro-
vided by [27].

The vast majority of this work is based on graphs as a
metamodel, classically consisting of vertices and edges.
Besides, there are languages in which the connection points
(ports) are anchored in the metamodel as elements in addi-
tion to the vertices and edges.

Netlike Schematics

In [28], netlike schematics is the term used to differenti-
ate from graphs. Graphs are considered besides electrical
diagrams, technological layouts, and petri nets as examples
of netlike schematics. A general language called schematic

structure description language (SSDL) is presented. The
essential difference of the examined languages to graphs is
that instead of nodes, components connected by ports are
part of the languages. Furthermore, the concrete relation
to industrial applications (functional block diagrams, logic
diagrams, flowcharts, and circuit schematics) was given. The
work in [28] originated at the Central Institute of Cyber-
netics and Information Processes, Academy of Science of
the G.D.R. A whole series of works on automatic layout
synthesis of netlike schematics was carried out there in the
late 1980s [29–32].

The work on this has been continued in the following
years, and the results have been integrated into a software
framework [33]. The connection to industrial applications
was maintained, and a number of domain-specific languages
[34–36] with integrated layout methods [37, 38] based on
this framework have been developed.

Additional metamodels corresponding to these netlike
schematics are currently integrated into some frameworks
[9, 33, 39, 40] and implemented in layout algorithms. But
also in these frameworks, not every layout algorithm can
be used for every concrete syntax based on the metamodel,
and there are no mapping mechanisms to get information
about suitable layout methods already during language
engineering.

Technical Languages

Modeling languages with a precisely defined concrete syntax
exist, especially in engineering domains as technical lan-
guages. A prominent example of this are circuit diagrams.
Before the advent of computer technology, circuit diagrams
were drawn by hand. Today, extensive software tools exist
for this purpose under the name electronic computer-aided
design (ECAD). An advantage of the representation of elec-
trical circuits is that there are standards that have existed for
a very long time and are accordingly well evaluated. These
standards contain concrete syntax specifications as well as
aspects of drawing: “Lines between symbols should be hori-
zontal or vertical with a minimum of line crossings, and with
spacing to avoid crowding” [41].

Other technical languages that define their concrete syn-
tax are IDEF [42, 43] and function block diagrams in IEC
61131-3 [44].

Languages in Model‑Based Engineering

The specification of GLML is provided in different ways
using different methods [45]. The languages in model-based
engineering are typically defined by a meta-model [46].
Meta-models capture the relevant domain abstractions and
concepts by specifying the abstract syntax and static seman-
tics (aka well-formedness rules) of a graphical modeling

	 SN Computer Science (2023) 4:189189  Page 4 of 16

SN Computer Science

language, whereas concrete syntax has received less atten-
tion. This stands in contrast to the design of domain-specific
languages, where concrete syntax is an important design
aspect [2]. This observation applies to both the current state
of practice and the academic literature. For example, the lat-
est UML specification (version 2.5.1) devised by the OMG
[7] comprises a total amount of 754 pages, 678 of which are
dedicated to the definition of the language's abstract syntax.
UML diagrams are only considered in the Appendix, with
the primary goal of standardizing the exchange of UML dia-
grams across tool boundaries. The actual concrete syntax is
given in the form of a table (from page 704 to 723) which
maps conceptual model elements defined by the abstract
syntax to their graphical notation (i.e., shapes). The same
observation applies to GPML which have been proposed
in the academic literature, where the focus is typically on
defining the abstract syntax as well as static and dynamic
semantics, whereas the concrete syntax is, if at all, illustrated
by a few examples (see, e.g., [47–49]).

Originating from model-driven development (MDD), so-
called language workbenches are also to be considered. In
language workbenches, the abstract and the concrete syn-
tax as well as the mapping between them is defined as a
meta-model [50–54, 54], and graphical editors for DSL are
generated from it. Here are the challenges in developing suit-
able layout algorithms, which are currently not always well-
solved for practical applications [55].

The presented classification scheme distinguishes verti-
ces, ports, edges, labels, and symbols as the most impor-
tant model elements. These model elements are explicitly
included in several meta-models [9, 28, 33, 39], but the
authors are not aware of any classification scheme for the
concrete syntax of GLML.

Features and Metamodel of GLML

Figure 1 shows a possible meta-model for GLML. The
essential model elements are vertices, ports, edges, labels,
and symbols. Vertices, ports, and edges have a symbol
that represents their graphical expression and reflects their
domain-specific semantics. The symbols, as long as their
shape is static, are irrelevant for layout algorithms and are

not included in the classification scheme. They are used in
the visualization to have distinguishable and recognizable
model elements.

GLML are not “classical”, simple graphs. The main dif-
ference is that the edges do not directly connect vertices,
instead the connection is facilitated via ports that belong to
the vertices.1

Ports for connecting vertices are used in many graphical
languages. In some of those languages, ports are explicitly
specified, and they also have a graphical or textual form, for
example with fixed ports in ladder diagrams and function
block diagrams in [44]. In other languages, ports function
as positions for the connection of edges and vertices. These
ports can have no expression and would then not be recog-
nized as such in a graphical representation.

Some graphical modeling languages implement nested
vertices. These contain other vertices and edges and can also
be connected like non-nested vertices via edges (e.g., UML
activity diagrams).

An important aspect of the concrete syntax of graphical
languages is the specific graphic representation of language
elements. Visual properties like color, line style, arrows,
etc. make elements of graphical languages distinct and can
emphasize their domain-specific context. A detailed study
on the visualization of uncertainty in data using visual prop-
erties of edges (lightness, grain, fuzziness, transparency,
width, hue, and saturation) shows the influence of these
properties on the user [56]. Layout algorithms can abstract
from the specific graphical properties. Because a detailed
specification of shape features is not relevant, this paper
omits it.

Layout Aspects of GLML

A separate field, graph drawing, exists for the development
of layout methods for graph-like languages. Many funda-
mental graph drawing algorithms were developed and stud-
ied in the past decades [23]. Graph drawing algorithms are
generally divided into procedures for placing vertices and
procedures for routing edges. Many graph drawing meth-
ods solve both tasks together. Developed for drawing (sim-
ple) graphs consisting of vertices and edges, graph drawing
methods are also used for the layout of GLML. However,
GLML have special properties different from simple graphs,
which have to be considered for the layout of the language.
Vertices have dimensions as well as ports with graphical

Fig. 1   A meta-model of GLML

1  In the metamodel in Fig. 1, edges must always be connected to
ports. To use this metamodel to represent a graph model without
ports, each vertex is assigned exactly one port that has no symbol and
is located on the vertex.

SN Computer Science (2023) 4:189	 Page 5 of 16  189

SN Computer Science

expressions and defined positions. This makes the devel-
opment of layout algorithms a more challenging task than
simply adapting graph drawing algorithms.

Graph drawing methods can be roughly divided into static
graph drawing and dynamic graph drawing. In static graph
drawing, an existing set of vertices and edges is laid out.
dynamic graph drawing, on the other hand, deals with the
layout of entire sequences of graphs [57]. For example, a
layout can be transformed into another layout by deleting/
adding edges/vertices, changing edges, moving vertices
(including the following collision handling), and expanding
vertices.

For the GLML characterized in the previous chapter,
dynamic graph drawing is of greater importance than static
graph drawing, especially when GLML are artifacts of mod-
eling tools and/or editors. In this environment, the user is
faced with the task of creating a new model (on a "blank
sheet of paper") or modifying a previously created model.
To cover these use cases well, it is helpful for dynamic graph
drawing to preserve the mental map of the user [58]. The
concept of preserving the mental map is a layout aspect of
graph drawing that became the focus of research in the soft-
ware engineering environment and there through the increas-
ing prevalence of graphical modeling tools [59].

Besides the preservation of the mental map, aesthetic cri-
teria for the layout of GLML are of importance. In addition
to general design principles for graph drawing, the so-called
Gestalt laws [60], and general design techniques in the con-
text of graph drawing [61], specific criteria and metrics for
the aesthetic of drawn graphs were developed [62]. In addi-
tion, domain-specific context (e.g., for UML diagrams [18])
or structural circumstances (e.g., for models of real technical
systems [63]) is important for layout. The preservation of the
mental map as well as general and domain-specific aesthetic
aspects compete in the development of layout algorithms for
GLML [16, 64].

The above-mentioned aspects of the layout algorithms for
GLML complicate their development.

Classification Scheme

“Classification Scheme” provides a classification scheme for
GLML. The first subchapter introduces the notation of the
scheme, and the following subchapters describe the classi-
fiers for vertices, ports, and edges of GLML.

Notation

The notation for the classification scheme is based on feature
diagrams. Feature diagrams were introduced as part of the
so-called Feature-Oriented Domain Analysis (FODA) [65].

Their notation was expanded in following publications. The
notation in this paper uses the expansions by [66–69].

The syntax of feature models was extended to shorten
the classifier and to designate properties as default when a
feature is not specified by a GLML. These extensions can be
found in Table 1 in rows 3 and 5.

The syntax in Table 1 is used in this paper.

GLML Classification

According to the meta-model in Fig. 1, a GLML has verti-
ces, edges, and ports.

Port classification is optional. If no ports are classified for
a given GLML, the GLML implements the classical graph
model consisting of vertices and edges (Fig. 2).

The next chapters present the classification scheme for
GLML elements. The simple GLML examples in Fig. 3 are
used to illustrate the classifiers.

Common Classsification

The three GLML elements have a common set of abstract
properties in the Label classifier.

Label Classification

Vertices, edges, and ports can have labels. Labels describe
the other elements in more detail and make them distin-
guishable and recognizable. Ports must be distinguished
from each other, for example, to ensure that they are con-
nected to valid edges (e.g., in circuit diagrams according
to [70]). Vertex and edge labels are the subjects of spe-
cific research within the discipline of graph drawing. The
first papers on this topic were published on the domain of
cartography [71]. Vertex labels without overlap and label
alignment are important for transit maps, and label place-
ment is a central focus of studies next to schematic layout
concerns [27].

The label classifier has a default value of no label. If a
GLML element has a label, its position can be either fixed
(fix) or freely placeable (free). The classification scheme
provides the optional definition of the rotation properties,
which allow possible rotations either in 90° steps or freely.
The examples A, C, and D in Fig. 3 have labels. Example C
allows a rotation of the port label (Fig. 4).

Vertex Classification

The main classification features for vertices regarding the
graph type are the existence of ports (port graph), nesting
(nested graph or not), and label (labeled graph or not). The
placement classifier provides information about the desired

	 SN Computer Science (2023) 4:189189  Page 6 of 16

SN Computer Science

Table 1   Notation

Symbol Explanation

m and f A feature can take one of the values m (mandatory) and f (forbidden)

f1

sf a

Feature f1 with optional solitary subfeature sf a

f1

sf a

Feature f1 with solitary subfeature sf a. If the subfeature sf a is not set the default value of sf a will be set. Subfeauture sf a must
have a default value

f1

sf a

[0..*]

f1

sf a

[1..*]

Feature f1 with mandatory ([1..*]) or optional ([0..*]) subfeatures sf a or sf a

f1

sf a sf b

Feature f1 with exactly one subfeature from a group. If the subfeature is not present, the default value (grayed out) will be set
and f1 can be omitted (see above). The specific subfeature that is set has the value m (mandatory). All other subfeatures have
the value f (forbidden)

f1

sf a sf b

Feature f1 with at least one subfeature of a group. The set subfeatures have the value m (mandatory), all other subfeatures have
the value f (forbidden). If more than one subfeature has the value m, it means that one of these subfeatures can be selected.
The value m means optional in this case

f1

sf a sf b

Feature f1 with exactly one subfeature from a group that is optional. The set subfeature has the value m (mandatory). All other
subfeatures have the value f (forbidden)

f1

sf a sf b

Feature f1 with optionally one or more subfeatures of a group. The subfeatures have the value m (mandatory) or f (forbidden)

f1
Feature model reference f1

Fig. 2   GLML classifier with references to another feature model

Fig. 3   Example GLML representations

Fig. 4   Label classifier

SN Computer Science (2023) 4:189	 Page 7 of 16  189

SN Computer Science

placement method. The complete classifier is displayed in
appendix A.

Nesting Classifier

The nesting classifier defines the contents of vertices. Ver-
tices can have content that is to be laid out (nested), have no
content, or have non-laid out content (default: non-nested).
Nested graphs pose complex requirements to layout algo-
rithms, especially when vertices can be expanded and thus
take up more space in a visual representation. Another dif-
ficulty can be the (edge) connection between inner and outer
graph elements. The example A in Fig. 3 shows a nested
graph with two different types of connection. Edge 1 crosses
hierarchy boundaries of nodes. Edge 2 and edge 3, on the
other hand, do not cross hierarchy boundaries (Fig. 5).

Rotation Classifier

The classifier characteristics for rotation and mirroring have
importance for layout algorithms that place vertices. Rota-
tion and mirroring can enable fewer crossings and bends of
edges (Fig. 6).

If rotations are allowed at all, they can be allowed in steps
of 90° or free.

Mirroring Classifier

If mirroring vertices is allowed at all (any classifier char-
acteristic except the default no mirroring), the following

features can be set: horizontal mirroring allowed, vertical
mirroring allowed, horizontal and vertical mirroring allowed
(Fig. 7).

Placement Classifier

The placement classifier is a simple string without subfea-
tures. It is not subset further because there are many different
placement methods extended by further specializations and
parameterizations. For example, [72] shows 200 different
ways to visualize trees.2

The classifier is designed as a string to give a short
impression of what types of placement are preferred for the
GLML. This includes general placements, like tree, layer,
series–parallel, organic, grid, circular, or domain-specific
placements, like UML-class, wiring diagram, etc. The selec-
tion of a placement method is also greatly influenced by the
other classifiers of a GLML.

Port Classification

The occurrence of ports in GLML as well as their proper-
ties have an enormous influence on layout algorithms. Espe-
cially restrictions regarding the position of ports influence
the routing of edges. The complete classifier is displayed in
appendix B.

Position Classifier

The port position is a defining characteristic of GLML.
Many technical languages prescribe a fixed position on the
vertices because the position has a semantic component.
Changes in port positioning can lead to confusing diagrams
or incorrect interpretations.

On the other hand, restricted port positions constrain the
degrees of freedom for layout algorithms. Aesthetic crite-
ria, like the minimization of crossings and bends, will be
de-emphasized. The diagram layout loses readability. The
default position of ports is free. If the feature is not explicitly
denoted for a GLML, the ports in question can be placed
freely on the vertex.3

The feature side can assign port positions to one or mul-
tiple sides of the vertex. The specific side is noted by a ref-
erence and becomes relevant when vertices are mirrored or
rotated. Local defines the sides in relation to the host vertex,
and global defines them in relation to the diagram (Fig. 8).

Fig. 5   Nesting classifier

Fig. 6   Rotation classifier

Fig. 7   Mirroring classifier

2  Not all of these tree visualizations are suitable for GLML, but the
number of usable visualizations is still quite high (vertical trees, hori-
zontal trees, multidirectional trees, radial trees, hyperbolic trees).
3  Ports are usually placed on the vertex shape. Position free thus also
means a free placement on the vertex shape.

	 SN Computer Science (2023) 4:189189  Page 8 of 16

SN Computer Science

The UML diagram in Fig. 1 shows an example of assign-
ing ports to vertex sides, which allows the routing algorithm
to route the aggregation edges without crossings.

Valency Classifier

The valency classifier describes how many edges can be con-
nected to a single port. Its default value is one. Otherwise,
the feature can be set to any and allow multiple connections.
The number of connections can optionally be restricted by
a minimum and/or maximum value. This also allows for a
specific number with min = max (Fig. 9).

Restrictions on the number of connecting edges are typi-
cal for diagrams of technical systems. Circuit diagrams, for
example, visualize terminals of electrical devices as ports
and wires as edges. Terminals can be built to allow either
one or two wires.4

The examples in Fig. 3 do not show their respective
valency classifiers clearly. Example A can not have a valency
of one for its upper port.

Nested Classifier

Some GLML have nested ports. These are described by the
nested classifier. The superordinated port is referenced by a
string. Example GLML C in Fig. 3 shows two nested ports
a and b, with their classifiers being a: nested(p2) and b:
nested(p2).

SysML 1.6. uses nested ports for example in Block Defi-
nition Diagrams [8].

Direction Classifier

The direction classifier is used for directed graphs. It defines
which end of a directed edge can be connected to a port. The
default value is undirected, meaning that the port is direc-
tionless. With the feature set to directed, the port can con-
nect to directed edges, and its direction is specified as input
or output. The third type of port can occur in nested graphs.
These ports represent the transit from an inner to an outer
graph and can also be directed or undirected. In–out direc-
tion sets ports as input ports for the edges in the outer graph
and output ports for the edges in the inner graph. Out–in is
defined vice-versa (Fig. 10).

The first two examples in Fig. 3 have the following port
direction classifiers.

GLML A: ports at the top vertex, left vertex, and bottom-
right vertex: undirected (default); port direction between
edges 2 and 3: nested.

GLML D: port at vertex a: directed- > output; ports at
vertices b and c: directed- > input.

Edge Classification

The main classification features for edges are the number
of possible edge connections, specifications for routing of
the edges (e.g., straight or orthogonal), and the distinction
between directed and undirected as well as hierarchic and
non-hierarchic edges. The complete classifier is displayed
in appendix C.

Structure Classifier

The structural composition of an edge is differentiated into
3 types: the default classifier is a port-to-port connection
(two ports). The second type are edges that are connected
to only one port. And the third type applies to GLML with
hyperedges (hyper) (Fig. 11).

Some editors for graphical languages do not implement
true hyperedges in their meta-model. Here hyperedges are

Fig. 8   Port position classifier

Fig. 9   Port valency classifier

Fig. 10   Port direction classifier

4  The classification scheme does not offer an explicit feature for ver-
tex valency. Simple graphs in the classical model have their valency
also defined using ports. Each vertex needs to have a port classifier
without a symbol that is positioned on the vertex.

SN Computer Science (2023) 4:189	 Page 9 of 16  189

SN Computer Science

only visually represented by port-to-port connections routed
onto buses or channels. This leads to the loss of structural
information, especially if there are additional connectivity
restrictions on ports (n2m).

A language in which edges can only be associated with
one port is, e.g., IDEF0 [42, 43].5

The examples in Fig. 3 have the following edge structure.
A and B: two ports (default),
C: one port,
D: hyper.

Routing Classifier

The routing classifier defines the routing strategy. Every
routing algorithm is controlled by its specific set of param-
eters, e.g., visualization of bend points (points, arcs, noth-
ing), or handling of crossings. These parameters are not part
of the routing strategy classifier.

The default value for the routing classifier is a straight
routing without bends (straight). A common routing type
is orthogonal routing. It was identified as a preferred char-
acteristic for aesthetic graph drawing [62]. If the routing
classifier is set to orthogonal, routing can only be achieved
by horizontal or vertical line segments (Fig. 12).

Orthogonal routing can be further specialized by setting
the features channel or bus. These features allow the GLML
to emphasize characteristics of real world networks. Buses
can be used to visualize the real properties of technical
networks, e.g., power grids, and thus to better understand

them [63]. The channel paradigm is used to visualize wires
in circuit diagrams. Even for GLML not representing real-
world networks, the visualization of hyperedges as buses can
increase the clarity of the drawing. An example of this are
hyperedges in UML diagrams [16].

Other routing classifiers are arcs, k-linear, and polyline.
The latter two are mainly used in the map layout. So-called
k-linear maps (cf. [73]) occur mainly in transportation maps,
and the octolinear routing is the de-facto standard for such
diagrams (cf. [27]). It is a routing of line segments whose
angles to each other have an integer multiple of 360°/2k, for
example, k = 2 (orthogonal), k = 3 (hexalinear), and k  = 4
(octolinear). Arc routing is used in classical graph drawing
algorithms.

The examples in Fig. 3 have the following routing
classifier.

A: straight (default),
B: k-linear- > octolinear (default),
C: orthogonal- > bus,
D: orthogonal- > channel.

Type Classifier

The type classifier implements the distinction of edge types
and enables the classification scheme to classify typed
graphs. Edge types can be represented by a label or by a spe-
cific graphic appearance in the concrete syntax of a GLML.

Type graphs and typed edges are important for routing
algorithms. For example, crossings are evaluated differently
if they occur between edges of the same or different types
which can be used for the optimization of routings.

Example B in Fig. 3 shows a crossing between edges with
different edge types. The edge types also have varied graphi-
cal representations.

Hierarchy Nesting Classifier

Edges in nested graphs can be routed across nesting hierar-
chy layers or only in their own layer (default). An example
for the first case are SysML internal block diagrams, which
link blocks across hierarchy layers with connectors (Fig. 13).

Example A in Fig. 3 shows an edge across the nesting
hierarchy (edge 1) and two edges in their own layer (edges
2 and 3).

Fig. 11   Edge structure classifier

Fig. 12   Edge routing classifier

Fig. 13   Edge hierarchy nesting classifier

5  Using the meta-model from Fig. 1 to visually represent edges con-
nected only by a port, a symbolless pseudo vertex with a symbolless
port must be created.

	 SN Computer Science (2023) 4:189189  Page 10 of 16

SN Computer Science

Direction Classifier

The direction classifier implements direction information
for edges, with undirected as default. Directed edges have
the optional feature acyclic. This feature can be important
for layout algorithms, especially tree layouts or hierarchi-
cal layouts. Some common algorithms for these types of
graphs can not handle cycles or need a special preprocess-
ing step to eleminate cycles (Fig. 14).

The examples in Fig. 3 have the following direction
classifier.

A and B: unirected (default),
C and D: directed.

Examples

In this section, the classification scheme presented for
the concrete syntax is applied to three examples: a simple
graph model, the UML diagram from Fig. 1, and a DSL.
For the second example, the description of the classifica-
tion is more detailed.

Simple Graph Model

Figure 15 shows a simple graph of the famous Königs-
berg bridge problem [74]: the vertices A, B, C, and D
represent the districts, and the edges represent the seven
bridges of Königsberg, drawn as a graph according to the
classification.

For the simple graph model consisting of vertices,
(undirected) edges, and no labels, combined with the addi-
tional request for orthogonal placement, the classification
is in Fig. 16.

UML Class Diagram

The UML is very vague in defining the concrete syntax
for diagrams. Tool developers are tasked with defining a

concrete syntax for diagrams and implementing it in soft-
ware tools via layout algorithms.

The UML class diagram in Fig. 1 is used as an example
with the following concrete syntax:

1.	 Classes should be laid out in a „UML style“: Classes
should be arranged in such a way that the inheritance
hierarchy is taken into account. Classes with common
aggregation and association relations should be placed
close together.

2.	 Hyperedges are to be used for the inheritance relation-
ships.

3.	 All edges must be routed orthogonally.
4.	 The ports for the inheritance relationship must be

arranged in such a way that the ports on the base classes
are placed on the lower outer border and the ports for
the derived classes are placed on the upper outer border
of vertices.

5.	 All other ports can be placed freely.
6.	 Ports of aggregation and association relations have

labels (describing the multiplicities).
7.	 All ports are supposed to be evenly distributed on the

outer contour of a vertex.

This results in the following characteristics of vertices,
ports, and edges for the UML diagram in Fig. 1.

Fig. 14   Edge direction classifier

Fig. 15   Layout of the Königsberg bridge problem

Fig. 16   Classifier of the Königsberg graph example

SN Computer Science (2023) 4:189	 Page 11 of 16  189

SN Computer Science

Vertices: The example UML-class-diagram has only one
type of vertex (class), and the placement feature is UML
class.

Ports can be separated into 5 types:

1.	 Ports of the base classes to which the edges for the inher-
itance relation are connected.

2.	 Ports of the derived classes to which the edges for the
inheritance relation are connected.

3.	 Ports of the owning classes to which edges for the aggre-
gation relation are connected.

4.	 Ports of the not owning classes to which edges for the
aggregation relation are connected.

5.	 Ports for association relations.

Edges can be separated into 3 types:

1.	 Edges for inheritance relations are orthogonal hyper-
edges.

2.	 Edges for aggregation relations are port-to-port connec-
tions to be routed orthogonally.

3.	 Edges for association relations have the same classifier
as aggregation relations.

This results in the classification of the concrete syntax in
Fig. 17 for the UML diagram in Fig. 1.

This classification for a concrete syntax for UML class
diagrams can be used to develop suitable layout algorithms
or to reuse or adapt existing algorithms. For example, a static
automatic layout for this graphical language is provided
in [75], whereas [38] provide dynamic layout support for
orthogonally routed hyperedges with layout stability.

Parameter Map of CAD‑Model

The third example is the concrete syntax of a DSL. The
model in Fig. 18 represents the parametric relationships of
a 3D-CAD model of a deep drawing tool. The vertices rep-
resent the elements of the CAD model and their hierarchical
structure. Identical model components are represented by
a thick connection (e.g., the green connection between the
occurrences of “punch assembly” in Fig. 18). The central
vertex of the parameter map represents a specific parametric
relationship (here a formula) between input variables (top)
and output variables (bottom) [76].

The concrete syntax of the DSL can be described by the
classifier in Fig. 19.

All vertices have the default properties of the classifier,
but three types of ports: one type for the identity relationship
with fixed positions and two types for the input ports and for
the output ports (index 3) to connect directed edges between
parameter vertices and formula.

In accordance with the definition of ports, there are two
types of edges. The edges that map the identity relationship
have the default features. The edges between parameter ver-
tices and formula vertices are directed hyperedges that are
routed orthogonally.

Fig. 17   Classifier of the UML class diagram in Fig. 1

	 SN Computer Science (2023) 4:189189  Page 12 of 16

SN Computer Science

Layout Algorithm Reuse

The main idea behind the design and development of the
presented classification scheme was to support layout algo-
rithm reuse. With a classifier describing a new GLML,
it should be possible to find a matching layout algorithm
(or multiple layout algorithms) that fulfills (or fulfill) the
requested feature set.

Classifying layout algorithms as opposed to GLML is
a different task because implemented layout methods typi-
cally have multiple options and parameters influencing their
behavior. That means a single layout algorithm covers a wide
array of different GLML classifiers. Feature diagrams can
still be adapted to develop a classifier for layout algorithms,
but this development is not in the scope of this paper.

Matching a GLML to layout algorithms can be done man-
ually. Defining the classifier for a given GLML provides a
good understanding of the relevant layout features. By exam-
ining the available layout algorithms, it is possible to choose
the best solution for the GLML. In the best case, an existing
layout algorithm can be used out-of-the-box or with only
small adaptations.

In [11] three specific classifiers (structure and routing
for edges and position for ports) were transferred to cor-
responding classifiers for layout algorithms. Furthermore, a
mapping operator, which allows mapping between GLML
and layout methods, was established. The respective classi-
fiers for a GLML from the domain of process modeling of
body-in-white production and for a fictitious layout method
presented in [11] as well as a layout algorithm from [9] have
been constructed. Applying the mapping operator from [11]
then shows the fit between language and algorithms.

A worthwhile advancement is an automatic matching pro-
cess. The classifiers for GLML and layout algorithms can
be made machine-readable, e.g., in XML or JSON formats.
Then it would be possible to enable existing software frame-
works, like Eclipse GMF, to suggest layout algorithms for
new GLML. Another approach would be the development of
a “marketplace” for GLML layout, that facilitates the match-
ing by storing classifier information.

Using classifiers to link GLML with layout methods has
several benefits. The first is a faster and more efficient devel-
opment of software tools implementing on GLML. Devel-
opers and researchers can concentrate their efforts on the
GLML itself instead of building graph drawing tools. The
second is obtaining better software tools in general because
good interaction support and beautiful diagrams rely on
good layout algorithms. Another benefit is the better propa-
gation of research results. Only layout algorithms that are
easily searchable and findable can be reused for different
domains or contexts.

Conclusion and Further Work

The usability of a GLML depends on good layout. Even
users with limited modeling experience can build, modify,
and understand complex models when supported by sensi-
ble layout algorithms. Because GLML appear in the form
of GPML and DSL, they are important artifacts in both
MBD tools and technical engineering tools. GLML have
adapted many layout methods for graphs, especially for
static drawings. Still, developing, reusing, and adapting
graph drawing algorithms is very costly for tool develop-
ers due to the large variety of structurally different GLML.
Dynamic layout algorithms are of greater importance than
static layout algorithms in modeling tools, while their
development is underrepresented in tool development.

Fig. 18   Parameter map of a parametric 3D-CAD model for deep
drawing tools [76]

Fig. 19   Classifier of the parameter map in Fig. 18

SN Computer Science (2023) 4:189	 Page 13 of 16  189

SN Computer Science

The developed classification scheme for the concrete
syntax offers the possibility to better relate GLML and
layout methods. It shows a way to the reuse of layout algo-
rithms and intra-language compatibility of GLML. Tool
development for MDD is made more efficient by applying
the presented approach. Other possible next steps would
be to classify existing languages (e.g., GPML) and layout
methods to facilitate mutual mapping.

The classification scheme can be extended in further
work. An important aspect is the design of a classifier
set for layout algorithms [11]. This other side of the coin

is needed to enable an automatic or assisted matching
between the language design and layout implementation.

Furthermore, model-to-model transformations between
different GLML with distinct classifiers are to be investi-
gated. The classification scheme highlights relevant differ-
ences between GLML and supports the design of transfor-
mations in this way. With the help of these model-to-model
transformations, even more layout methods, namely those
for another class of GLML, can be reused.

Appendix 1: Vertex Classifier

Appendix 2: Port Classifier

Appendix 3: Edge Classifier

	 SN Computer Science (2023) 4:189189  Page 14 of 16

SN Computer Science

Acknowledgements  The authors thank the German Research Foun-
dation (DFG) for the partly financial support of the research project
“Method for the Model-Driven Design of Deep Drawing Tools” (pro-
ject number BA 6300/1-3). This R&D project of the Society for the
Advancement of Applied Computer Science (GFaI) is partly supported
by the funding program Innovation Competence (INNO-KOM) of the
German Federal Ministry for Economic Affairs and Climate Action
(BMWK), based on a resolution of the German Parliament (project
number 49VF200014).

Funding  This study was partly funded by German Research Founda-
tion (DFG) (Grant number BA 6300/1-3) and partly funded by German
Federal Ministry for Economic Affairs and Climate Action (BMWK)
(Grant number 49VF200014).

Data availability  All data generated or analysed during this study are
included in this published article.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Ethical approval  This article does not contain any studies with animals
performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Tesla N. Apparatus for the utilization of radiant energy. Specifica-
tion. https://​paten​ts.​google.​com/​patent/​US685​957A/​en (1901).

	 2.	 Karsai G, Krahn H, Pinkernell C, Rumpe B, Schindler M, Völkel
S. Design guidelines for domain specific languages. In: Proceed-
ings of the 9th OOPSLA workshop on domain-specific modeling
(DSM' 09), vol. (2009).

	 3.	 van der Linden D, Hadar I, Zamansky A. What practitioners really
want: requirements for visual notations in conceptual modeling.
Softw Syst Model. 2019;18:1813–31. https://​doi.​org/​10.​1007/​
s10270-​018-​0667-4.

	 4.	 Gupta R, Jansen N, Regnat N, Rumpe B. Design guidelines for
improving user experience in industrial domain-specific model-
ling languages (2022).

	 5.	 Binucci C, Brandes U, Dwyer T, Gronemann M, von Hanxleden
R, van Kreveld M, Mutzel P, Schaefer M, Schreiber F, Speckmann
B. 10 reasons to get interested in graph drawing. In: Steffen B,
Woeginger G, editors. Computing and software science. Lecture
notes in computer science, vol 10000. Cham: Springer; 2019. p.
85–104. https://​doi.​org/​10.​1007/​978-3-​319-​91908-9_6.

	 6.	 Damasceno CDN, Strüber D. Quality guidelines for research arti-
facts in model-driven engineering (2021).

	 7.	 OMG UML 2.5.1: Unified Modeling Language, v2.5.1 (2017).
https://​www.​omg.​org/​spec/​UML/2.​5.1/​PDF.

	 8.	 OMG SysML 1.6: Systems Modeling Language v1.6 (2019).
https://​www.​omg.​org/​spec/​SysML/1.​6/.

	 9.	 Eclipse Foundation: Eclipse Layout Kernel. Graph Data Structure
(2021). https://​www.​eclip​se.​org/​elk/.

	10.	 Wrobel G, Scheffler R. Classification scheme for the concrete syn-
tax of graph-like modeling languages for layout algorithm reuse.
Setúbal: SCITEPRESSScience and Technology Publications;
2022. https://​doi.​org/​10.​5220/​00109​13400​003119.

	11.	 Wrobel G, Scheffler R. Classification and mapping of layout algo-
rithms for usage in graph-like modeling languages 4th interna-
tional workshop on modeling language engineering. https://​doi.​
org/​10.​1145/​35503​56.​35615​59.

	12.	 Schuette R, Rotthowe T. The guidelines of modelling—an
approach to enhance the quality in information models. In: Ling
T-W, editor. Conceptual modelling—ER ’98 17th international
conference on conceptual modeling, Singapore, November 16–19,
1998, Proceedings. Lecture notes in computer science ser, vol
1507. Berlin: Springer; 1998. p. 240–54. https://​doi.​org/​10.​1007/​
978-3-​540-​49524-6_​20.

	13.	 Tamassia R, Di Battista G, Batini C. Automatic graph draw-
ing and readability of diagrams. IEEE Trans Syst Man Cybern.
1988;18:61–79. https://​doi.​org/​10.​1109/​21.​87055.

	14.	 Purchase HC, Cohen RF, James M. Validating graph drawing aes-
thetics, vol. 1027. Berlin: Springer; 1995. p. 435–46. https://​doi.​
org/​10.​1007/​BFb00​21827.

	15.	 Purchase H. Which aesthetic has the greatest effect on human
understanding? In: Di Battista G, editor. Graph drawing. Lecture
notes in computer science. Berlin: Springer; 1997.

	16.	 Purchase HC, Allder J-A, Carrington D. User preference of graph
layout aesthetics: a UML study. In: Goos G, Hartmanis J, van
Leeuwen J, Marks J, editors. Graph drawing. Lecture notes in
computer science, vol. 198. Berlin: Springer; 2001. p. 5–18.
https://​doi.​org/​10.​1007/3-​540-​44541-2_2.

	17.	 Ware C, Purchase H, Colpoys L, McGill M. Cognitive measure-
ments of graph aesthetics. Inf Vis. 2002;1:103–10. https://​doi.​org/​
10.​1057/​palgr​ave.​ivs.​95000​13.

	18.	 Eichelberger H. Aesthetics of class diagrams. In: Proceedings.
First international workshop on visualizing software for under-
standing and analysis, 26 June, 2002, Paris, France, p. 23–31.
IEEE Computer Society, Los Alamitos, Calif (2002). https://​doi.​
org/​10.​1109/​VISSOF.​2002.​10197​91.

	19.	 Bergström G, Hujainah F, Ho-Quang T, Jolak R, Rukmono SA,
Nurwidyantoro A, Chaudron MRV. Evaluating the layout quality
of UML class diagrams using machine learning. J Syst Softw.
2022;192:111413. https://​doi.​org/​10.​1016/j.​jss.​2022.​111413.

	20.	 Lübke D, Ahrens M, Schneider K. Influence of diagram lay-
out and scrolling on understandability of BPMN processes:
an eye tracking experiment with BPMN diagrams. Inf Tech-
nol Manage. 2021;22:99–131. https://​doi.​org/​10.​1007/​
s10799-​021-​00327-7.

	21.	 Dikici A, Turetken O, Demirors O. Factors influencing the under-
standability of process models: A systematic literature review. Inf
Softw Technol. 2018;93:112–29. https://​doi.​org/​10.​1016/j.​infsof.​
2017.​09.​001.

	22.	 Di Battista G, Eades P, Tamassia R, Tollis IG. Algorithms for
drawing graphs: an annotated bibliography. Comput Geom.
1994;4:235–82. https://​doi.​org/​10.​1016/​0925-​7721(94)​00014-x.

	23.	 Di Battista G, Eades P, Tamassia R, Tollis IG. Graph drawing.
Algorithms for the visualization of graphs. Upper Saddle River:
Prentice Hall; 1999.

	24.	 Schulze CD, Spönemann M, von Hanxleden R. Drawing layered
graphs with port constraints. J Vis Lang Comput. 2014;25:89–
106. https://​doi.​org/​10.​1016/j.​jvlc.​2013.​11.​005.

http://creativecommons.org/licenses/by/4.0/
https://patents.google.com/patent/US685957A/en
https://doi.org/10.1007/s10270-018-0667-4
https://doi.org/10.1007/s10270-018-0667-4
https://doi.org/10.1007/978-3-319-91908-9_6
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/SysML/1.6/
https://www.eclipse.org/elk/
https://doi.org/10.5220/0010913400003119
https://doi.org/10.1145/3550356.3561559
https://doi.org/10.1145/3550356.3561559
https://doi.org/10.1007/978-3-540-49524-6_20
https://doi.org/10.1007/978-3-540-49524-6_20
https://doi.org/10.1109/21.87055
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/3-540-44541-2_2
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1109/VISSOF.2002.1019791
https://doi.org/10.1109/VISSOF.2002.1019791
https://doi.org/10.1016/j.jss.2022.111413
https://doi.org/10.1007/s10799-021-00327-7
https://doi.org/10.1007/s10799-021-00327-7
https://doi.org/10.1016/j.infsof.2017.09.001
https://doi.org/10.1016/j.infsof.2017.09.001
https://doi.org/10.1016/0925-7721(94)00014-x
https://doi.org/10.1016/j.jvlc.2013.11.005

SN Computer Science (2023) 4:189	 Page 15 of 16  189

SN Computer Science

	25.	 Poon S-H, Shin C-S, Strijk T, Uno T, Wolff A. Labeling points
with weights. Algorithmica. 2004;38:341–62. https://​doi.​org/​10.​
1007/​s00453-​003-​1063-0.

	26.	 Wolff A. The map-labeling bibliography (2009). i11. www.​iti.​kit.​
edu/​~awolff/​map-​label​ing/​bibli​ograp​hy/.

	27.	 Wu H-Y, Niedermann B, Takahashi S, Roberts MJ, Nöllenburg
M. A survey on transit map layout - from design, machine, and
human perspectives. Comput Graph Forum J Eur Assoc Comput
Graph. 2020;39:619–46. https://​doi.​org/​10.​1111/​cgf.​14030.

	28.	 Pleßow M, Simeonov PL. Netlike schematics and their structure
description. In: Workshop on informatics in industrial automation,
p. 144–163 (1989).

	29.	 May M, Kluge S, Pleßow M, Sieck J, Vigerske W. A review on
block diagram layout. In: Proceedings of 5th IFAC symposium on
computer-aided design in control systems (CADCS'91) (1991).

	30.	 May M. Computer-generated multi-row schematics. Comput
Aided Des. 1985;17:25–9. https://​doi.​org/​10.​1016/​0010-​4485(85)​
90007-7.

	31.	 May M, Mennecke P. Layout of schematic drawings Systems
Analysis Modelling Simulation.

	32.	 Iwainsky A, Kaiser D, May M. Computer graphics and layout
design in documentation processes. Comput Graph. 1990;14:377–
88. https://​doi.​org/​10.​1016/​0097-​8493(90)​90058-6.

	33.	 Wrobel G, Ebert R-E, Pleßow M. Graph-based engineering
systems—a family of software applications and their underlying
framework. Electronic communications of the EASST, Volume 6:
graph transformation and visual modeling techniques 2007, vol 6
(2007). https://​doi.​org/​10.​14279/​tuj.​eceas​st.6.​50.

	34.	 Augenstein E, Wrobel G, Kuperjans I, Plessow M. TOP-energy-
computational support for energy system engineering processes.
In: Proceedings of the 1rst IC-SCCE. Athen (2004).

	35.	 Marchenko M, Behrens B-A, Wrobel G, Scheffler R, Pleßow M.
A New Method of visualization and documentation of paramet-
ric information of 3D CAD models. Comput Aided Des Appl.
2011;8:435–48. https://​doi.​org/​10.​3722/​cadaps.​2011.​435-​448.

	36.	 Scheffler R, Murugan VP, Wrobel G, Pleßow M, Koch S, Buse C,
Behrens B-A. Graphical modelling of a meta-model of CAD mod-
els for deep drawing tools. INCOSE Int Symp. 2016;26:1090–104.
https://​doi.​org/​10.​1002/j.​2334-​5837.​2016.​00213.x.

	37.	 Zeitler J, Goetze B, Fischer C, Franke J (ed) Integration of semi-
automated routing algorithms for spatial circuit carriers into
computer-aided design tools. Fürth (2014).

	38.	 Helmke S, Goetze B, Scheffler R, Wrobel G. Interactive, orthogo-
nal hyperedge routing in schematic diagrams assisted by layout
automatisms. In: Basu A, Stapleton G, Linker S, Legg C, Manalu
E, Viana P (eds) Diagrammatic representation and inference.
12th international conference, diagrams 2021. Virtual, Septem-
ber 28–30, 2021, proceedings. Lecture notes in computer science
book series (LNCS), Part of the lecture notes in computer science
book series (LNCS, volume 12909); also part of the lecture notes
in artificial intelligence book sub series (LNAI, volume 12909),
p. 20–27. Springer Nature, Cham (2021). https://​doi.​org/​10.​1007/​
978-3-​030-​86062-2_2.

	39.	 Barzdins J, Kalnins A. Metamodel specialization for graphical
language and editor definition. BJMC. 2016;4:910–33. https://​
doi.​org/​10.​22364/​bjmc.​2016.4.​4.​20.

	40.	 yWorks GmbH: The Graph Model (2022). https://​docs.​yworks.​
com/​yfile​shtml/#/​dguide/​graph.

	41.	 USAS Y14.15-1966: Electrical and electronics diagrams. The
American Society of Mechanical Engineers, New York (1966).

	42.	 IDEF N. Integrated DEFinition Methods (IDEF). IDEF Family of
Methods (2021). https://​www.​idef.​com/.

	43.	 Menzel C, Mayer RJ. The IDEF Family of languages. In: Ber-
nus P, Mertins K, Schmidt G (eds) Handbook on architectures of
information systems. Springer eBook collection computer science,

pp 215–249. Springer, Berlin (2006). https://​doi.​org/​10.​1007/3-​
540-​26661-5_​10

	44.	 IEC 61131-3:2013: International electrotechnical commission IEC
61131-3:2013. Programmable controllers—Part 3: Programming
languages (2014).

	45.	 Bork D, Karagiannis D, Pittl B. A survey of modeling language
specification techniques. Inf Syst. 2020;87:101425. https://​doi.​
org/​10.​1016/j.​is.​2019.​101425.

	46.	 Kühne T. Matters of (meta-) modeling. Softw Syst Model.
2006;5:369–85. https://​doi.​org/​10.​1007/​s10270-​006-​0017-9.

	47.	 Vaupel S, Taentzer G, Harries JP, Stroh R, Gerlach R, Guckert
M. Model-driven development of mobile applications allowing
role-driven variants. In: Dingel J, Schulte W, Ramos I, Abrahão
S, Insfran E, editors. Model-Driven engineering languages and
systems. Lecture notes in computer science, vol 8797. Cham:
Springer International Publishing; 2014. p. 1–17. https://​doi.​org/​
10.​1007/​978-3-​319-​11653-2_1.

	48.	 Chu M-H, Dang D-H, Nguyen N-B, Le M-D, Nguyen T-H. USL
sfvmkf vkmvkb. In: Thang HQ, Hu Z, Bui M, Sikdar B, Ide I,
Binh HTT, Engchuan W, Sang DV, Oanh NT, editors. Proceed-
ings of the Eighth International Symposium on Information and
Communication Technology. New York: Springer; 2017. p. 401–8.
https://​doi.​org/​10.​1145/​31551​33.​31551​94.

	49.	 Maillard S, Smeda A, Oussalah M. COSA: An architectural
description meta-model. In: Filipe J (ed) Programming languages,
distributed and parallel systems, knowledge engineering, special
session on metamodeling—utilization in software engineering
(MUSE). Proceedings of the Second International Conference on
Software and Data Technologies Barcelona, Spain, July 22–25,
2007, p. 445–448. INSTICC, Setúbal (2007). https://​doi.​org/​10.​
5220/​00013​38404​450448.

	50.	 GMF: Graphical Modeling Framework|The Eclipse Foundation
(2021). https://​www.​eclip​se.​org/​model​ing/​gmp/.

	51.	 OBEO: Obeo Designer (2021). https://​www.​obeod​esign​er.​com/​
en/​solut​ions.

	52.	 Sirius: Sirius Overview (2021). https://​www.​eclip​se.​org/​sirius/​
overv​iew.​html.

	53.	 MetaEdit+: MetaEdit+ Domain-Specific Modeling (DSM) envi-
ronment (2021). https://​www.​metac​ase.​com/​produ​cts.​html.

	54.	 Microsoft DSL: Modeling SDK for Visual Studio-Domain-Spe-
cific Languages (2021). https://​docs.​micro​soft.​com/​en-​us/​visua​
lstud​io/​model​ing/​model​ing-​sdk-​for-​visual-​studio-​domain-​speci​
fic-​langu​ages?​view=​vs-​2022.

	55.	 Cooper J, de La Vega A, Paige RF, Kolovos D, Michael B, Brown
C, Sanchez Pina BA, Hoyos Rodriguez H. Model-based develop-
ment of engine control systems: experiences and lessons learnt.
In: ACM/IEEE 24th international conference on model driven
engineering languages and systems (2021).

	56.	 Guo H, Huang J, Laidlaw DH. Representing uncertainty in graph
edges: an evaluation of paired visual variables. IEEE Trans Visual
Comput Graph. 2015;21:1173–86. https://​doi.​org/​10.​1109/​TVCG.​
2015.​24248​72.

	57.	 Meidiana A, Hong S-H, Eades P. New quality metrics for dynamic
graph drawing. In: Auber D, Valtr P (eds) Graph drawing and net-
work visualization. 28th international symposium, GD 2020, Van-
couver, BC, Canada, September 16–18, 2020 : revised selected
papers. Lecture notes in computer science SL3-Information Sys-
tems and Applications, incl. Internet/Web, and HCI, vol 12590,
p. 450–465. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-
3-​030-​68766-3_​35.

	58.	 Archambault D, Purchase HC. Mental map preservation helps
user orientation in dynamic graphs. In: Didimo W, Patrignani M
(eds) Graph drawing. 20th international symposium, GD 2012,
Redmond, WA, USA, September 19–21, 2012, Revised Selected

https://doi.org/10.1007/s00453-003-1063-0
https://doi.org/10.1007/s00453-003-1063-0
http://www.iti.kit.edu/~awolff/map-labeling/bibliography/
http://www.iti.kit.edu/~awolff/map-labeling/bibliography/
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1016/0010-4485(85)90007-7
https://doi.org/10.1016/0010-4485(85)90007-7
https://doi.org/10.1016/0097-8493(90)90058-6
https://doi.org/10.14279/tuj.eceasst.6.50
https://doi.org/10.3722/cadaps.2011.435-448
https://doi.org/10.1002/j.2334-5837.2016.00213.x
https://doi.org/10.1007/978-3-030-86062-2_2
https://doi.org/10.1007/978-3-030-86062-2_2
https://doi.org/10.22364/bjmc.2016.4.4.20
https://doi.org/10.22364/bjmc.2016.4.4.20
https://docs.yworks.com/yfileshtml/#/dguide/graph
https://docs.yworks.com/yfileshtml/#/dguide/graph
https://www.idef.com/
https://doi.org/10.1007/3-540-26661-5_10
https://doi.org/10.1007/3-540-26661-5_10
https://doi.org/10.1016/j.is.2019.101425
https://doi.org/10.1016/j.is.2019.101425
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1145/3155133.3155194
https://doi.org/10.5220/0001338404450448
https://doi.org/10.5220/0001338404450448
https://www.eclipse.org/modeling/gmp/
https://www.obeodesigner.com/en/solutions
https://www.obeodesigner.com/en/solutions
https://www.eclipse.org/sirius/overview.html
https://www.eclipse.org/sirius/overview.html
https://www.metacase.com/products.html
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://doi.org/10.1109/TVCG.2015.2424872
https://doi.org/10.1109/TVCG.2015.2424872
https://doi.org/10.1007/978-3-030-68766-3_35
https://doi.org/10.1007/978-3-030-68766-3_35

	 SN Computer Science (2023) 4:189189  Page 16 of 16

SN Computer Science

Papers. SpringerLink Bücher, vol. 7704, pp. 475–486. Springer,
Berlin (2013). https://​doi.​org/​10.​1007/​978-3-​642-​36763-2_​42.

	59.	 Eades P, Lai W, Misue K, Sugiyama K. Preserving the mental map
of a diagram. In: Proceedings of compugraphics ’91, p. 24–33
(1991).

	60.	 Kobourov SG, Mchedlidze T, Vonessen L. Gestalt principles in
graph drawing. In: Di Giacomo E, Lubiw A, editors. Graph draw-
ing and network visualization. Lecture notes in computer science,
vol 9411. Cham: Springer; 2015. https://​doi.​org/​10.​1007/​978-3-​
319-​27261-0_​50.

	61.	 Taylor M, Rodgers P. Applying graphical design techniques to
graph visualisation. In: Banissi E (ed) Proceedings/nineth interna-
tional conference on information visualisation, 2005. 06–08 July
2005, [London, England, pp. 651–656. IEEE Computer Society,
Los Alamitos, Calif. (2005). https://​doi.​org/​10.​1109/​IV.​2005.​19.

	62.	 Purchase HC. Metrics for graph drawing aesthetics. J Vis Lang
Comput. 2002;13:501–16. https://​doi.​org/​10.​1006/​jvlc.​2002.​0232.

	63.	 Wrobel G, Scheffler R, Kehrer T. Rethinking the traditional design
of meta-models: layout matters for the graphical modeling of tech-
nical systems 2021 ACM/IEEE 24th international conference on
model driven engineering languages and systems companion
(MODELS-C), p. 351–360 (2021). https://​doi.​org/​10.​1109/​MOD-
ELS-​C53483.​2021.​00058.

	64.	 Saffrey P, Purchase HC. The ’Mental Map’ versus ’Static Aes-
thetic’ compromise in dynamic graphs : a user study. In: Plimmer
B, Weber G (eds) User interfaces 2008, ninth Australasian user
interface conference, AUIC 2008, Wollongong, NSW, Australia,
January 2008. CRPIT, vol. 76, pp. 85–93. Australian Computer
Society (2008).

	65.	 Kang K, Cohen S, Hess J, Novak W, Peterson A. Feature-oriented
domain analysis (FODA) feasibility study. Pittsburgh, PA (1990).

	66.	 Czarnecki K, Eisenecker UW, Eisenecker U. Generative program-
ming. Methods, tools, and applications. Boston: Addison Wesley;
2000.

	67.	 Czarnecki K. Generative programming: principles and techniques
of software engineering based on automated configuration and
fragment-based component models. Germany: Ilmenau; 1999.

	68.	 Riebisch M, Böllert K, Streitferdt D, Philippow I. Extending fea-
ture diagrams with Uml multiplicities conference on integrated
design and process technology (IDPT 2002). Pasadena, California,
USA (2002).

	69.	 Czarnecki K, Kim CHP (eds): Cardinality-based feature modeling
and constraints: a progress report (2005).

	70.	 EN 60617-2: Graphical symbols for diagrams. Part 2: Symbol
elements, qualifying symbols and other symbols havin general
application, vol. 01.080.30; 29.020 (1997).

	71.	 Imhof E. Die Anordnung der Namen in der Karte. Int Yearb Car-
togr. 1962;20:93–129.

	72.	 Lima M. Book of trees. Visualizing branches of knowledge. New
York: Princeton Architectural Press; 2014.

	73.	 Nickel S, Nöllenburg M. Towards data-driven multilinear metro
maps (2019).

	74.	 Euler L. Solutio problematis ad geometriam situs pertinentis.
Commentarii academiae scientiarum Petropolitanae, vol. 128–140
(1735).

	75.	 Eiglsperger, M.: Automatic layout of UML class diagrams. Tübin-
gen (2003)

	76.	 Scheffler R, Koch S, Wrobel G, Pleßow M, Buse C, Behrens B-A.
Modelling CAD models. Method for the model driven design of
CAD models for deep drawing tools 4th international conference
on model-driven engineering and software development (MOD-
ELSWARD), pp 377–383 (2016). https://​doi.​org/​10.​5220/​00057​
99403​770383.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-36763-2_42
https://doi.org/10.1007/978-3-319-27261-0_50
https://doi.org/10.1007/978-3-319-27261-0_50
https://doi.org/10.1109/IV.2005.19
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1109/MODELS-C53483.2021.00058
https://doi.org/10.1109/MODELS-C53483.2021.00058
https://doi.org/10.5220/0005799403770383
https://doi.org/10.5220/0005799403770383

	Classification for the Concrete Syntax of Graph-Like Modeling Languages
	Abstract
	Introduction
	Related Works
	User Experience and Aesthetic Aspects of GLML
	Graphs and Graph Drawing
	Netlike Schematics
	Technical Languages
	Languages in Model-Based Engineering
	Features and Metamodel of GLML

	Layout Aspects of GLML
	Classification Scheme
	Notation
	GLML Classification
	Common Classsification
	Label Classification

	Vertex Classification
	Nesting Classifier
	Rotation Classifier
	Mirroring Classifier
	Placement Classifier

	Port Classification
	Position Classifier
	Valency Classifier
	Nested Classifier
	Direction Classifier

	Edge Classification
	Structure Classifier
	Routing Classifier
	Type Classifier
	Hierarchy Nesting Classifier
	Direction Classifier

	Examples
	Simple Graph Model
	UML Class Diagram
	Parameter Map of CAD-Model

	Layout Algorithm Reuse
	Conclusion and Further Work
	Acknowledgements
	References

