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Abstract
The digitization of various industries is emerging from and being supported by the Information Technology (IT) industry. 
However, bringing about the practical implementation of the fourth industrial revolution will require different fields of IT 
to undergo their own transformations. One of the research fields that draws a lot of attention nowadays is machine learning 
and its application in different areas. Therefore, in this paper, we present an analysis on the applicability of various machine 
learning techniques to address different problems in the field of capacity management for Commercial-off-the-shelf enter-
prise applications. Our investigation of the selected machine learning techniques is based on real monitoring data from over 
18,000 SAP applications and database instances that are hosted on more than 16,000 different physical servers. These data 
are used to train various performance models, such as support vector machines with different kernels, random forests, and 
AdaBoost, for standard business functions. Boosted trees achieve sufficient accuracy to predict mean response times for ten 
frequently used transactions. To evaluate the suggested models, we applied them successfully to address different concerns 
in the context of capacity management. The evaluation includes multiple scenarios in the fields of server sizing, load testing, 
and server consolidation, with the objective to identify cost-effective designs. Based on the same monitoring data, we also 
present an anomaly detection scenario. In this scenario, we aim to demonstrate the use of machine learning techniques on 
historical data to detect possible performance anomalies for a suggested design or even predict possible anomalies in future 
scenarios. Results strongly emphasize the need to integrate monitoring data from standardized business applications to allow 
for novel and cost-effective capacity management service offerings.

Keywords  Commercial-off-the-shelf enterprise applications · Response time prediction · Capacity management as a 
service · Performance anomaly detection

Introduction

The fulfillment of requirements for information process-
ing is becoming increasingly complex. The digital trans-
formation affects many industries with the ongoing trends 
of automation and computerization [23, 25, 42]. According 
to [21], 47% of the US employment may be computerized 
by 2033. Particularly, routine tasks involving explicit rule-
based activities are at highest risk to be automated as such 
rules may be learned by algorithms much quicker than by 
humans (in some cases, seconds instead of years). Even [21] 
used machine learning (ML) techniques to classify jobs into 
computerization risk groups. Here, the IT industry takes on 
a pivotal role as it is, on the one hand, vigorously driving 
the outlined trend with rapid innovations, e.g., in the fields 
of big data, artificial intelligence, and the internet of things 
[37, 38, 58]. On the other hand, IT processes themselves 
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are severely affected by automation and data-driven deci-
sions [28], which necessitate the transformation of IT. One 
of the crucial IT processes to support cost-effective opera-
tions is the capacity management process [31]. This paper, 
therefore, investigates the utility of machine learning tech-
niques to support typical capacity management scenarios 
in the domain of enterprise applications (EA). Analyses 
of machine learning techniques and corresponding related 
work, described in “Related work”, “Performance predic-
tion model” and “Performance prediction model”, are based 
on our previous work presented in [52] and originally pub-
lished in [48]. We studied the utility of machine learning 
techniques to deal with capacity management related tasks 
such as the sizing of new servers (also referred to as capac-
ity planning) and the consolidation of existing servers (e.g., 
in the fields of orchestration and allocation). In “Anomaly 
detection model”, we extend our analyses further to address 
anomaly detection problems in the field of capacity manage-
ment. After server sizing, load testing, and server consolida-
tion, the capacity planner must take into account the detec-
tion of potentially anomalous behavior of business-critical 
transactions to avoid degradation in the overall performance 
of a system.

An essential requirement for many learning algorithms 
is the existence of (labeled) training data to learn rules 
and patterns from historical observations. By means of the 
data, objective values are to be explained, enabling clas-
sification or regression. In capacity management, the main 
objective is to ensure acceptable levels of performance at 
the lowest costs taking into account possible anomalies in 
the required computational power. Strategies to achieve the 
objective currently rely on the implementation and testing 
of planned systems or their prototypes [24, 43]. Hence, per-
formance is evaluated rather reactively when a system is 
about to go live [2]; engineers claim to require something 
running to measure to evaluate performance aspects of an 
application [66]. Furthermore, discovering and amending 
performance bottlenecks through measuring a running sys-
tem is inefficient and expensive due to the high correction 
costs in the late stages of the development lifecycle [44, 
65]. Therefore, model-based approaches were developed 
to rely on simulation engines or analytical solvers. How-
ever, such concepts are largely unused in practice due to 
their complexity, and personnel costs of modeling [4, 46]. 
Furthermore, the credibility of results remains questionable 
until validation in later stages. To combine the advantages 
of model-based approaches (early applicability) with the 
ease of measurement-based approaches, machine learning is 
proposed as an alternative technique to predict performance 
aspects of planned or managed systems in their design stage. 
Those predictions can also account for anomaly behaviors of 
the designated planned or managed systems in their design 
stage. Here, the main challenges lie in the data acquisition 

and data preparation phase to generate a sufficient amount 
of training data for subsequent learning of models.

In the domain of EAs, commercial-of-the-shelf (COTS) 
software is widely used [56, 64]. Consequently, a system 
similar to the one which is being planned most likely is 
already in production. Furthermore, EAs are required to 
be monitored continuously due to their exceptional signifi-
cance for business continuity [49]. Therefore, observations 
that describe the system behavior under particular load and 
hardware conditions are present and may be used as train-
ing data for some machine learning techniques to suggest 
the required server sizing, load testing, server consolidation, 
and anomaly detection. The subsequent learning phase runs 
in a black-box manner without the need for costly expert 
knowledge. Error metrics that describe the model’s accu-
racy provide clear indicators for the credibility of results. In 
order to evaluate the outlined strategy, extensive evaluation 
of different machine learning techniques for performance 
prediction, and anomaly detection in response time is con-
ducted and presented in this paper. We further apply the 
investigated machine learning models that delivered suffi-
cient quality to address different problems in the field of 
capacity management.

In “Related work”, related work is studied by classify-
ing existing means to predict EA performance. In addition, 
the utilization of machine learning techniques for anomaly 
detection in the field of EA is examined. Then, four typi-
cal scenarios of capacity management are introduced in 
“Capacity management scenarios”. To address the sce-
narios, performance models, and anomaly detection models 
are to be constructed. In  “Training data”, we discuss data 
preparation and model training by means of three different 
machine learning techniques for performance prediction and 
four machine learning techniques for anomaly detection. All 
algorithms are trained using real monitoring data. The sub-
sequent model evaluation, discussed in  “Model evaluation”, 
provides insights into the model accuracy and applicability 
for each technique to predict performance and detect anoma-
lies in response time. In  “Model application”, the utility of 
the models is demonstrated on the basis of the introduced 
capacity management scenarios in which the models are 
applied. Finally, the proposed strategy is discussed in “Con-
clusion”. A number of future research activities are outlined 
in  “Limitations and future work” with intention to carry 
forward the novel field of model-based capacity management 
using machine-learning.

Related Work

The essential challenge of capacity management is to pre-
dict the performance of a studied system under varying load 
patterns [31]. The complex component-based architecture 
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of EAs hampers to predict user performance as requests 
are affected by tightly integrated components on both the 
application and the database layer [71]. On a high level, the 
following two quantitative strategies may be carried out to 
evaluate EA performance [3, 12]:

•	 Measurement-based performance evaluation,
•	 Model-based performance evaluation.

The former requires the implementation of a system proto-
type. Its performance is then tested by means of scripts that 
generate workload in a configurable manner. The process is 
also referred to as benchmarking. Standardized benchmarks 
exist for different types of COTS EAs, e.g., the sales and 
distribution (SD) benchmark in the domain of SAP [62]. 
Relevant performance metrics, termed performance coun-
ters, are measured during the benchmark, e.g., by means of 
built-in monitors (software instrumentation), by distributed 
software agents, or by passive monitoring systems [31, 72]. 
In the IT infrastructure library (ITIL), this strategy is also 
referred to as simulation modeling.

Model-based performance evaluation, on the other hand, 
deals with the construction of models that represent the sys-
tem behavior. Commonly, these models are distinguished 
regarding their solving technique. Simple models may be 
formulated mathematically in a closed form and, accord-
ingly, are solved analytically. However, due to the complex-
ity of today’s EAs, the non-linear application behavior, in 
many cases, must be simulated, e.g., by means of queuing 
networks. The model-based strategy does not necessarily 
involve setting up real systems or prototypes but may require 
measured data for model calibration.

Hence, measurement-based approaches provide accu-
rate and credible evaluation results but involve costly 
setups of prototypes. These are to be tested in a various 
number of load scenarios and configurations to identify 
cost-effective and suitable designs [16]. Model-based 
approaches overcome the effort of actual system imple-
mentation and testing but introduce modeling effort in 
terms of time and expert knowledge [10]. The latter refers 
to both modeling experts and software architects who are 
aware of the planned system, and its dependencies [68]. 
For this reason, model-based approaches that are solved 
analytically or on the basis of simulation represent white-
box approaches. A popular white-box modeling technique 
is the Palladio component model (PCM), proposed by [4]. 
The technique covers the system architecture, its execu-
tion environment, and the usage profile in separate models, 
which are combined with a PCM instance. The instance 
may be transformed into analytical solvers or simulation 
models, which allow making performance predictions. The 
technique was used in the domain of EAs by [11]. In this 
domain, [69] proposed another white-box technique which 

particularly addresses SAP software. The approach relies 
on queuing networks that are built on the basis of moni-
toring data and must be calibrated in multiple iterations.

To reduce the costs of white-box modeling, different 
strategies evolved to reduce modeling effort. For example, 
[16, 17] built non-linear models while the coefficients are 
automatically obtained from existing measurement data. 
However, application-specific attributes were disregarded 
although known to significantly affect execution times 
[41, 55]. Furthermore, the model was tested using its own 
training data, which does not prove the model’s capa-
bilities of generalization to unseen data. A similar idea 
was followed by [33] who research on the automation of 
building PCM instances. As the approach requires access 
to the application’s source code, [34, 35] developed an 
alternative approach which only requires bytecode access. 
Here, a reference platform is to be implemented whose 
measured performance metrics are used to feed a genetic 
algorithm (GA). The GA is used to translate user input into 
bytecode counts and, this way builds the basis of a plat-
form-independent performance model. While the amount 
of required expertise is effectively reduced, an additional 
platform-dependent model is still to be constructed manu-
ally. Furthermore, application bytecode access may not 
be given. The detection of performance anomalies and 
changes in CPU demand patterns was automated by [18] 
by means of an analytical approach which uses regression. 
However, the prediction of actual execution times is not 
supported. The outlined approaches increase automation 
but still require considerable expert knowledge. Therefore, 
those are termed gray-box strategies.

In contrast, black-box strategies automate the construc-
tion of models by means of machine learning. The technique 
was successfully applied in the domains of job scheduling 
and load balancing to predict execution times or resource 
requirements of incoming requests [20, 29, 53, 67]. The 
application of traditional supervised and unsupervised 
machine learning techniques, classification and cluster-
ing, respectively, is relatively straightforward when using 
historical data for performance anomalies detection [32]. 
Such approaches are well suited for processing past perfor-
mance metrics during overall system health analysis. For 
instance, clustering algorithms are useful in cases when no 
specific anomaly patterns are known in advance. Statistical 
analysis is performed on the historical data while grouping 
data points in related clusters. Data points that find them-
selves outside of the major clusters, outliers, are likely to be 
anomalies and should be analyzed additionally. This task is 
assisted by the anomaly detection specific algorithms such as 
isolation forest (IF) [40] or its modifications. While IF is not 
a new algorithm, it is shown that with certain modifications 
it is applicable to the solutions based on modern technolo-
gies such as containers [73].
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Further analysis can be performed by applying clas-
sification [59] if specific types of anomalies are known. 
Anomalous data points can be compared with a pre-trained 
classification model to assist the deduction of the cause for 
analyzed anomalous events. It is worth noting that the previ-
ous examples are based on the batch analysis of historical 
data. These approaches can be useful to discover anomalous 
events in a later audit. For example, an approach based on 
recurrent neural networks (RNN) [30] allows one to predict 
the state of the system at any time point and compare it to 
the actual values. If the actual state of the system strays 
too far from the predicted, it can be considered anomalous. 
Of course, this is but a single example out of a variety of 
approaches for anomaly detection based on neural networks 
[36]. As the applicability and accuracy of machine-learning-
based approaches strongly depend on the amount of training 
data, some of the related artifacts involve to feed knowledge 
bases continuously with historical observations [53, 67, 72]. 
However, model applicability is still limited by the variety 
of data. As concluded by [67], it is an open challenge to 
collect and prepare a sufficient amount of training data in a 
cost-effective way.

To address these drawbacks of machine-learning-based 
approaches, we propose an approach that leverages the 
dominating use of COTS software in the domain of EAs. A 
pre-analysis to this paper across 1.230 data centers, in the 
domain of SAP, has shown a mean customization degree of 
only 20% [48]. In other words, around 80% of the executed 
business transactions refer to standard features that are 
offered by the software vendor to a large group of custom-
ers. By means of software instrumentation, these executions 
are typically logged in the background and performance-
related metrics are stored in the file system. These data are 
rarely analyzed statistically, although highly valuable for the 
outlined purpose [12]. Therefore, we argue for a domain-
specific knowledge base to integrate measurement data of 
different environments that utilize the same type of COTS 

software. As investigated in our preliminary studies, these 
data may be used to train standardized performance mod-
els for the application in various capacity management sce-
narios [48, 51]. Hence, initial model training and evalua-
tion surely involves expertise from the data science domain. 
However, required domain expertise with respect to the field 
of EA capacity management is significantly reduced when 
compared to existing white- and gray-box strategies. Fur-
thermore, the approach scales with unknown hardware con-
figurations and evaluated models may be used for a variety 
of use cases in different environments of the same COTS 
EA, e.g., sizing, load testing, and server consolidation. We 
refer to this technique as machine-learning-based using per-
formance counters. In this paper, model training and appli-
cation is demonstrated using real measurement data from 
productively operated EAs and by means of a scenario-based 
evaluation [27]. Table 1 summarizes the characteristics of 
the outlined techniques to evaluate EA performance.

Capacity Management Scenarios

Capacity management, in accordance with the ITIL service 
design, is typically carried out in a top–down manner on the 
following three layers [31]:

•	 Business capacity management,
•	 Service capacity management,
•	 Component capacity management.

It is at the heart of capacity management to provide a sufficient 
amount of capacity on the component level, which meets the 
requirements on the business level in a cost-effective man-
ner. In other words, it is the objective to balance performance 
and costs. Hence, performance predictions are beneficial to 
answer various what-if questions within capacity management 
exercises [22, 41]. Input to these questions may be changes of 

Table 1   Classification of techniques for predicting EA performance

Technique Measurement-based Model-based using simula-
tion engines

Model-based using analyti-
cal solvers

Machine learning-based 
using performance counters

Model type examples None (implemented proto-
type)

Queueing networks, Petri 
nets, Markov chains

Closed-form expressions 
such as (non)linear models

Random forests, support 
vector machines

Domain expertise High High (white-box modeling) Medium (gray-box mod-
eling)

Low (black-box modeling)

Training data No model training None or low amount to 
calibrate models

Few user-generated or meas-
ured top level parameters

Large amount of low level 
counters

Degrees of freedom Low High Medium High
Number of testable 

design alternatives
Limited to implemented 

designs
Limited to modeled designs Limited to modeled designs Models generalize to unseen 

designs
Analyzability High High Medium Low
Literature examples [39, 44, 45, 62] [4, 5, 8, 70] [15, 17, 18] [20, 22, 26, 29, 53, 67, 72]
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workload or hardware characteristics. To demonstrate the util-
ity of machine learning-based techniques which utilize perfor-
mance counters, the following four scenarios will be addressed 
in the course of this paper:

Server sizing Before EAs are deployed, their capacity 
demands are to be estimated. Hence, for workload character-
istics which are given on the business layer, suitable hardware 
components are to be identified. This process is defined as 
capacity planning [12] and practitioners also refer to it by the 
term sizing.

Load testing Another example, raised in the ITIL service 
design publication, refers to workload changes: “What if the 
throughput [of a service] doubles? [...] What will be the effect 
on the response times [...]?” [31, p. 173] Performance models 
allow to predict response times under varying workload condi-
tions and, this way, to explore the borders of a given design.

Server consolidation The management of existing EAs 
involves to optimize the allocation of running services to serv-
ers in a periodical (offline) or continuous (online) manner. To 
improve utilization levels, services with orthogonal work-
loads are to be identified. Subsequent relocations, however, 
are subject to uncertainties since the effect on the service per-
formance is rarely analyzed before solution deployment [51]. 
Here, machine-learning techniques which were trained on a 
large number of different hardware configurations may sup-
port decisions with respect to the expected quality of service 
performance.

Anomaly detection Performance analysis and prediction for 
enterprise applications are sufficient to manage normal opera-
tions. However, accounting for the events and behavior that fall 
outside of the enterprise application landscape’s normal opera-
tional patterns is equally important. Such events are called 
anomalies. Anomaly detection is a mature but still active field 
of research. Anomalies in normal operations of an application 
or the entire landscape can vary in nature. Anomalies in the 
system behavior can be caused by security breaches, which 
can result in abnormal access patterns and transaction execu-
tions. Failing hardware or software errors can be the cause of 
anomalies in increased response times. Additionally, anoma-
lies, specifically in response times, can be caused by sudden 
load spikes that fall outside of the planned capacity to a large 
margin. Such spikes are not malicious and not a sign of failing 
hardware but signify a shortcoming in planning and managing 
available capacity. Therefore, detection and analysis of anoma-
lies is important in managing capacity and planning further 
advancement of the applications landscape and infrastructure.

Training Data

The accuracy of the performance model and anomaly 
detection model highly depends on the variety and quality 
of the training data. As argued earlier, running EAs often 

integrate software monitors to track business transaction 
performance. While the approach benefits from usage 
profiles that mainly rely on standard business transac-
tions as opposed to custom ones, variety is achieved by 
a large number of observations on diverse infrastructure 
environments. The resulting data may undergo an extract-
transform-load (ETL) process before being integrated 
into a central knowledge base that provides the model’s 
attribute space. For this paper’s evaluation, we made use 
of software instrumentation functionality where perfor-
mance metrics are logged by the EA itself. In the area of 
SAP, so called statistical records track a number of per-
formance metrics for each screen change, invoked by any 
user activity. These records include resource utilization 
metrics with respect to CPU and memory, as provided by 
the operating system via an additional middleware that 
typically runs once per server within an SAP landscape 
[60, 61]. Information on the underlying infrastructure 
and its capacity was collected as part of additional con-
sulting activities. As a final step of the ETL process, the 
extracted data sets have been anonymized and structured 
in a comma-separated format to be loaded into a relational 
database schema that serves as the knowledge base. This 
way, real monitoring data from more than 18,000 running 
SAP instances were extracted. The data refer to applica-
tion and database instances from different environments, 
each of them monitored for a period of up to 3 weeks. In 
total, more than 16,000 servers are covered, ensuring a 
large number of permutations of workload and hardware 
parameters.

In a study conducted by [41], several machine learning 
techniques were explored to facilitate EA execution times. 
The authors concluded that model accuracy improves if 
application-specific parameters are included in the training 
data. Accordingly, the complete set of utilized data com-
prises attributes from the following dimensions:

•	 Workload characteristics: A number of application-
specific performance indicators are grouped by business 
transaction type for each monitored hour. Data include 
the number of dialog steps for each transaction as well 
as associated CPU time, queue time, lock time, and total 
response time.

•	 Resource capacity: Each hardware component is associ-
ated with a maximum CPU and memory capacity. While 
memory capacity is measured in Gigabytes, CPU capac-
ity can be expressed in SAPS. It stands for SAP Applica-
tion Performance Standard and is a popular metric to nor-
malize the throughput of an SAP EA in business related 
terms. Therefore, SAPS are derived from a benchmark in 
the sales and distribution area and describe the number 
of screen changes a system can handle per hour. These 
screen changes are referred to as dialog steps. As an 
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example, a server which is associated with a throughput 
of 1000 SAPS, may handle up to 20,000 fully business 
processed order line items per hour [62].

•	 Meta data: Additional attributes characterize the meas-
ured data. For example, the year of the measurement may 
be important to represent basic server generations. Fur-
thermore, system type labels allow to filter, e.g., for pro-
ductive EAs only. This dimension also includes system 
topology information, that is the mapping of services to 
components.

Model construction was carried out on the basis of the 
Cross-industry standard process for data mining (CRISP-
DM) [14]. Therefore, one of the early steps, before actual 
modeling, is to gain an understanding of the data and to 
prepare the data. As part of these activities, observations 
which describe abnormal application behavior (outliers) are 
to be excluded from the input data.

For example, maintenance operations such as backup jobs 
may interfere with performance. Preliminary investigations 
by [18] have shown a doubled error if typical maintenance 
time frames are present in the training data. Accordingly, we 
performed an initial outlier analysis which exposed end user 
dialog activity to occur typically during office hours while 
time periods between 11 pm and 4 am show the least dialog 
activity [48]. As these hours may provide suitable system 
maintenance slots and periods of increased batch activity, 
those were excluded from model training. Additional filters 
were applied to ensure a minimum CPU activity on both 
application and database instance, a minimum number of 
active users, and to exclude test measurements of less than 2 
days. The target variable describes the hourly mean response 
time per dialog step, measured in ms. It ranges from 0 to 
5000 ms and shows a standard deviation of 465.28. The 
mean value equals 571.87 ms.

As mentioned earlier, the data used for model training 
contain monitoring information for running SAP applica-
tion instances. These instances are grouped into a number 
of potentially heterogeneous SAP system landscapes. Each 
system landscape is an individual permutation of specific 
applications and hardware, which in turn have differ-
ences in their workload profiles. However, as we mention 
in “Related work”, the majority of transactions running 
within such landscapes reflects standard enterprise applica-
tion logic. Therefore, the behavior of these transaction types 
is expected to be comparable. We select and analyze only 
data that reflect the common transaction types present in all 
investigated system landscapes. This allows us to perform 
reasonable comparison, as well as homogenize training data 
contents across multiple landscapes.

Models were trained using different machine learning 
techniques. The techniques were selected with the objective 
to represent fundamentally varying strategies to investigate 

their suitability for the given use cases. As stated by [53], 
application behavior is hardly linear so that complex non-
linear models which support recursive partitioning were 
focused. As a starting point, Support vector machines are 
known to provide feasible results, as tested, e.g., by [41, 53]. 
Random forests, as a representative of Bagging strategies, 
were proven to work well out of the box, too. Accordingly, 
in [13] identified remarkable results using Random forests in 
an empirical comparison of different ML techniques. Here, 
another ensemble technique, based on the Boosting strategy, 
obtained the best accuracy in most of the cases for predict-
ing response time. Both Bagging and Boosting techniques 
combine a number of learners which are trained on subsets 
of the data. If Bagging is applied in a regression use case, 
the final prediction results from an average value across all 
learners. Hence, model training allows being parallelized. 
Boosting, on the other hand, follows a rather evolutionary 
process where weak learners focus on parts of the data which 
could not be explained by preceding learners. The following 
machine learning techniques are applied in this paper:

Performance prediction

•	 Support vector machines with Radial basis function 
(RBF) and with Polynomial kernel (PK)

•	 Random forests as representative of Bagging strategy
•	 AdaBoost as representative of Boosting strategy

Anomaly detection

•	 Isolation Forest as representative of application-specific 
clustering strategy

•	 Elliptic envelope
•	 One-Class Support vector machines with Radial basis 

kernel function
•	 Local Outlier Factor

For model training, we fed the three techniques with the 
cleaned set of training data. For different business trans-
action types, individual models were trained. For the sake 
of demonstration, we limited our analysis to the ten most 
frequently used business transactions within the module of 
sales and distribution. Model error metrics are provided in 
the following for each business transaction.

Model Evaluation

In this section, the evaluation of the performance model 
and the anomaly detection model is presented. We relied 
on different approaches based on the considered scenario. 
For evaluating the performance model, we relied on k-fold 
cross-validation on separate training sets with k = 5. How-
ever, anomaly detection usually is an unsupervised learning 
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task. Especially when it comes to field evaluation, this task is 
usually required to be performed using unlabeled data as we 
present in this paper using real monitoring data. However, 
many anomaly detection algorithms are evaluated using pre-
labeled datasets, such as KDD CUP 99 and similar datasets 
[19]. To evaluate the applicability of considered machine 
learning techniques for detecting anomalies in real workload 
datasets, we must rely on expert knowledge. For implemen-
tation and execution, we relied on the publicly available, 
open source reference algorithm implementations [54].

Performance Prediction Model

Typical error metrics that support the analysis of a model’s 
accuracy include the mean absolute error (MAE), the mean 
absolute percent error (MAPE), the root mean squared error 
(RMSE), and the coefficient of determination ( R2 ). While 
the RMSE may be compared to the standard deviation within 
the training data, R2 describes the relation between the dis-
tances of measured and predicted values and measured val-
ues and their average. Hence, the closer R2 to one, the better 
the model. All mentioned metrics were calculated as part 
of model evaluation after appropriate hyperparameter opti-
mization, feature selection, and normalization. Acceptable 
thresholds of errors are domain-specific and must be defined 
by the modeler for a specific use case. In capacity manage-
ment, errors below 30% are generally acceptable for model-
based strategies [1, 47].A simple way to compare model 
accuracy independent of the input data’s magnitude, specific 
to regression use cases, was proposed by [6] as Regression 
error characteristics (REC) curve. It was also used, e.g., by 
[41]. The REC curve enables to read the frequency in which 
a defined threshold of error was met during model testing. 
Hence, the capacity manager may identify a tolerance level 
of the error on the x-axis of Fig. 1.

The y-axis shows the percentage of records which were 
predicted with an error below this value. The REC curve 
in Fig. 1 refers to the models for the most frequently used 
transaction type. In our data set, that is the transaction to 
change sales orders. As shown, the most accurate predictions 
were provided by AdaBoost. Here, the targeted level of error 
( < 30% ) was met in around 80% of the cases. Worst results 
were obtained using SVMs in conjunction with a polynomial 
kernel (MAPE = 39.30%). Here, the RBF performed signifi-
cantly better with a MAPE of 25.90% . In our tests, Random 
forests provide acceptable accuracy without much tuning, 
using 500 trees and a subset of p/3 features which are tested 
to decide for a tree split where p represents the total number 
of features. In order to allow for the interpretation of the 
approach with respect to generalization, Table 2 shows the 
MAPE for the two best performing model types AdaBoost 
and Random forest, grouped by the ten most frequently 
used business transactions. While AdaBoost provides mean 
percentage errors below 30% in all cases, Random forest 
achieves the tolerance level in 3 out of 10 cases only. Con-
sequently, a Boosting strategy which utilizes trees with a 
small depth (stumps) seems to be beneficial for predicting 
mean response times of EAs on the basis of monitoring data. 
As machine learning models are supposed to generalize to 
unseen data, the trained model may be used in various sce-
narios where performance is to be estimated.

Anomaly Detection Model

For detecting anomalies, we adopted four machine learning 
techniques, namely, Isolation forest [40], Elliptic envelope 
[57], Local outlier factor [9] and one-class SVM with non-
linear kernel (RBF) [63]. We evaluate the performance of 
these techniques for detecting anomalies by training two 
types of models for each.

Fig. 1   REC curves for the busi-
ness transaction to change sales 
orders
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First, we construct generalized models which were trained 
on the monitoring data for all available system landscapes at 
the same time, while taking into account the data preparation 
described in “Training data”. This model type incorporates 
data not only from the specific single system landscape but 
expands the pool of statistical data for the models to the 
industry-wide level.

Second, we train the investigated algorithms to get mod-
els that are specific for each landscape and have no knowl-
edge about any other system landscape (single models). The 
main narrative behind this analysis is to observe the percent-
age of intersected detected anomalies in both scenarios. A 
high percentage of intersections in the detected anomalies 
between the single model and the generalized model would 
increase the confidence in the obtained results. This implies 
that the applied machine learning techniques are trained 

on sufficient monitoring data to detect the anomalies in the 
desired system landscape successfully.

Additionally, different values for the relevant hyperpa-
rameters of the considered machine learning techniques are 
tested to draw conclusions about their utility. In this con-
text, the tuned hyperparameters fundamentally control the 
threshold that clusters data points as normal or anomaly data 
points. Specifically, contamination for isolation forest, ellip-
tic envelope, and local outlier factor. One-class SVM was 
tuned with � hyperparameter.

The computational results are presented in Table 3. In the 
table we present the percentage of data points in the entire 
considered dataset that was detected as anomalous by our 
selected algorithms in generalized and single modes at dif-
ferent hyperparameter values. Additionally, we present the 
percentage of the total number of data points that are were 
commonly detected by both generalized and single models 
at each algorithm and hyperparameter combinations. The 
generalized and the single models that are based on Isola-
tion forest and Elliptic envelope reported good results for 
detecting anomalies. 95.3% of the detected anomalies by 
the single model of Isolation forest are also detected by the 
generalized model of the same algorithm. Similarly, 97.4% 
of the detected anomalies by the single model of Elliptic 
envelope are also detected by the generalized model of the 
same algorithm. Oddly, the generalized model of the Local 
outlier factor algorithm results in a more restrictive detec-
tion of anomalies in contrast to Isolation forest and Elliptic 
envelope generalized models. In addition, the percentage of 
intersections in the detected anomalies in the generalized 
model and the single model is fairly low around 57% . This 

Table 2   Mean absolute percent errors

Business transaction Random forest AdaBoost

Create sales order 32.30 25.26
Change sales order 26.08 19.57
Display sales order 28.19 22.93
List of sales orders 26.44 21.95
Create billing document 39.04 28.66
Change billing document 38.97 29.34
Display billing document 33.74 25.75
Create outbound delivery 35.59 26.45
Change outbound delivery 36.25 27.01
Display outbound delivery 36.53 27.38

Table 3   Comparison of the selected anomaly detection algorithms

Algorithm Hyper-parameter Generalized 
model (%)

Single model (%) Common 
detected (%)

Intersection (%)

Isolation forest 0.1 14.31 10.01 9.55 95.41
0.05 9.24 5.01 4.69 93.70
0.01 1.89 1.01 0.96 94.81
0.005 0.92 0.51 0.5 97.44

Elliptic envelope 0.1 12.89 10.01 9.63 96.19
0.05 9.73 5.01 5.01 100
0.01 2.22 1.01 1 98.7
0.005 1.09 0.51 0.49 94.87

Local outlier factor 0.1 5.74 9.39 4.06 43.62
0.05 2.34 4.76 1.46 30.58
0.01 0.49 0.89 0.24 26.47
0.005 0.25 0.43 0.13 30.30

One-class SVM (RBF kernel) 0.1 56.61 53.86 30.69 56.98
0.05 47.25 39.21 19.22 49.01
0.01 54.2 52.25 27.56 52.75
0.005 44.15 57.48 27.48 47.82



SN Computer Science (2022) 3:26	 Page 9 of 15  26

SN Computer Science

implies that the nature of the detected anomalies by the gen-
eralized model is largely different from the one found by the 
single model. Therefore, the confidence in the result of this 
model cannot be guaranteed. Finally, the performance of the 
one-class SVM was not sufficient for detecting anomalies in 
the considered data.

Direct comparison of the anomalies detected by isolation 
forest and elliptic envelope algorithms indicates that both of 
the algorithms have a high degree of agreement. Results of 
such comparison for a single model are presented in Fig. 2 
and for generalized model in 3. Specifically, 78.9% of anom-
alies that were detected by a single model of isolation forest 
were also detected by the single model of elliptic envelope. 
A higher degree of agreement was displayed by the general-
ized models, where 86.5% of the anomalies detected by the 
isolation forest, were also detected by the elliptic envelope.

We have conducted the hyperparameter evaluation, pre-
sented in Table 3 considering only the performance metrics, 
excluding the temporal features because analysis for anom-
aly detection performed only on a time series with a limited 
span of 2 weeks. It’s important to note that the inclusion of 
the temporal features from the model did not result in radical 
differences in the detection of anomalies in the considered 
evaluation dataset. The percentage of detected anomalies 
had no significant differences in both cases. The difference 
between the sets of discovered anomalous data points did 
not exceed 4%. The only exception is isolation forest at 0.1 
contamination value in a single model, where the difference 
between considering and not considering temporal features 
led to up to 34% difference in the resulted datasets, however, 
in both cases, the number of detected anomalies was exces-
sively high, rendering the model impractical to use for any 
meaningful analysis. However, as can be seen from Figs. 2 

and 3 the considered workload clearly correlates to office 
hours. Interestingly, if we consider a workload with a highly 
regular pattern, such as an automated task executed on a 
schedule.

It is clear that the isolation forest, without considering 
temporal features in highly regular workloads managed to 
detect data points that clearly located outside of the regular 
response time values, while the inclusion of these features 
resulted in detection of false positive.

Exclusion of the temporal features in elliptic envelope led 
to failure in detecting any anomalies at all for the given con-
tamination value of 0.005. However, increasing the contami-
nation value for elliptic envelope without including temporal 
features, resulted in the detection values similar to these of 
discussed above for isolation forest. Inclusion of temporal 
features again led to detection of many false positives.

From this evaluation of inclusion or exclusion of temporal 
features, we can draw the conclusion that the inclusion of 
these features in anomaly detection limited to a short time 
series is counterproductive. There is not enough statistical 
data within our use case in a time series spanning 2 weeks 
for the considered algorithms to establish strong time bound 
relationships.

Model Application

Performance Prediction Model

To investigate the utility and applicability, we applied the 
trained models in three capacity management scenarios, 
which were introduced in “Capacity management scenarios”. Fig. 2   Compare isolation forest with elliptic envelope: Single model

Fig. 3   Compare isolation forest with elliptic envelope: generalized 
model
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The following subsections exemplify practical use cases for 
each of the scenarios.

Server sizing As part of the service design, it is the objec-
tive of the sizing process to identify sufficient hardware com-
ponents for given business requirements. We illustrate this 
scenario using the example of an SAP ERP system, which 
is distributed vertically on an application server and a data-
base server. In the current server configuration, the system 
provides mean response times around 800 ms under regular 
load conditions (load factor = 1). However, in times of load 
peaks, response times increase to more than 1.400 ms. To 
address this issue, the capacity planner invokes a sizing pro-
cess which considers a number of alternative configurations.

The decision maker is interested to know the effect of 
certain hardware upgrades on both the application and the 
database layer before their actual deployment. If measure-
ment-based and classical model-based approaches are too 
expensive due to the setup of a test system and the costs of 
modeling, a machine learning-based approach may serve as 
a cost-effective black-box approach. For the sake of demon-
stration, we transformed the alternative hardware configura-
tions into features of the previously trained models. Mean 
prediction results are shown in Fig. 4 and allow for com-
parison of change effects. In accordance with historical load 
profiles and future business requirements, upgrade decisions 
may be supported. For example, the concept of a Pareto front 
may be utilized to identify non-dominated solutions which 
maximize performance and minimize investment costs.

Load testing Similar to the sizing scenario, alternative 
load profiles may represent input features to the prediction 
model. Since performance-related service level agreements 
(SLA) typically invoke penalty costs for requests which do 
not meet performance objectives, the prediction results can 
be utilized to minimize the number (and costs) of SLA vio-
lations. To demonstrate the scenario, we define a sample 
percentile-based SLA which invokes penalty costs c

sla
 of 

150 $ for every percentage point of requests which were not 
processed within less than one second. An additional dead-
line constraint d

2
 requires all requests to be processed within 

1.500 ms; respective designs that cause higher response 
times are to be rejected.

To predict the expected level of SLA fulfillment, we 
applied the performance models on historical log data with 
varying load attributes. As a result, Table 4 lists penalty 
costs which may be associated with each of the load fac-
tors. If deadline constraint d

2
 applies, load factors of 2 and 

above cannot be served by the design under study. Hence, 
additional design alternatives are to be considered. On the 
basis of the prediction results, Fig. 5 shows the expected 
number of SLA violations for each of the designed alter-
natives for historical (load factor = 1) and alternative load 
scenarios. Each design alternative is characterised by the 
amount of SAPS it may handle (cf. “Training data”), as used 

in SAP-based environments to describe a system’s through-
put in a hardware agnostic manner. As can be seen, addi-
tional capacity generally reduces the risk of SLA violations. 
However, in our example, improvements are more significant 
for higher load scenarios. Hence, decisions are to be made 
in accordance with the business strategy and expected levels 
of future workload [48].

Server consolidation In the course of server consolida-
tion efforts, service relocation may affect overall service per-
formance. In this regard, the evaluated performance model 
supports questions similar to the following ITIL example: 
“What if service B is moved from the current server onto a 
new server? What will be the effect on the response times 
[...]?” [31, p. 173] Server consolidation problems are known 
to be NP-hard; they typically introduce a large solution space 
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Table 4   Penalty costs for alternative load factors

Load factor Violated 
hours 
( d

2
)

Fulfill-
ment 
degree

Violation degree Penalty costs

1 0 99.32 0.68 0
1.25 0 98.47 1.53 229.5
1.5 0 94.04 5.96 894
1.75 0 73.94 26.06 3,909
2 1 42.59 57.41 8,611.5
2.25 2 25.21 74.79 11,218.5
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which cannot be explored manually [7, 50]. Hence, solution 
candidates are identified, e.g., by means of heuristics and 
metaheuristics. Models, as constructed in  “Training data”, 
allow to integrate performance aspects into the problem for-
mulation. A simple example is illustrated in Fig. 6.

Here, three design alternatives were computed by a 
metaheuristic, which belongs to the class of grouping 
genetic algorithms (GGA), as part of a preceding field study, 
presented in [48]. To test the performance effects of these 
solution candidates before their deployment, we fed our per-
formance model with the resulting allocations of services 
(and their workload profiles) to servers (and their hardware 
characteristics). In Fig. 6, Design A represents a solution 
of lowest capacity and high server utilization. In contrast, 
Design C provides highest amount of capacity with a rather 
low mean utilization. In terms of utilization and capacity, 
Design B lies between A and C. According to the box plots 
in Fig. 6, higher capacity leads to more stable designs with 
less variance across the predicted response times. Design 
C seems to be beneficial, particularly for higher workloads, 
and reliably catches load peaks. The scenario demonstrates 
how machine-learning enables to integrate additional deci-
sion values into server consolidation problems. Illustrations 
similar to the one in Fig. 6 effectively reveal change effects. 
As a result, a great amount of uncertainties is eliminated and 
decisions remain subject to the risk attitude of the decision 
maker.
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Anomaly Detection Model

A typical anomaly detection application is to discover mali-
cious attacks on the IT infrastructure or possible hardware 
failures. In addition, anomaly detection can be applied 
within the context of capacity management for standard 
enterprise applications to avoid sudden degradation in per-
formance. Anomalous peaks in response time for different 
services and transactions should be evaluated to design the 
appropriate reactive measures. Even within a short observa-
tion period, a peak that occurs in a specific day and time, can 
be a single-time event or, in fact, a rare but recurrent spike. 
The use of anomaly detection algorithms allows for clear 
identification of such spikes at various tasks running within 
the landscape, as well as a correlation between the response 
time duration between these.

In Fig. 7, we demonstrate the application of the designed 
anomaly detection approach on the top transaction type. 
From this representation, we can clearly observe a detected 
anomalous spike in response time using, for instance, Isola-
tion forest. We also observed similar behaviour in five more 
top transaction types in the same landscape. A clear cor-
relation between the increase of response time for different 
transaction types, most likely indicates a design problem, 
which requires the attention of the capacity planner to avoid 
degradation in the overall performance of the system.

The suggested anomaly detection model can be eventually 
applied to all business-critical transactions to avoid degra-
dation in performance. Detected anomalies in the system 
can be used by the capacity planner in the forms of warning 
notifications if those spikes exceed some predefined thresh-
old of response time. Eventually, an increase in response 

time might lead to violations in the signed SLAs. Based on 
the suggested system landscape design, the capacity plan-
ner need to react to such reoccurring peaks in the workload 
through, for instance, triggering a new server sizing process.

Conclusion

In this paper, we investigated various machine learning tech-
niques to address different issues in the field of capacity 
management. Our two-fold analysis showed a successful 
utility of different machine learning techniques to predict 
performance and detect anomalies in response time of EAs. 
In a scenario-based evaluation, the application of machine 
learning-based techniques could be demonstrated for the 
domain of service capacity management. Performance 
model as well as anomaly detection model that are trained 
on a variety of monitoring data are evaluated to provide suf-
ficient accuracy to support decisions in the field of sizing, 
load testing, server consolidation, and anomaly detection. 
For COTS EAs, a Boosting strategy has proven to depict 
existing patterns in the data most effectively. As for anom-
aly detection, Isolation forest and elliptic envelop delivered 
correlated results between the generalized model and single 
model, which increase the confidence in the obtained results. 
In addition, a general agreement on the detected anomalies 
through both techniques is observed, which in turn validates 
more with expert knowledge the anomalous nature of the 
detected points.

Across ten frequently used business transactions, Ada-
Boost has constantly shown mean absolute percent errors 
below 30% when predicting the mean hourly response time 
per dialog step for SAP enterprise applications. In addition, 
Isolation forest is utilized to detect anomalies of response 
time in all transactions and presented exemplary results for 
six top used transactions. Due to the black-box nature of the 
approach, costs of classical white-box modeling are elimi-
nated, and the dominating measurement-based approaches 
are complemented by a less expert-driven and more data-
driven strategy. Therefore, the findings may be utilized by 
consultancy organizations to establish cost-effective and 
profound capacity management services.

Limitations and Future Work

In the investigated scenarios, the performance was ana-
lyzed on the level of business transactions. Hence, the most 
relevant transaction types are to be provided by the deci-
sion maker. It is subject to future research to generalize the 
transaction-based approach to higher levels such as applica-
tion instance or overall system performance. However, for 
detecting anomalies of response time, all transactions are 

Fig. 7   Application of anomaly detection on the top transaction type 
in a landscape
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analyzed. Furthermore, the performance prediction tech-
nique may be integrated into well-known problems in the 
domain of capacity management. For example, prediction 
models may be applied by metaheuristics during fitness 
evaluation of alternative designs. As for anomaly detection, 
the current analysis is rather designed and can be used as a 
reactive measure to avoid major degradation in the overall 
performance of the system. It is of a major interest to extend 
the current implementation to address real-time anomaly 
detection on standard enterprise applications. We encour-
age other researchers and practitioners to push forward the 
outlined research direction to make ML-based performance 
evaluation to become an integral part of various capacity 
management exercises.
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