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Abstract
Code generation is a key technique formodel-driven engineering (MDE) approaches of software construction. Code generation
enables the synthesis of applications in executable programming languages from high-level specifications in UML or in a
domain-specific language. Specialised code generation languages and tools have been defined; however, the task of manually
constructing a code generator remains a substantial undertaking, requiring a high degree of expertise in both the source and
target languages, and in the code generation language. In this paper, we apply novel symbolic machine learning techniques
for learning tree-to-tree mappings of software syntax trees, to automate the development of code generators from source–
target example pairs. We evaluate the approach on several code generation tasks, and compare the approach to other code
generator construction approaches. The results show that the approach can effectively automate the synthesis of code generators
from examples, with relatively small manual effort required compared to existing code generation construction approaches.
We also identified that it can be adapted to learn software abstraction and translation algorithms. The paper demonstrates
that a symbolic machine learning approach can be applied to assist in the development of code generators and other tools
manipulating software syntax trees.

Keywords Code generation · MDE · Machine learning · MTBE · CGBE

Introduction

Model-driven engineering (MDE) has many potential bene-
fits for software development, as ameans for representing and
managing core business concepts and rules as software mod-
els, and thus ensuring that these business assets are retained in
a platform-independent manner over time. Despite the long-
term advantages ofMDE,many businesses and organisations
are discouraged from adopting it because of the high initial
costs and specialised skills required. Our research is intended
to remove these obstacles by enabling general software prac-
titioners to apply MDE techniques, via the use of simplified
notations and by providing AI support for MDE processes.

This article is part of the topical collection “Advances on
Model-Driven Engineering and Software Development” guest edited
by Luís Ferreira Pires and Slimane Hammoudi.
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One area where there have been particular problems for
industrial users of MDE is in the definition and maintenance
of code generators [32]. Code generation in themodel-driven
engineering (MDE) context involves the automated synthe-
sis of executable code, usually for a target third-generation
language (3GL), such as Java, C, C++, Go or Swift, from
a software specification defined as one or more models in a
modelling language such as the UnifiedModelling Language
(UML) with formal Object Constraint Language (OCL) con-
straints [28] or in a domain-specific modelling language
(DSL).MDE code generation has potentially high benefits in
reducing the cost of code production, and in improving code
quality by ensuring that a systematic architectural approach
is used in system implementations. However, the manual
construction of such code generators can involve substantial
effort and require specialised expertise in the transformation
languages used. For example, several person-years of work
were required for the construction of one UML to Java code
generator [7].

To reduce the knowledge and human resources needed to
develop code generators,wedefine a novel symbolicmachine
learning (ML) approach to automatically create code gen-
eration rules based on translation examples. We term this
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approach code generation by example or CGBE. The basis
of CGBE is the learning of tree-to-tree mappings between
the abstract syntax trees (ASTs) of source language exam-
ples and those of corresponding target language examples. A
set of search strategies are used to postulate and then check
potential tree-to-tree mappings between the language ASTs.
Typically, the source language is a subset of theUnifiedMod-
elling Language (UML) and Object Constraint Language
(OCL), and the target language is a programming language,
such as Java or Kotlin. However, the technique is applica-
ble in principle to learning mappings between any software
languages which have precise grammar definitions.

The CGBE approach for UML/OCL was evaluated on a
wide range of target programming languages, and the results
showed that a large part of the relevant code generators could
typically be synthesised from examples, thus considerably
reducing the manual effort and expertise required for code
generator construction.

To summarise our contribution, we have provided a new
technique (CGBE) for automating the construction of code
generators, via a novel application of symbolic machine
learning. We have also evaluated CGBE on realistic exam-
ples of code generation tasks, to establish that it is effective
for such tasks.

In “Code Generation Technologies”, we survey the exist-
ing MDE code generation approaches and research, and
“Code Generation Idioms” describes common idioms which
arise in code generator processing. These idioms are used to
guide and restrict the search strategies of CGBE. “Research
Questions” presents the research questions that we aim to
answer.

“CST L” describes the CST L code generation language
which we use to express code generator rules. “Synthesis of
Code Generators from Examples” describes the detailed pro-
cess of CGBE using symbolic ML.We provide an evaluation
of the approach in “Evaluation”, a summary of related work
in “Related Work”, threats to validity in “Threats to Valid-
ity”, and conclusions and future work in “Conclusions and
Future Work”.

Code Generation Technologies

There are three main approaches to code generation in the
MDE context. Code generators may directly produce target
language text from models, i.e., model-to-text approaches
(M2T), or produce a model that represents the target
code, i.e., model-to-model (M2M) approaches [9,23]. More
recently, text-to-text (T2T) code generation languages have
been defined [24].

At present, code generation is often carried out by utilising
template-based M2T languages such as the Epsilon Gener-

ation Language (EGL)1 and Acceleo.2 In these, templates
for target language elements such as classes and methods are
specified, with the data of instantiated templates being com-
puted using expressions involving source model elements.
Thus, a developer of a template-based code generator needs
to understand the source language metamodel, the target
language syntax, and the template language. These three lan-
guages are intermixed in the template texts, with delimiters
used to separate the syntax of different languages. The con-
cept is similar to the use of JSP to produce dynamic Web
pages from business data. Figure 1 shows an example of an
EGL script combining fixed template text and dynamic con-
tent, and the resulting generated code. The dynamic content
in the template is enclosed in [% and %] delimiter brackets.

AnM2M code generation approach separates code gener-
ation into two steps: (i) a model transformation from the
source language metamodel to the target language meta-
model [9] and (ii) text production from a target model. In
this case, the author of the code generator must know both
the source and target language metamodels, the model trans-
formation language, and the target language syntax. Figure
2 shows an example of M2M code generation in QVTr from
[9].

A T2T approach to code generation specifies the transla-
tion from source to target languages in terms of the source and
target language concrete syntax or grammars, and does not
depend upon metamodels (abstract syntax) of the languages.
A T2T author needs to know only the source language gram-
mar and target language syntax, and the T2T language.

An example of T2T code generation is the UML to Java8
code generation script of AgileUML,3 which includes rules
such as

BinaryExpression::
_1 * _2 |-->_1 * _2
_1 / _2 |-->_1 / _2
_1 mod _2 |-->_1 % _2
_1 div _2 |-->((int) (_1/_2))
_1->pow(_2) |-->Math.pow(_1,_2)

Another T2T language is Antlr’s StringTemplate4.
M2M and M2T approaches have the advantage of being

able to use a semantically rich source representation (amodel
with a graph-like structure of cross-references between ele-
ments), whilst a T2T approach uses tree-structured source
data (the parse tree of source text according to a grammar for
the source language). However, M2M and M2T approaches
require the definition of a source metamodel, which may not
exist, for example, in the case of a DSL defined by a gram-

1 https://projects.eclipse.org/projects/modeling.epsilon.
2 https://www.eclipse.org/acceleo.
3 https://projects.eclipse.org/projects/modeling.agileuml.
4 http://www.stringtemplate.org/about.html.

SN Computer Science

https://projects.eclipse.org/projects/modeling.epsilon
https://www.eclipse.org/acceleo
https://projects.eclipse.org/projects/modeling.agileuml
http://www.stringtemplate.org/about.html


SN Computer Science (2023) 4 :170 Page 3 of 23 170

Fig. 1 Example of EGL
template and generated code

Fig. 2 Example of QVTr M2M code generation

mar. For these reasons, we decided to focus on learning T2T
code generators, rather than M2M or M2T generators, as the
goal of our research.

Code Generation Idioms

Code generation involves specific forms of processing and
transformation: typically, a model or syntax tree represent-
ing the source version of a software system is traversed to
construct a model or text representing the target version of
the software system. Multiple traversals of the source data
may be necessary, together with the construction of internal
auxiliary data, in a manner similar to the processing carried
out by compilers [10].

By examining a number of different M2M,M2T, and T2T
code generators, we identified a set of characteristic idioms
used in their processing:

Elaboration: a source element ismapped to a target element
plus some additional structure/constant elements. For
example, for each concreteUMLclassC ,we could gener-

ate an additional global constructor operation createC()

to create instances of C .
Rearrangement: Elements of the source are re-ordered in
the target. E.g., a UML declaration

attribute name : String;

becomes

private String name;

in Java.
Simplification: Elements of the input are discarded when
producing the output. For example, the pre : and post :
specification clauses of an OCL operation could be dis-
carded when translating from OCL to Java, and only the
explicit behavioural definition of the operation used for
code production.

Replacement: Parts of the source are replaced in a func-
tional manner by target parts. For example, statement
group symbols ( and ) could be consistency replaced by
block symbols { and } in mapping from procedural OCL
statements to Java.

Conditional generation: Translate individual elements in
alternative ways based on their properties. For example,
a numeric division expression a/b would be translated
to a//b in Python if both a and b are of integer type,
otherwise to a/b.

Context-sensitive generation: Translate individual ele-
ments in alternative ways based on their context. For
example, the attributes and operations of an interface
would be translated to Java in a different way to those
of a general class.

Iterative generation: Process the elements of a list by suc-
cessively applying the same translation to each list item
in turn. For example, translating the literals of an enu-
meration definition in UML to corresponding literals in
a programming language enum.
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Accumulation: Iterate over the source model structure,
gathering together all itemswith certain properties which
are encountered. For example, gathering together all the
directly owned and recursively inherited features of a
UML class.

Horizontal splitting: Perform alternative processing on
elements in a collection depending on their properties,
partitioning them into disjoint groups in the target. For
example in translation of UML class features to Go,
static attributes are defined as global variables using var ,
outside of any class (struct), whilst non-static attributes
become fields within a struct.

Vertical splitting: Generate two or more target elements
from one source element. For example, producing corre-
sponding C header and code files for a UML class.

There are also language-specific idioms for certain kinds
of source/target languages:

Express types by initialisation: In cases where the source
language is fully typed but the target language does not
have explicit typing (e.g., Python or JavaScript), type
information for source variables can be expressed by the
choice of initialisation value of the variable in the target.
For example, in mapping

var name : String;

to Python, we could write

name = ""

Integers would be initialised with 0, doubles with 0.0,
and Booleans with False, etc.

Perform type inference: In the opposite situation where the
source language has implicit types and the target has
explicit types, a type-inference strategy could be used
to identify the actual type of data items, where possible.

Replace inheritance by association: If the source language
has inheritance but the target language does not, one tech-
nique to represent inheritance is to embed a reference
super in a subclass instance, linking it to an instance
of the superclass. Accesses and updates to superclass
attributes f are implemented as accesses and updates
to super . f . Likewise operation calls of inherited oper-
ations are performed via super . This strategy is used in
the UML2C translation of [23].

Pre-normalisation:To facilitate codegeneration, the source
model/specification may need to be rewritten into a
specific form. For example, factoring out common subex-
pressions in arithmetic expressions [10].

Tree-to-sequence: This idiom flattens the source tree struc-
ture, so that individual subtrees of a source tree become

subsequences of the result sequence. It is used in cases
where the target language has a flat structure, such as an
assembly language or PLC language, and the source is
block-structured.

Research Questions

The paper aims to answer the following research questions:

RQ1: Can CGBE be used to learn code generation rules
involving the common code generation idioms listed
in “Code Generation Idioms”?

RQ2: Can CGBE be used to learn efficient and accurate
code generators for practical code generation tasks?

RQ3: Are there clear benefits in using CGBE, compared
to other approaches, such as manual generator con-
struction?

RQ4: Can CGBE be adapted to the learning of abstraction
and translation transformations?

We address these questions by defining a systematic
process for CGBE (“Synthesis of Code Generators from
Examples”) and evaluating its application for a wide range of
code generation tasks (“Evaluation”). As a running example,
we use the translation of OCL unary expressions to code.
These expressions are of two kinds: prefix unary expressions
such as −x , +x , not p, and postfix arrow operator forms,
such as sq→si ze(), str→reverse(), etc.

CST L

CST L is a T2T transformation language, which was orig-
inally created to facilitate the manual construction of code
generators from UML/OCL to 3GLs [24]. CST L transfor-
mations map elements of a source language L1 into the
textual form of elements of a target language L2. A CST L
specification consists of a set of script files, each script has
a set of rulesets, which have a name and an ordered list of
rules (Fig. 3). Rulesets usually correspond to the syntactic
categories of L1, although additional rulesets can be defined
to specify auxiliary functions.

CST L rules have the form

LHS |--> RHS <when> condition

where theLHS (left-hand side) andRHS (right-hand side) are
schematic text representations of corresponding elements of
L1 and L2, and the optional condition can place restrictions
on when the rule is applicable.

Neither the source or target metamodel is referred to,
instead, a rule LHS can be regarded as a pattern for matching
nodes in a parse tree of L1 elements (such as types, expres-
sions, or statements).When the transformation is applied to a
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Fig. 3 CST L metamodel

particular parse tree s, rule left-hand sides are tested to deter-
mine if they match s; if so, the first matching rule is applied
to s.

For example, some rules for translating OCL [28] types
to Java 7+ could be

OclType::
Integer |-->BigInteger
Real |-->BigDecimal
OclAny |-->Object
Boolean |-->boolean
String |-->String

Set(_1) |-->HashSet<_1>
Sequence(_1) |-->ArrayList<_1>
Map(_1,_2) |-->HashMap<_1,_2>

Metavariables _1, ..., _99 represent subnodes of an L1 syntax
tree node s. If s matches an LHS containing metavariables,
thesemetavariables are bound to the corresponding subnodes
of s, and these subnodes are then translated in turn, to con-
struct the subparts of the RHS denoted by the metavariable.

Thus, for the above ruleset OclT ype, applied to the OCL
type Map(I nteger , String), the final rule matches against
the type, with _1 bound to I nteger and _2 bound to String.
These are translated to BigInteger and String, respectively,
andhence, the output isHashMap<BigInteger , String>.

The special metavariable _∗ denotes a list of subnodes.
For example, a rule

Set{_*} |-->Ocl.initialiseSet(_*)

translates OCL set expressions with a list of arguments, into
a corresponding call on the static method ini tialiseSet of
the Java Ocl.java library. Elements of the list bound to _∗
are translated according to their own syntax category, and
separators are preserved.

Rule conditions are a conjunction of basic conditions, sep-
arated by commas. Individual basic conditions have the form

_i S

or

_i not S

for a stereotype S (predicate in Fig. 3), which can refer to
the properties of the element bound to _i . For example, the
type of an element can be tested using stereotypes I nteger ,
Real, Boolean, Object , Sequence, etc. Rules may also
have actions, which have the same syntax as conditions, and
are used to record information about elements which can be
subsequently tested in conditions.

A ruleset r can be explicitly applied to metavariable _i
representing an individual source element by the notation
_i‘r. The notation _*‘r denotes the application of r to
each element of a list _∗. This facility enables the use of
auxiliary functions within a code generator. In addition, a
separate set of rulesets in a script file f .cstl can also be
invoked on _i by the notation _i‘f.

By default, if no rule in a ruleset applied to source element
s matches to s, s is copied unchanged to the result. Thus, the
rule String �−→ String above is not necessary. Because
rules are matched in the order of their listing in their ruleset,
more specific rules should precede more general rules. A
transitive partial order relation r1 � r2 can be defined on
rules, which is true iff r1 is strictly more specific than r2.
For example, if the LHS of r2 and r1 are equal, but r1 has
stronger conditions than r2.

CST L is a simpler notation than template-based code gen-
eration formalisms, in the sense that no reference is made to
source or target language metamodels, and no interweaving
of target language text and code generation language text is
necessary. The target language syntax and the structure of
the source language grammar need to be known, to write
and modify the rules. CST L scripts are substantially more
concise than equivalent Java or model transformation code
[24].

CST L has been applied to the generation of Swift 5 and
Java 8 code, to support mobile app synthesis [20]. It has also
been used to generateGo code fromUML, and applied to nat-
ural language processing [22] and reverse-engineering tasks
[18]. However, a significant manual effort is still required
to define the CST L rules and organise the transformation
structure. In the next section, we discuss how this effort can
be reduced by automated learning of a CST L code generator
frompairs of corresponding source language, target language
texts. This reduces or removes the need for developers to
understand the details of the source language grammar or
CST L syntax.
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Synthesis of Code Generators from Examples

The goal of our machine learning procedure is to automati-
cally derive a CST L code generator g mapping a software
language L1 to a different language L2, based on a set D of
examples of corresponding texts from L1 and L2. D should
be valid, i.e., functional from source to target, and each exam-
ple should be valid according to its language grammar.

The generated g should be correct wrt D, i.e., it should
correctly translate the source part of each example d ∈ D to
the corresponding target part of d.

In addition, g should also be able to correctly translate
the source elements of a validation dataset V of (L1, L2)

examples, disjoint from D.
We term this process code generation by-example or

CGBE.
Thus, from a dataset

x->front() Ocl.front(x)
sq->front() Ocl.front(sq)
x->tail() Ocl.tail(x)
sq->tail() Ocl.tail(sq)
y->first() Ocl.first(y)
arr->first() Ocl.first(arr)

it should be possible to derive a specification equivalent to

OclUnaryExpression::
_1->front() |-->Ocl.front(_1)
_1->tail() |-->Ocl.tail(_1)
_1->first() |-->Ocl.first(_1)

The datasets D will be organised in the same manner as
datasets of paired texts for ML of natural language transla-
tors:5 each line of D holds one example pair, and the source
and target texts are separated by one or more tab characters
\t .

Because software languages are generally organised hier-
archically into sublanguages, e.g., concerning types, expres-
sions, statements, operations/functions, classes, etc., D will
typically be divided into parts corresponding to the main
source language divisions.

Symbolic Versus Non-symbolic Machine Learning

Machine learning (ML) can be defined as a technology
which aims to automate the learning of knowledge from
the instances of a training set, such that the learned knowl-
edge can then be applied to derive information about other
instances. A wide range of techniques are encompassed
by this definition, including statistical approaches, tradi-
tional and recurrent neural networks, and symbolic learning
approaches such as decision trees [29] or inductive logic

5 http://www.tensorflow.org/text/tutorials/nmt_with_attention.

programming (ILP) [26]. Machine learning typically uses
a training phase, during which knowledge is induced from
the training set, and a validation phase, where the accuracy
of the learned knowledge is tested against a new dataset, for
which the expected results are known.

The training phase can be supervised or unsupervised (or
a combination of the two). Supervised learning occurs when
the training data are labelled with the expected result for
each item. E.g., the classification of an image as represent-
ing a person or not. Unsupervised learning occurs when such
information is not given; instead, the classification categories
or other results are constructed by theML algorithm from the
dataset. Our CGBE approach also adopts the division into
training and validation phases, and uses supervised learning:
each source language example is providedwith a correspond-
ing target language example which is the expected result of
the trained translation mapping.

Amajor division betweenML approaches is between non-
symbolic approaches such as neural nets, where the learned
knowledge is only implicitly represented, and symbolic
approaches, where the knowledge is explicitly represented in
a symbolic form.There has been considerable recent research
into the use of non-symbolic ML techniques for the learning
of model transformations and other translations of software
languages, for example [1,3,4,12,16,27]. These approaches
are usually adapted from non-symbolic ML approaches used
in the machine translation of natural languages, such as
LSTM neural networks [14] enhanced with various atten-
tion mechanisms. These approaches are not suitable for our
goal, since the learned translators are not represented explic-
itly, but only implicitly in the internal parameters of the neural
net. Thus, it is difficult to formally verify the translators, or to
manually adapt them. In addition, neural-net ML approaches
typically require large training datasets (e.g., over 100MB)
and long training times. This impairs agility and also has
resource and environmental implications.

Symbolic ML approaches have been applied to model
transformation by-example (MTBE) by [2] (using ILP) and
by [21] (using search-based techniques). These typically use
considerably smaller (i.e., KB-scale) training datasets com-
pared to non-symbolic ML, and produce explicit rules. One
disadvantage of ILP is that counter-examples of a relation
to be learned need to be provided, in addition to positive
examples. The approach of [21] uses only positive exam-
ples. It is able to learn individual String-to-String functions
and Sequence-to-Sequence functions from small numbers
(usually under 10) of examples of the function. It is a very
general transformation synthesis tool, which can generate
M2M transformations in multiple target languages (QVTr,
QVTo, ETL, and ATL). In this paper, we adapt and extend
this MTBE approach to learn functions relating software
language parse trees, and hence to synthesise T2T code gen-
erators.
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The approach of [21] takes as input metamodels for the
source and target languages of a transformation, and an ini-
tial outline mapping of source metaclasses to target classes,
expressed in the abstract model transformation language
T L [19]. In our adaption of MTBE, we use the language
grammar categories of L1 and L2 as the source and tar-
get metamodels. The initial mapping is defined to indicate
which L1 categories map to L2 categories. For example, in
a transformation mapping UML/OCL to Java, there could
be OCL language categories OclLambdaExpression and
OclConditionalExpression (subcategories of
OclExpression), and a Java category JavaExpr , with the
outline language category mappings

OclLambdaExpression �−→ JavaExpr

OclConditionalExpression �−→ JavaExpr

In practice, we use language-independent categories
ProgramExpression, ProgramStatement , etc. for the
target language, so that the same outline mapping can be
used for different target languages.

TheMTBE process also takes as input a modelm contain-
ing example instances from the source and target languages,
and a mapping relation �→ defining which source and target
elements correspond. For example, using text representations
of elements

x1 : OclLambdaExpression
x1.text = "lambda x : String in x+x"

y1 : JavaExpr
y1.text = "x->(x+x)"

x1 |-> y1

To infer functional mappings from source data such as
OclLambdaExpression::text to type-compatible target
data such as JavaExpr ::text , at least two examples of each
SC �−→ TC language category correspondence must be
present in the model. String-to-String mappings of several
forms can be discovered by the MTBE approach of [21]:
where the target data are formed by prefixing, infixing, or
appending a constant string to the source data; by reversing
the source data; by replacing particular characters by a fixed
string, etc.6 Similarly, functions of other datatypes can be
proposed based on relatively few examples.

MTBE operates by postulating source–target functions
based on the examples, and then checking if the postulated
function is valid for the examples. The proposed functions
are selected from a repertoire of functions which have been
found to occur in practice in transformation specifications.

6 In this respect, it is similar to Microsoft’s FlashFill [11].

We use the same principle for CGBE, and postulate code
generation mappings based on the idioms of “Code Genera-
tion Idioms”. These mappings are then checked against the
training data.

Software Language Representations

Different forms of software representation could be used for
CGBE:

• Text, eg.: “sq[i] + k”
• Sequences of tokens, eg.: ‘sq’, ‘[’, ‘i’, ‘]’, ‘+’, ‘k’
• Abstract syntax/parse trees (ASTs):

(OclBinaryExpression
(OclBasicExpression sq [ (OclBasicExpression i) ])
+
(OclBasicExpression k))

• Instance model data of a language metamodel:

ba0 : OclBasicExpression
ba0.type = Integer
ba0.data = "i"
ba1 : OclBasicExpression
ba1.type = Integer
ba1.data = "sq"
ba1.arrayIndex = ba0
ba2 : OclBasicExpression
ba2.type = Integer
ba2.data = "k"
be1 : OclBinaryExpression
be1.type = Integer
be1.operator = "+"
be1.left = ba1
be1.right = ba2

These representations are progressively richer and more
detailed. Compared to text or token representations, parse
trees express more detailed information about the software
element, specifically its internal structure in terms of the
grammar of the language. As [4] discuss, this representation
therefore provides a more effective basis for ML of language
mappings, compared to token sequences or raw text. For
example, it is difficult to infer a String-to-String mapping
between OCL expressions and Java expressions represented
as raw text,7 as the lambda expression example of the pre-
ceding section demonstrates.

Figure 4 shows the metamodel which we use for parse
trees (i.e., AST terms). This metamodel is of wide appli-
cability, not only for representation and processing of
software language artefacts, but also for natural language
artefacts. AST SymbolT erm represents individual sym-
bols such as ‘[’ in the above example. AST BasicT erm

7 Because of arbitrary text formatting differences in examples.
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Fig. 4 Metamodel of parse trees

represents other terminal parse tree nodes. For example,
(OclBasicExpression i). ASTCompositeT erm
represents non-terminal nodes, such as the root OclBinary
Expression node of the example. The tag of a basic or com-
posite term is the identifier immediately following the initial
(, in the text representation of parse trees. The arity of a sym-
bol is 0, of a basic term is 1, and of a composite term is the
size of terms (the direct subnodes of the tree node). The tag
is used as the syntactic category name of the tree, when the
tree is processed by a CST L script—i.e., rules in the ruleset
with this name are checked for their applicability to the tree.
The depth of a term is 0 for symbol terms, 1 for basic terms,
and 1+max(terms→collect(depth)) for composite terms.

To utiliseMTBE for CGBE,we derive amodel filem from
the text examples in dataset D. Each of the source and target
examples ex of D are expressed as model elements mx in
m, with these elements having an ast : AST T erm attribute,
whose value is a parse tree (according to the appropriate
language grammar) of the software element ex . For example
the model element x1:

x1 : OclLambdaExpr
x1.ast = (OclUnaryExpression

lambda x :
(OclType String) in
(OclBinaryExpression

(OclBasicExpression x) +
(OclBasicExpression x)))

represents lambda x : String in x + x .

Syntax Tree Mappings

There are many different possible mappings between parse
trees; for example, a composite parse tree s could be mapped
to a tree t with t .terms being the reverse list of s.terms.
The total number of tree-to-tree mappings is extremely high.
Even restricting to sequence-to-sequence mappings gives

(Kn)K
n

possible mappings between the set of sequences of length
n over an alphabet of size K . However, only a subset of
the possible mappings are relevant to code generation, or
more generally, to software language translation. Thus, the
search for mappings which are consistent with a given set
of examples can be restricted to those mappings which are
plausible for code generation.

From examination of different cases of code generation
and language translation, we identified the following cate-
gories of relevant tree-to-tree mappings, based on the idioms
of “Code Generation Idioms”:

• Structural elaboration: the target trees contain subparts
derived from corresponding source trees, and additional
constant subparts/structures. For example, a transforma-
tion from expressions of the form op() to M .op().

• Structural simplification: Some subparts of the source
terms are omitted from the target terms.

• Structural rearrangement: the target subparts are derived
from subparts of corresponding source trees, but these
parts occur in different orders and positions in the target
than in the source. E.g., a transformation from postfix
unary expressions x→op() to prefix forms op x .

• Structural replacement via functional mappings of sym-
bols: a functional relation exists between source tree
symbols and symbols in corresponding target trees. E.g:
symbol changes for binary operators, so that x = y trans-
lates to x == y and x mod y to x % y.

• Iterative mappings: for variable-arity source terms, the
subterms aremapped in the same order to target subterms
of a variable-arity target term. For example: mapping
individual statements in the statement sequence of a block
statement.

• Conditional mapping/horizontal splitting: the mapping
has alternative cases based on someproperty of the source
trees, such as their arity or the specific symbol at a given
subterm position of the trees.

• Selection or filter mappings: for variable-arity source
terms, only those subterms satisfying a given property are
mapped to subterms of a variable-arity target term. E.g:
only instance attributes of a UML class E are mapped to
fields of a corresponding C struct E . Other class contents
are not included in the struct.

Wedonot address theaccumulation idiom.Vertical split-
ting and context-sensitive generation are handled by learning
separate mappings for each part/case of the transformation.

We describe tree-to-tree mappings by writing pairs of
schematic parse trees containing metavariables _∗ or _i for
i : 1..99 to represent subparts of trees which vary. Amapping

(stag st1 ... stn) |--> (ttag tt1 ... ttm)

SN Computer Science
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means that source terms with tag stag and n subterms of
the forms denoted by st1, ..., stn will map to target terms
of the form denoted by the RHS of the mapping. As with
CST L, a metavariable _v occurring on the RHS denotes the
translation of the source tree part bound to _v.

A typical example of structural elaboration arises when
mapping OCL basic expressions to Java expressions. An
OCL parse tree

(OclBasicExpression i)

representing an identifier i maps to

(expression (primary i))

as a Java expression parse tree. As amapping from the source
language category Ocl Identi f ier to JavaExpr , this is
denoted

(OclBasicExpression _1) �−→
(expression (primary _1)).

In other words, this translation of source trees to target trees
is assumed to be valid for all Ocl Identi f ier elements with
the same structure, regardless of the actual identifier in the
first subterm of the source element parse tree. In general, any
number of additional single nesting levels can be introduced
in the target terms relative to the source.

New subterms of the target trees can be introduced when
a simple OCL expression is represented by a more complex
Java expression. For example, an array access sq[i] in OCL
becomes sq[i−1] in Java, because Java arrays are 0-indexed.
As parse trees, this means that

(OclBasicExpression
(OclBasicExpression sq)

[ (OclBasicExpression i) ])

maps to:

(expression (expression (primary sq)) [
(expression (expression (primary i)) -
(expression (primary

(literal (integerLiteral 1)))) ) ])

Figure 5 shows the corresponding OCL and Java parse trees.
The outlined subtrees also correspond.

Functional mappings of symbols arise when operators are
represented by different symbols in the source and target
languages. For example, OCL unary prefix expressions

(OclUnaryExpression op expr)

map to

(expression f(op) expr’)

in Java, where expr maps to expr ′ and f (not) is !, f (−) is
−, f (+) is +.

Schematically, this can be represented as

(OclUnaryExpression _1 _2) �−→
(expression f (_1) _2),

where f is defined by a separate rule.
More complex cases involve re-ordering the subterms of a

tree; embedding the source tree as a subpart of the target tree,
etc. Tree-to-tree mappings can be constructed and specified
recursively.

Learning code generation rules as mappings between
parse trees has the advantage that the target text produced
by the rules is correct (by construction) with respect to the
target grammar. This is not the case for template-based M2T
code generators, where the fixed texts in templates can be
arbitrary strings, and may be invalid syntax in the target lan-
guage.

Strategies for Learning Tree-to-Tree Mappings

To recognise syntax tree mappings between two language L1

and L2, the CGBE procedure postulates and checks possible
forms of mapping for each category-to-category correspon-
dence SC �−→ TC between source category SC of L1 and
target category TC of L2.Given a set of corresponding exam-
ples of SC and TC , the ast values of all corresponding
instances x : SC and y : TC are compared, i.e., for all such
pairs with x �→ y, the values x .ast and y.ast are checked to
see if a consistent relationship holds between the value pairs.
At least two instances x1, x2 of SC with corresponding TC
elements must exist for this check to be made.

The search procedure for possible mappings uses the fol-
lowing six main search strategies over the pairs s = x .ast ,
t = y.ast of AST values of corresponding x �→ y from
SC �−→ TC :

Strategy 1: Matching constant-arity trees If all considered
target terms t = y.ast with tag tag2 have the same
arity n: (tag2 t1 ... tn) and their corresponding source
terms s = x .ast all have the same tag tag1 and arity k:
(tag1 s1 ... sk), then s �−→ t if for each i : 1..n, each ti
is either:

1. A constant K for each considered t
2. A symbol equal to or a function of the s j for a par-

ticular fixed j
3. A corresponding term of s j for a particular fixed j ,

i.e.: s j �→ ti
4. Mapped from some s j : s j �−→ ti for a particular fixed

j (recursive check using any of the strategies)
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Fig. 5 Corresponding parse
trees

5. Mapped from the entire source term: s �−→ ti (recur-
sive check using any of the strategies).

Strategy 2: *-arity trees, subterm correspondences If all
considered target terms t = y.ast with tag tag2 have the
same arity as their corresponding source terms s = x .ast :
t = (tag2 t1 ... tn) and s = (tag1 s1 ... sn), then there is
a schematic mapping (tag1 _∗) �−→ (tag2 _∗) if each
si �−→ ti for each s, t via a recursive check.

Strategy 3: *-arity trees, symbol changes As for strategy
2, except that s, t can have different arities, but the same
number of non-symbol subterms, whichmust correspond
via a mapping. Symbol subterms of s can be consistently
removed or replaced by symbol subterms in t , and new
symbols can be inserted. The schematic mapping in this
case is (tag1 _∗) �−→ (tag2 f (_∗)) for a function f that
performs the deletion/replacement/insertion.

Strategy 4: conditional mappings If the set st of source
terms under consideration all have the same tag and arity,
but different values for one subterm si which is always a
symbol, then st can be subdivided into disjoint sets subk
which have a specific value vk for si , and the search for a
mapping proceeds for each of these specialised sets and
their corresponding sets of target trees, in turn.
The mappings are expressed as conditional mappings
s �−→ t when _i = vk .
Other discrimination conditions could also be used to
identify conditional mappings, such as different source
term arities for the same tag.

Strategy 5: selectionmappingsAs for strategy 3, except that
s can have more non-symbol subterms than t . All non-
symbol subterms of t must have a matching non-symbol
source subterm of s.
This allows for selection or filtering of source subterms.
The schematic mapping in this case is (tag1 _∗) �−→
(tag2 f (_∗)) for a function f that performs the subterm
selection and symbol deletion/replacement/insertions.

Strategy 6: tree-to-sequence mappings In this case, the
source terms have the same tag and arity, and the target
terms have the same tag, but different arities. Subterms si
of source terms s correspond to subsequences of terms of
t . t terms may also have constant prefix, suffix, or insert
term subsequences, P , X and I . For source terms of arity
2, the general form of the mapping could be

(tag1 _1 _2) �−→ (tag2 P_1I_2X)

or

(tag1 _1 _2) �−→ (tag2 P_2I_1X).

Stategy 1 can be formally expressed in OCL:

1 operation strategy1(ssq : Sequence(ASTCompositeTerm) ,
2 tsq : Sequence(ASTCompositeTerm) ) : ASTTerm
3 pre : ssq−>size () = tsq−>size () &
4 ssq−>size () > 1 &
5 ssq−>forAll ( sx1 , sx2 | sx1 . tag = sx2 . tag &
6 sx1 . arity () = sx2 . arity () ) &
7 tsq−>forAll ( tx1 , tx2 | tx1 . tag = tx2 . tag &
8 tx1 . arity () = tx2 . arity () )
9 activity :

10 var m : int := ssq [1]. arity () ;
11 var n : int := tsq [1]. arity () ;
12 var mapping : Map( int , ASTTerm) := Map{} ;
13

14 for tind : 1. .n
15 do
16 var tvals : Sequence(ASTTerm) ;
17 tvals := tsq−>collect (terms[ tind ]) ;
18 i f tvals−>forAll ( tx | tx = K) where K constant
19 then
20 mapping[ tind ] := K
21 else
22 for sind : 1. .m
23 do
24 var svals : Sequence(ASTTerm) ;
25 svals := ssq−>collect (terms[sind ]) ;
26 i f tvals symbols, function F( svals ) of svals
27 then
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28 mapping[ tind ] := F(_sind)
29 else i f i : 1 . . tvals−>size () => svals [ i]|−>tvals [ i

]
30 then
31 mapping[ tind ] := _sind
32 else
33 var submap : ASTTerm ;
34 submap := correspondence(svals , tvals ) ;
35 i f submap /= null
36 then
37 mapping[ tind ] := f (_sind) where f is a new

function
38 else
39 submap := correspondence(ssq , tvals ) ;
40 i f submap /= null
41 then
42 mapping[ tind ] := submap
43 else skip ;
44 i f mapping−>size () = n
45 then
46 return ( tsq [1]. tag mapping[1] . . . mapping[n])
47 else
48 return null

In the fourth case (lines 33–37 above), the new function
f is defined as a schematic mapping from the gener-
alised form(s) of the svals terms to the submap schematic
term. correspondence(sterms, t terms) attempts to find a
mapping from the sterms to t terms by each strategy suc-
cessively, returning the non-null definition of the t terms as
a schematic term based on metavariables for each argument
place in the sterms data if successful, and returning null if
no mapping can be found. strategy1 is only successful if
each of the target term argument places can be derived either
as a constant or as a consistent mapping of some source data.

It is immediate to show that strategy 1 succeeds for a
tag renaming (stag x) �−→ (t tag x) for any ASTs x , and
likewise for an embedding x �−→ (t tag x).

As a more complex example of strategy 1, unary arrow
operator OCL expressions such as

(OclUnaryExpression expr ->front ( ))

are consistently mapped to the Java parse trees

(expression (expression (primary Ocl)) .
(methodCall front

( (expressionList expr’) ) ) )

where expr �−→ expr ′. The Java expression repre-
sents a call Ocl. f ront(e) of a Java library for the OCL
collection operations. Here, the first and second terms
(expression (primary Ocl)) and ‘.’ of the target
trees are constant, and the third term has four subterms. The
first subterm is the method name, e.g., ‘front’, and this is a
function of the second source term, the operation name such
as ‘→front’, of the source tree; the second subterm is the
constant ‘(’; the third subterm is mapped from the first term
of the source; and the fourth subterm ‘)’ is constant.

Generalising over all unary arrow operators, the schematic
form of this mapping is

(OclUnaryExpression _1 _2 ( ) ) �−→
(expression (expression (primary Ocl)) .

(methodCall F(_2) ( (expressionList _1) ) ) ).

This mapping involves embedding of the source tree as a
subtree of the target (strategy 1, case 5), together with re-
ordering of subterms (strategy 1, case 4: the nested mapping
is f : _1 �−→ (expressionList _1)), plus a functional
mapping F of the operator symbols (strategy 1, case 2) and
constant target symbols (strategy 1, case 1).

The other strategies can be formalised in a similar manner.
An example of the second strategy is the mapping of lists
of arguments within compound expressions. For example, in
Java, a parse tree (expressionList ...) representing
a comma-separated list of expressions can have any number
n ≥ 1 of direct subnodes ti .

In particular, OCL collection expressions of the form
(OclSetExpression Set { (OclElementList
...) }) will map to (expression (expression
(primary Ocl)) . (methodCall initialise
Set ( (expressionList ...) ) ) )provided that
the arities of the source and target list terms are equal for
all corresponding source and target elements. Schematically,
this mapping is represented as

(OclSet Expression Set

{ (OclElement List _∗) }) �−→
(expression (expression (primary Ocl)) .

(methodCall ini tialiseSet ( (expressionList _∗) ))).

Strategy 3 allows the consistent replacement or removal
of separator symbols and other symbols when mapping from
source lists to target lists. In this case, the mapping has the
form

(slistT ag _∗) �−→ (tlistT ag f (_∗))

for a suitable function f . For example, the replacement of ;
by \n\t inmapping a sequence of OCL statements to Python.

Strategy 4 enables the learning of mappings of different
forms, based on the syntax of source terms. For example,
binary expressions of forms a+b anda∗b have the sameAST
structure in OCL, but map to different target tree structures
in the C grammar [15].

Strategy 5 enables the selective mapping of source ele-
ments to target elements, e.g., attributes of a UML class are
mapped to struct fields in C, but operations of the class are
mapped to external functions.
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Strategy 6 enables tree-to-sequencemappings to be recog-
nised, where target terms are essentially sequences. Source
tree structure is ‘flattened’ into sequences. An important case
where this occurs is in the generation of assembly language
code (Sect. 4.2)

The time complexity of the combined CGBE search strat-
egy correspondence(sasts, tasts) can be estimated as a
function φ(N , P, Q, n,m) of the number N of examples,
which is the size of the sasts and tasts sequences, and the
maximum term width n (at any level) and depth P of the
tasts and maximum term width m and depth Q of the sasts

φ(N , P, Q, n,m) = �6
r=1φr (N , P, Q, n,m),

where φr (N , P, Q, n,m) is the time complexity of strategy
r . By examination of the above algorithm for strategy 1, it
can be seen that a check for correspondence(svals, tvals)
is potentially made for each subterm of each target term, and
for each subterm of each source term, resulting in a recursive
complexity for φ1(N , P, Q, n,m) of the order

N ∗ n ∗ m ∗ φ(N , P − 1, Q − 1, n,m)

when P > 0, Q > 0. Similar time costs apply for the other
strategies, so that overall the complexity φ has the order

(N ∗ n ∗ m)max(P,Q).

This means that the depth of nesting in the example terms is
the most significant time cost factor. Deep terms occur with
complex grammars which have many non-terminal syntactic
categories (the C and Python3 grammars are examples of this
situation). In general, the simplest possible examples should
be used, to reduce search costs.

Implementation of CGBE

The MTBE inference of tree-to-tree mappings described in
“Strategies for Learning Tree-to-Tree Mappings” is the core
step of CGBE. Prior to the CGBE process, a test dataset T of
examples is prepared, disjoint from the main training dataset
D and validation dataset V . The CGBE process between
arbitrary source and target languages L1 and L2 then involves
the iteration of three stages (Fig. 7):

1. Creating or modifying the training dataset D, pre-
processing this to generate parse trees of the L1 and L2

elements, and storing these in a model file m of examples
for input to the MTBE step. The user needs to specify the
grammar rules to be used to parse the source and target
language categories, using the interface of Fig. 6. This
step also generates source and target metamodels sm, tm

Fig. 6 Dataset pre-processing dialog

representing the language categories, and an initial map-
ping f of categories;

2. Recognition of tree-to-tree mappings between the parse
trees of corresponding examples, using MTBE applied to
sm, tm, m and f ;

3. Conversion of the tree-to-tree mappings to CST L rules.

In the case that L1 is UML/OCL, the AgileUML toolset
is used to parse the UML/OCL examples and generate
parse trees, and the Antlr8 toolset with a program gram-
mar file is used to parse the target program examples and
generate program parse trees. A metamodel mmCGBE .t xt
for the L1 and L2 categories sm, tm, and initial mapping
f orwardCGBE .tl for f have already been defined.
The resulting CST L script is tested against the dataset D

and the test dataset T , and the steps 1 to 3 repeated until all
examples in D are correctly processed, and the required level
of accuracy is obtained on T .

The third step involves generating the CST L textual form
of the schematic source to target parse tree mappings pro-
duced byMTBE. This is carried out by a left to right traversal
of the source and target schematic trees, discarding tags
and returning the text content of symbol and basic terms.
Spaces are inserted between successive source terms. Appli-
cations f (_v) of functions f to schematic metavariables are
expressed as _v‘f in CST L notation.

For example, the schematic tree-to-tree mapping

(OclUnaryExpression _1 _2 ( ) ) �−→
(expression (expression (primary Ocl)) .

(methodCall f (_2) ( (expressionList _1) ) ) )

becomes the CST L rule

8 https://www.antlr.org.
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Fig. 7 CGBE general process
steps

_1 _2 ( ) |-->Ocl._2‘f(_1)

Rules l �−→ r are inserted into a ruleset SC for the syntactic
category SC of l. They are inserted in � order, so that more
specific rules occur prior to more general rules in the same
category. New function symbols f introduced for functional
symbol-to-symbol mappings are also represented as rulesets
with the same name as f , and containing the individual func-
tional mappings v �−→ f (v) of f as their rules.

In the dataset,9 we provide batch files cgbeTrain.bat and
cgbeValidatewhich enable the executionofCGBEfrom the
command line. cgbeTrain is called as

cgbeTrain config.txt

where con f ig.t xt holds the information about the target
parser and parser rules to be used, corresponding to Fig. 6.
The script performs steps 1, 2, 3 from Fig. 7.

cgbeValidate is called as

cgbeValidate f.cstl asts.txt

where f .cstl is the code generator, and asts.t xt is a list
of source language ASTs, one per line. The script applies
f .cstl to each AST in asts.t xt and computes statistics of
the average size and translation time of the examples.

The derived CST L specification g does not necessarily
translate the D dataset correctly, because some syntactic cat-
egories of L1 may have insufficient numbers of examples in
D for the derivation of correct rules. However, we can argue
by induction on the depth of target terms that the derived
rules of g do produce valid L2 syntax according to the L2

grammar.
In the case of strategy 1, target terms t of depth 1 produced

by this strategy are of form (t tag tt1 ... t tn)where each of the
t ti are symbol terms, and hence, t must have been produced
by cases 1 or 2 of the strategy. In each case, the t ti are either
constant symbols K which occurred as target terms in the

9 https://www.zenodo.org/record/7230107.

example data, or are functions F(_ j) of source data, with
the range of F being restricted to valid target symbol values.
Similar reasoning applies to other strategies.

By induction, if the result holds for target terms of depth
P , then a target term t = (t tag tt1 ... t tn) of depth P + 1
produced by strategy 1 has that each t ti is of depth at most P ,
and hence is a syntactically valid target term, and t itself has
a correct arity and tag (since these are the same as the target
examples for the syntax category TC of t tag). Likewise, for
terms produced by other strategies. Thus, the result holds for
target terms of any depth.

Evaluation

We evaluate the approach by answering the research ques-
tions of “Research Questions”. For RQ1, we identify to what
extent CGBE can learn the code generation idioms of “Code
Generation Idioms”. For RQ2, we evaluate the effective-
ness of CGBE using it to construct code generators from
UML/OCL to Java, Kotlin, C, JavaScript, and assembly lan-
guage, based on text examples. We also construct a code
generator from a DSL for mobile apps to SwiftUI code. For
RQ3, we compare the effort required for construction and
maintenance of code generators using CGBE with manual
code generator construction/maintenance. We also compare
the application of CGBE on the FOR2LAM case of [4] with
their neural-net solution, and compare CGBE with the use
of MTBE on instance models of language metamodels. For
RQ4, we consider how CGBE can be generalised to apply
to the learning of software language abstractions and trans-
lations.

All the datasets and code used in this paper are available
at https://www.zenodo.org/record/7230107.

A tutorial video is available at youtu.be/NRY_sBlNfnY.
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Table 1 Support for code generation idioms

Idiom Expressible Learnable
in CST L Using CGBE

Elaboration
√ √

(strategy 1)

Rearrangement
√ √

(strategy 1)

Simplification
√ √

(strategy 1)

Replacement
√ √

(strategy 3)

Conditional generation
√

? (strategy 4)

Context-sensitive generation
√ √

(strategy 3)

Iterative generation
√ √

(strategy 2)

Accumulation
√ ×

Horizontal splitting
√ √

(strategy 5)

Vertical splitting
√ √

Express types by initialisation
√ √

(strategy 1)

Perform type inference ? ?

Replace inheritance
√ ×

by association

Pre-normalisation
√

?

Tree-to-sequence
√ √

(strategy 6)

RQ1: Coverage of Code Generation Idioms

To answer this research question, we consider to what extent
CST L can express the code generation idiomsof “CodeGen-
eration Idioms”, and to what extent these can be learnt by
CGBE.

Table 1 summarises the level of support for code genera-
tion idioms.

√
indicates full support, ? partial support, and

× no support.
The recognition of elaboration, rearrangement, and sim-

plificationmappings is addressed by strategy 1. Replacement
mappings are recognised by strategy 3. Only certain kinds of
conditional generation are currently supported: based on dis-
tinctions of the arity and symbols in source terms. In general,
there is no access to global/contextual information when pro-
cessing a parse tree; thus, the types of the variables x , y in
an expression x/y cannot generally be determined from its
parse tree.

Context-sensitive generation is handled by the construc-
tion of new local functions in strategy 3; these functions are
specific to the particular mapping context.

Horizontal splitting is supported by strategy 5. For vertical
splitting, in cases where multiple separate output texts need
to be produced from a single source, as with C header and
code files, a separate CGBE process should be applied to
learn each mapping as a specific CST L script.

Accumulation can be expressed in CST L, but none of the
mapping search strategies currently cover this mechanism.
In principle, a strategy could be added to recognise this form
of mapping.

Type inference can be partly performed in CST L using
the actions mechanism of CST L to record types of vari-
ables at the points where these can be deduced [17]. There
is currently no means to learn rules which involve the use
of actions; however, appropriate actions could be added as
part of the translation of learnt rules to CST L, for source
elements which are declarations. For example:

var _1 : _2 |-->Rhs[_1,_2]<action> _1 _2

in the case of a learnt rule for local variable declarations.
Normalisation rules can be expressed in CST L, but only

certain forms can be learnt. The normalisation mapping
would need to be learnt as a separate script, distinct from
the main translation script. Tree-to-sequence mappings can
be recognised by strategy 6.

Someexpressible formsofCST L rules involvingmetafea-
tures such as f ront , tail, reverse applied to term sequences
are not currently handled by CGBE; however, it would be
possible to add strategies to recognise such mappings.

RQ2: UML/OCL to 3GL Code Generation

In this section, we evaluate the effectiveness of CGBE by
applying it to learn code generators for several target lan-
guages: Java 8, ANSI C, JavaScript, Kotlin, and assembly
language. The UML/OCL language used is a subset of UML
class diagrams and use cases, together with OCL 2.4 and
some procedural extensions to express executable behaviour.
A grammar of the source language is available on the Antlr
grammars github.10

For these code generator cases, the example dataset D
is separated into four files: (i) type examples, (ii) expres-
sion examples, (iii) statement examples, and (iv) declaration
examples, including operation and attribute declarations and
declarations of complete classes. Table 2 shows the size of
the training dataset in terms of number of examples, and the
number of generated rules and the accuracy of the synthe-
sised code generator, in terms of the proportion of validation
cases (57 new examples) which were correctly translated by
the generator.

It is noticeable that the training time for C is significantly
higher than for the Java or Kotlin code generators, due to
the high complexity of the C grammar and the large struc-
tural difference betweenUML/OCLandC; however, the time
remains practicable.

Both Java and C have explicit typing for variables. To test
the hypothesis that CGBE can be used to learn the “Express
types by initialisation” code generation idiom (“Code Gen-
eration Idioms”), we use CGBE to learn the mapping from
UML/OCL to JavaScript, which has implicit typing. The

10 https://github.com/antlr/grammars-v4/tree/master/ocl.
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Table 2 Evaluation of CGBE on UML/OCL to program code genera-
tion cases

Target Training size Training Generator Accuracy
language (#examples) time (s) size (LOC)

Java 167 87.3 211 0.95

Kotlin 227 357 168 0.98

JavaScript 168 3.8 120 0.91

C 224 954 165 0.98

Assm 282 10 102 0.82

accuracy of this translation is lower than for Java and C,
but is still at a high level.

We also investigated if CGBE can be used to learn a map-
ping from UML/OCL to assembly language. We adopt an
extension of the generic assembly language used in [10]. This
has the usual assembly language facilities of reserving mem-
ory space, moving data between registers, an accumulator
and main memory, and instructions for branching, subrou-
tine calls, and arithmetic computations. We wrote a parser in
Antlr for this language, which we call Assm. In contrast to
the preceding cases of generating 3GL code in Java, Kotlin,
C, and JavaScript, the structure of source and target code in
this case is radically different. The target code is a sequence
of instructions and labels, and hence, many of the mappings
to be learnt are based on sequence composition functions
such as prefixing and suffixing of sequences. For example,
computation of a logical negation can be performed by a
sequence of instructions evaluating the argument, followed
by instructions to negate the result (interchange the values 0
and 1). Thus, not(p) for variable p is

LOAD p
SUB 1
ABS

The general CST L rule to be learnt for not is

OclUnaryExpression::
not _1 |-->_1 \n SUB 1 \n ABS

The accuracy of the generator produced for Assm is signif-
icantly lower than for the cases of 3GL targets, due to the
wide syntactic and semantic distance between UML/OCL
and assembly code. In particular, a pre-normalisation step
on expressions is needed, and this cannot be learnt. Inter-
pretations of general collection expressions, loops over
collections, and general operation definitions and calls can-
not be given.Nonetheless, somemeaningful rules, such as the
above case of not , can be successfully learnt from examples.

Table 3 Code generator efficiency: translation time per AST

Code Average AST size
generator 5 10 20 40 80

UML2C 4 10.4 29 37 84

UML2Java 3.35 7.9 25.5 40 76

UML2Kotlin 3.55 7.5 23 41 91

UML2JS 3.6 10.3 29 47.3 139

UML2Assm 2.7 7.5 31.3 50.5 112

RQ2: Efficiency of Synthesised Code Generators

We evaluated the synthesised Java, C, Kotlin, JavaScript,
and Assm code generators by executing them on datasets
of UML/OCL ASTs with different average sizes (number of
tokens in an AST). The average time of three executions is
taken. Table 3 shows the results; all times are in ms. These
results are comparable to the performance of manually con-
structed CST L code generators, and show an approximately
linear growth in execution time with respect to input data
size.

The results are shown graphically in Fig. 8.

RQ2: Code Generation fromDSLs

To demonstrate the application of CGBE for learning DSL to
code mappings, we implemented a translation from a simple
DSL for definingmobile UI screens, to the SwiftUI platform.
The source language has constructs for buttons, text fields,
selection lists, etc., together with styling elements similar to
cascading style sheets (CSS). An example UI screen descrip-
tion in this language is

view
textView tv1 { label "Weight" }
textView tv2 { label "Height" }
textView tv3 { label "Person" }

One of the leading mobile implementation platforms is iOS,
which supports the SwiftUI language for defining mobile
screens. The equivalent SwiftUI code for the above DSL
specification is

VStack(alignment: .leading, spacing: 20) {
Text("Weight")
Text("Height")
Text("Person")

}

To learn the translation, we created 46 paired examples
of DSL and SwiftUI, parsed these into ASTs using the
respective Antlr parsers (MobileDSL.g4 and Swift5.g4), and
applied the AgileUML toolset option ‘LTBE from ASTs’.
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Fig. 8 Code generator
performance

The training time was 5.3 s, and the generated CSTL con-
tained 81 LOC and scored 100% accuracy on an independent
validation set.

RQ3: Benefits of CGBE

To answer this question, we compare the development effort
required to apply CGBE for the example code generators
of Sect. 4.2 to the effort required for manual development
of similar code generators. We also consider the skills and
technical resources required for different code generator con-
struction approaches.

Construction of a code generator typically involves three
kinds of activity:

1. Identification of an appropriate representation of the
source language in the target language, and performing
tests to validate this choice;

2. Defining a support library of additional types and oper-
ations in the target language (e.g., to implement OCL
collection operators);

3. Defining a code generator to implement the chosen repre-
sentation/translation approach, and testing this generator.

Only the final step involves coding the generator in a specific
transformation language (or in a 3GL), and we only consider
this aspect of code generation construction in the following.

Table 4 compares the person-hours expended in code gen-
erator implementation/testing for the CGBE approach for
codegenerationwith that required formanually codedCST L
generators.All generatorswere constructed by thefirst author
(expert in MDE) except for UML2Kotlin by the second
author (a Ph.D. student with 1 year’s experience of MDE).
The implementation and testing effort is significantly reduced
by the use of CGBE, because the extent of CST L coding is

Table 4 Effort of manual/CGBE code generators

Code Approach Effort
generator (person-hours)

UML2Java CST L (CGBE) 18

UML2Kotlin CST L (CGBE) 19

UML2C CST L (CGBE) 22

UML2JavaScript CST L (CGBE) 16

UML2Assm CST L (CGBE) 20

UML2Java8 CST L (manual) 44

UML2Swift CST L (manual) 56

UML2Go CST L (manual) 58

much lower, or is even eliminated if an entirely correct script
can be learnt from examples. The average time for develop-
ment of a generator using CGBE is 19 person-hours, about a
third of the average cost of manual coding of generators (53
h). In this respect, it is a ‘lowcode’ programming-by-example
(PBE) approach requiring no explicit programming.

Instead of explicitly coding the generator in CST L, a user
of CGBE iteratively defines a dataset of examples and applies
the CGBE procedure until it produces a generator which is
correct wrt the example dataset, and which has the required
level of accuracy and completeness on the test and valida-
tion datasets. The approach does not ensure 100% accuracy;
however, it reduces the developer’s workload by synthesising
the large majority of the code generator script from exam-
ples. Testing and validation are supported by a toolset option
which automatically applies a given script to a set of AST
examples. This is also available as the cgbeValidate batch
file.

Table 5 compares CGBE with other code generation
approaches with regard to the generator structure and devel-
opment knowledge needed.
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Table 5 Code generator
structure and development

Approach Generator Skills and knowledge Needs
structure needed compilation

M2M Based on L1 metamodel M2M language
√

L1 metamodel

L2 metamodel

L2 syntax

M2T Based on L2 syntax M2T language
√

L1 metamodel

L2 syntax

T2T (manual) Based on L1 grammar T2T language ×
L1 grammar

L2 syntax

T2T (CGBE) Based on L1 grammar L1 syntax ×
L2 syntax

Table 6 Relative time cost of
maintenance changes

Maintenance Manually coded Manually coded CGBE T2T
action M2T (uml2py) T2T (UML2Java8) (UML2Java)

Introduce <>= 30 min 10 min 10 min

operator for OCL

Introduce 7 h 1 h 30 min

try-catch-finally

Statements in OCL

It can be seen that CGBE has the lowest requirements on
developer expertise. In terms of technological requirements,
an Antlr parser for the target language is required, in addition
to AgileUML. Both Antlr and AgileUML are lightweight
tools, with no further technology dependencies except for
Java. This is in contrast to tools such as EGL and Acceleo,
which require significant technology stacks.

The effort required to maintain code generators can be
substantial. Table 6 shows two maintenance examples and
the relative costs in terms of developer time of performing
these onmanually codedM2T and T2T generators, and using
CGBE.

RQ3: Comparison with [4]

The paper [4] defines a neural-net ML approach for learn-
ing program translators from examples. One case they use
to evaluate their approach is a mapping from an imperative
language, FOR, to a functional language, LAM. This could
be considered as an example of program abstraction.

We applied our CGBE approach to this case, learning a
CST L script f or2lam.cstl of 28 lines from 31 examples.
The rules are non-trivial; for example, there is the following
rule to abstract a f or loop to a recursive function:

For::
for _2 = _4 ; _6 ; _8 do _10 endfor |-->

Table 7 CGBE of FOR2LAM compared to [4]

Training Model Training Accuracy
dataset size time

CGBE 31 1KB 1.9s 100% S

100% L

NN 100,000 9.8MB 8+ h 99.99% S

99.6% L

letrec func _2 = if _6 then let _ = _10
in func _8 else ( ) in func _4

This rule was learnt from four examples.
We then tested the script with 1000 test cases, divided into

500 small cases S (average 20 tokens) and 500 large cases L
(average 50 tokens) as in [4]. Table 7 summarises the results
and compares these to the results of [4] for this case, where
the time figures relate to execution on the same hardware, a
standard Windows 10 laptop without GPU.

Unlike the neural-net approach of [4], there is no deterio-
ration of accuracy in our approachwith larger inputs, because
a precise and correct algorithm has been learnt. The execu-
tion time for translation grows linearly with input size (24
ms per example for S examples, 50 ms per example for L
examples), whereas the NN model has less consistent time
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Fig. 9 Code generator synthesis
via MTBE between metamodels

performance (360 ms per example for S examples, over 2 s
per example for L examples).

RQ3: Comparison with MTBE Between Language
Metamodels

Instead of learning tree-to-tree mappings using MTBE, an
alternative would be to use the MTBE approach of [21]
to learn a M2M transformation between metamodels of the
source and target languages, using example source and tar-
get instance models of the metamodels, instead of example
ASTs. The synthesised abstract syntax rules in T L would
then be translated down to the concrete syntax level (Fig. 9),
or used as a M2M transformation.

We implemented these steps as follows:

1. Abstract syntax models are generated from parse trees of
corresponding source and target text examples. The prin-
cipal difference between such models and tree values is
that they have a richer graph-like structure, with elements
possessing attribute values and with cross-referencing
between elements.

2. MTBE at the abstract syntax level can then be applied to
the abstract syntax models as described in [21].

3. The abstract syntax rules in T L can then be converted
to CST L rules. Alternatively, the T L could be converted
to an M2M transformation language such as QVTo, to
produce an M2M code generator.

We applied this idea to learning parts of the UML to Java
transformation, using the Java metamodel of [9] as the target
metamodel.

In Table 8, we give the results of using metamodel-based
MTBE for this case.

Table 8 MTBE transformation synthesis for UML2Java

Language part MTBE accuracy, time, model size

Types 1.0,17s, 22 objects

Expressions (part) 1.0, 432ms, 24 objects

Expressions (full) 0.91, 21.5s, 66 objects

Statements 1.0, 5.3s, 74 objects

It can be seen that the time for training and the number of
examples needed are comparable to the AST-based approach
for the UML to Java translation (Table 2). Unlike CGBE
based on tree-to-tree mappings, the approach using general
metamodels can produce M2M transformation rules which
utilise full semantic information about the source examples,
e.g., detailed type information. Hence, the accuracy can be
higher. However, the approach requires (i) that appropriate
language metamodels are available; (ii) the definition of a
mapping from example texts or graphical models to instance
models of these metamodels; (iii) the definition of a general
mapping from T L to CST L (or the use of an M2M trans-
formation as a code generator).

For (i), there are metamodels available for several lead-
ing 3GLs; 11 however, often, these have been developed for
specificMDE projects, and lack the comprehensive coverage
andwide usage of publishedAntlr grammars andparsers. The
translation (ii) requires considerable coding effort, which is
specific to a given grammar and metamodel. In a sense, the
AST metamodel of Fig. 4 acts as a ‘universal’ metamodel
for software languages, thus avoiding the need to define cus-
tomised mappings from specific language source code to a
specific language metamodel. The translation (iii) from T L

11 http://www.eclipse.org/MoDisco.
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to CST L can only be carried out for restricted forms of T L
rules. Use of a M2M transformation has disadvantages in
terms of usability, as discussed in Sect. 1, and requires an
additional M2T transformation to produce target program
text.

Thus, overall we consider that CGBE using tree-to-tree
learning is more generally applicable and more usable for
practitioners than an approach using metamodels.

RQ4: Generalisation to Abstraction and Translation
Transformations

Abstraction transformations map a software language at a
lower level of abstraction to one at a higher level of abstrac-
tion, e.g., C to UML/OCL [18]. Translation transformations
map languages at the same abstraction level, e.g., Java to
Python [16].

The idioms of “Code Generation Idioms” also apply to
such transformations; however, there are also specialised
idioms for abstraction:

Merging of content: Contents from different parts of the
source artefact are combined in a single element in the
target. For example, operation declarations and imple-
mentations in C are merged into a single operation
definition in UML.

Merging of categories: An abstract language may merge
categories such as expressions and statements into a
single expression category. E.g., the FOR2LAM trans-
formation involves this kind of merging.

Sequence-to-treemapping:The inverse of tree-to-sequence
mapping, this form of correspondence maps a linear sub-
sequence of subterms of a source term to a single term in
the target

(stag T S1 T S2) �−→ (t tag t1 t2),

where T S1 and T S2 are sequences of subterms of the
source term.

TheCGBEstrategies described in “Strategies forLearning
Tree-to-TreeMappings” are oriented towards the situation of
refinement of a source language to a target language, such as
the code generation case. In this situation, the source syn-
tax trees are typically less elaborately structured than the
target trees. However, the strategies can also be used for
translation and abstraction cases, as the FOR2LAM case
of Sect. 4.6 demonstrates. We have to take into considera-
tion that increasing the number of CGBE strategies will also
impact the performance of CGBE; thus, we do not currently
support additional strategies for the above abstraction idioms.

Table 9 Evaluation of CGBE on abstraction/translation cases

Translation/ Training size Training CST L Accuracy
abstraction (#examples) time (s) size (LOC)

FOR2LAM 31 1.9 28 1.0

JS2OCL 28 3 25 1.0

JS2Python3 28 0.5 29 1.0

Abstractions from a 3GL to UML/OCL can be partly
derived as the inverses of code generation transformations.
If a learnt code generator g has rules

LHS |-->RHS

in the category mapping SC �−→ TC , then its inverse g∼
has rules

RHS |-->LHS

in category mapping TC �−→ SC . The mapping g should
be injective, and only restricted forms of rule condition are
possible, such as tests on metavariable type.

An example is themapping of equality relations fromOCL
to Java

_1 = _2 |-->_1.equals(_2)<when> _1 String
_1 = _2 |-->_1.equals(_2)<when> _1 Sequence
_1 = _2 |-->_1.equals(_2)<when> _1 Set
_1 = _2 |-->_1 == _2<when> _1 Object
_1 = _2 |-->_1 == _2<when> _1 Real
_1 = _2 |-->_1 == _2<when> _1 Integer
_1 = _2 |-->_1 == _2<when> _1 Boolean

Clearly, arrays are not in the range of this mapping, and the
case of== between strings and between collections does not
occur on the Java side. Thus, these cases need to be added
for the inverse abstraction mapping.

An example abstraction from JavaScript expressions to
OCL is provided in the dataset. This has a training set of 28
paired expression examples, and CGBE produced a correct
script of 25 LOC in 3s.

Language translation may involve a combination of
abstraction and refinement. An example translation from
JavaScript expressions to Python3 expressions is given in the
dataset. This mapping was learnt by CGBE from 28 paired
expression examples, producing a correct CST L translation
mapping of size 29 LOC in 0.5s.

We provide AgileUML tool options “LTBE from texts”
and “LTBE fromASTs” to support the use of our CGBE tech-
niques for abstraction and translation. Table 9 summarises the
results for abstraction and translation cases.

Limitations of the Approach

The basic requirement on the training dataset D for CGBE is
that it provides at least two examples for each source syntactic
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category. To learn a context-sensitive mapping f of symbols,
one example of use of each different source symbol in the
context must be provided. E.g., to learn the mapping of unary
prefix operators

func::
- |-->-
+ |-->+
not |-->!

an example of each case must be included in D:

-x -x
+1 +1
not p !p

In addition to these numeric constraints on D, the source and
target examples must be syntactically correct for their lan-
guages and category. There should also be sufficient diversity
in the examples, so that rules of sufficient generality to pro-
cess new examples are induced. Specifically, not all examples
of the same category should have the same element in any
one argument place. Thus

-x -x
+x +x
not x !x

would be an insufficiently diverse example set for prefix
unary expressions: the rule

_1 x |-->_1‘func x

would be produced, instead of

_1 _2 |-->_1‘func _2

In addition, in a set of examples of the samecategory, no (non-
constant) argument place should be a function of another
argument place. Thus, in learning the mapping of a binary
expression, examples such as

x mod y x % y
x mod z x % z
w mod z w % z

should be used.
One current limitation is that trainingmodel data should be

organised, so that examples of composite elements only use
subelements which have been previously introduced. Thus,
an example

if b then 0 else 1 endif

of a conditional expression should use expressions (here,
basic expressions b, 0, 1) which have been included as exam-
ples in their own category.

Currently, the approach is oriented to the production of
code generators from UML/OCL to 3GLs. It is particularly
designed to work with target languages supported by Antlr

Version 4 parsers. Antlr parsers are available for over 200
different software languages, so this is not a strong. restric-
tion12 To apply CGBE for target language T , the user needs
to identify the T grammar rules that correspond to the general
language categories of expressions, statements, etc. (Fig. 6).
The metamodel mmCGBE .t xt of syntactic categories, and
the outline mapping f orwardCGBE .tl of syntactic cate-
gories may also need to be modified. Errors may be present
in the Antlr parsers (we discovered that each of the Java, C,
VisualBasic6, and JavaScript parsers contain at least one sig-
nificant grammar rule error), whichmay result in the learning
of erroneous translation rules.

As noted above in Sect. 4.8, some strategies for abstrac-
tion and translation are explicitly not supported by CGBE at
present, for efficiency reasons. This means that some map-
pings cannot be learnt by CGBE; in particular, sequence-to-
tree mappings and accumulation mappings are not learnable.

RelatedWork

Our work is related to model transformation by-example
(MTBE) approaches such as [2,3], to programming-by-
example (PBE) [6,11], and to program translation work
utilising machine learning [4,12,16]. The approach of [2]
uses inductive logic programming (ILP) to learnmodel trans-
formation rules. ILP appears to be appropriate for the task
of learning tree-to-tree mappings, since trees are naturally
representable as Prolog terms. Similar to CGBE, ILP pos-
tulates and checks possible facts and rules to explain the
example data. However, it is a general-purpose learning sys-
tem, whereas CGBE is restricted to learning code generation
mappings. Thus, CGBE can utilise a more focussed search
process. In contrast to our approach, ILP requires the user to
manually provide counter-examples for invalid mappings. In
experiments with ILP, we found that it was unable to discover
complex tree mappings which our approach could recognise.
PBE also typically requires negative examples. As is pointed
out by [11], successful cases of PBE usually require a strong
restriction on the search space for candidate solutions. In
our case, the search space is restricted to those tree-to-tree
functions which we have found to be widely used in code
generation.

Neural network-based ML approaches using training on
bilingual datasets have achieved successful results forMTBE
[3] and software language translation [4] tasks. These adapt
established machine translation approaches for natural lan-
guages to software languages. In contrast to our approach,
these techniques do not produce explicit transformation

12 https://github.com/antlr/grammars-v4.
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or translation rules, and they also require large training
datasets of corresponding examples. Neural-net approaches
encounter difficulties with novel inputs (not seen in the train-
ing sets) due to the dictionary problem [3], and tend to
become less accurate as inputs become larger in size [4]. In
contrast, because the rules we learn are symbolic, they can
be independent of the specific input data (such as variable
names) and apply regardless of the size of these data. They
can in principle be 100% accurate.

The Transcoder language translation approach developed
by Facebook [16,30] uses monolingual training datasets. The
approach is based on recognising common aspects of differ-
ent languages, e.g., common loop and conditional program
keywords and structures. As with the bilingual neural-net
approaches, large datasets are necessary, and only implicit
representations of learnt language mappings are produced.
This approach may not be applicable in cases where the
source and target languages have a large syntactic distance,
such as a 3GL and assembly language.

Another related AI-based approach is intelligent code
completion, as supported by tools such as Github Copilot,13

AlphaCode14 and Polycoder.15 These use large datasets of
programming solutions to identify completions of partially
coded functions. The quality of the resulting code depends
critically on the quality of code in the base dataset, and this
canbeof highly variable quality (e.g., code taken fromGithub
repositories).

In our view, neural-net machine learning approaches are
suitable for situations where precise rules do not exist or
cannot be identified (for example, translation between natural
languages). However, for discovering precise translations,
such as code generation mappings, a symbolic ML approach
seems more appropriate.

Our approach utilises the MTBE approach of [21], by
representing collections of language categories as simple
metamodels, and by mapping paired text examples of source
and target languages to instancemodels of thesemetamodels.
We have extended and generalised the MTBE approach with
the capability to recognise tree-to-tree and tree-to-sequence
mappings, and the facility to translate the resulting mappings
to CST L. An earlier version of the present paper is appeared
in [25]. The present paper substantially extends and develops
the CGBE approach introduced in [25], applies it to addi-
tional code generation cases, and provides a detailed rationale
for the approach in terms of the processing requirements and
idioms of code generation.

13 https://copilot.github.com/.
14 https://alphacode.deepmind.com/.
15 https://nixsolutions-ai.com/polycoderopensourceai/.

Threats to Validity

Threats to validity include bias in the construction of the
evaluation, inability to generalise the results, inappropriate
constructs, and inappropriate measures.

Threats to Internal Validity

Instrumental Bias

This concerns the consistency of measures over the course
of the experiments. To ensure consistency, all analysis and
measurement was carried out in the same manner by a sin-
gle individual (the first author) on all cases. The comparison
with the results of [4] used the same approach and a similar
set of test cases to the evaluation in [4]. Analysis and mea-
surement for the results of Table 2 were repeated to ensure
the consistency of the results.

Selection Bias

We chose UML to Java, Kotlin, and C translations as typical
of the code generation tasks faced bypractitioners. Java andC
are common targets forMDE code generation, e.g., [7–9,23].
DSLs have been widely used for mobile app specification
[5,13,31], and the synthesis of SwiftUI is a typical task in
this domain.

Threats to External Validity

Generalisation to Different Samples

Code generation of Java, Kotlin, and C involves many of the
problems encountered in code generation of other object-
oriented and procedural languages. However, these lan-
guages use explicit typing. As a representative of languages
with implicit typing we also considered code generation of
JavaScript.

Threats to Construct Validity

Inexact Characterisation of Constructs

Our concepts of AST mappings and code generation are
aligned to widely used concepts in language engineering.We
have given a precise characterisation of ASTs via a meta-
model (Fig. 4), defined CST L via a metamodel (Fig. 3),
and given a precise characterisation of CGBE (Sect. 3). The
principal CGBE algorithm has been precisely specified, and
analysed to justify its correctness (“Strategies for Learning
Tree-to-Tree Mappings”).
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Threats to Content Validity

Relevance

We have shown that the CGBE approach can learn the major-
ity of idioms commonly used in code generators (Sect. 4.1).
We have also shown that it is effective for learning common
code generation tasks, and can be applied for some transla-
tion and abstraction tasks (Sect. 4.8).

Representativeness

The 3GL code generation tasks we have examined (genera-
tion of Java, Kotlin, C, and JavaScript) are representative of
typical code generation tasks for 3GL targets in MDE. We
also considered the case of assembly code generation. The
mobile DSL to SwiftUI task of Sect. 4.4 is also representative
of typical code generation tasks from DSL specifications.

Threats to ConclusionValidity

We used the proportion p of correct translations of an inde-
pendent validation set to assess the accuracy of synthesised
code generators. This measure is widely used in machine
learning. The measure 1 − p also expresses the proportion
of additional effort needed to correct the code generators.

Conclusions and FutureWork

We have described a process for synthesising code gener-
ator transformations from datasets of text examples. The
approach uses symbolicmachine learning to produce explicit
specifications of the code generators.

We have shown that this approach can produce correct
and effective code generators, with a significant reduction
in effort compared to manual construction of code genera-
tors. We also showed that it can offer reduced training times
and improved accuracy compared with a neural net-based
approach to learning program translations.

Future work could include extending CGBE with a wider
repertoire of search strategies, and by the combination of
other forms of mapping with tree-to-tree mappings, e.g., to
enable string-to-string mappings embedded in a tree-to-tree
mapping to be discovered.

Optimisation of code generators so that they produce code
satisfying various quality criteria is another important area
of future work. Quality criteria could be low code size, com-
plexity, or redundancy. CGBE strategies would need to be
designed to favour the production of code generation rules
which result in generated code satisfying the criteria.

An important area of application is program translation,
where there is active research both in industry and academia

to address legacy code problems via automated code migra-
tion. We will apply CGBE to the discovery of abstraction
mappings from 3GLs to UML/OCL, as part of a program
translation process.
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