
Vol.:(0123456789)

SN Computer Science (2022) 3:26
https://doi.org/10.1007/s42979-021-00862-8

SN Computer Science

ORIGINAL RESEARCH

Addressing IT Capacity Management Concerns Using Machine
Learning Techniques

Hendrik Müller1  · Andrey Kharitonov1 · Abdulrahman Nahhas1 · Sascha Bosse1 · Klaus Turowski1

Received: 4 December 2020 / Accepted: 6 September 2021 / Published online: 29 October 2021
© The Author(s) 2021

Abstract
The digitization of various industries is emerging from and being supported by the Information Technology (IT) industry.
However, bringing about the practical implementation of the fourth industrial revolution will require different fields of IT
to undergo their own transformations. One of the research fields that draws a lot of attention nowadays is machine learning
and its application in different areas. Therefore, in this paper, we present an analysis on the applicability of various machine
learning techniques to address different problems in the field of capacity management for Commercial-off-the-shelf enter-
prise applications. Our investigation of the selected machine learning techniques is based on real monitoring data from over
18,000 SAP applications and database instances that are hosted on more than 16,000 different physical servers. These data
are used to train various performance models, such as support vector machines with different kernels, random forests, and
AdaBoost, for standard business functions. Boosted trees achieve sufficient accuracy to predict mean response times for ten
frequently used transactions. To evaluate the suggested models, we applied them successfully to address different concerns
in the context of capacity management. The evaluation includes multiple scenarios in the fields of server sizing, load testing,
and server consolidation, with the objective to identify cost-effective designs. Based on the same monitoring data, we also
present an anomaly detection scenario. In this scenario, we aim to demonstrate the use of machine learning techniques on
historical data to detect possible performance anomalies for a suggested design or even predict possible anomalies in future
scenarios. Results strongly emphasize the need to integrate monitoring data from standardized business applications to allow
for novel and cost-effective capacity management service offerings.

Keywords  Commercial-off-the-shelf enterprise applications · Response time prediction · Capacity management as a
service · Performance anomaly detection

Introduction

The fulfillment of requirements for information process-
ing is becoming increasingly complex. The digital trans-
formation affects many industries with the ongoing trends
of automation and computerization [23, 25, 42]. According
to [21], 47% of the US employment may be computerized
by 2033. Particularly, routine tasks involving explicit rule-
based activities are at highest risk to be automated as such
rules may be learned by algorithms much quicker than by
humans (in some cases, seconds instead of years). Even [21]
used machine learning (ML) techniques to classify jobs into
computerization risk groups. Here, the IT industry takes on
a pivotal role as it is, on the one hand, vigorously driving
the outlined trend with rapid innovations, e.g., in the fields
of big data, artificial intelligence, and the internet of things
[37, 38, 58]. On the other hand, IT processes themselves

This article is part of the topical collection “Advances on Signal
Image Technology and Internet based Systems” guest edited by
Albert Dipanda, Luigi Gallo and Kokou Yetongnon.

 *	 Hendrik Müller
	 hendrik.mueller@ovgu.de

	 Andrey Kharitonov
	 andrey.kharitonov@ovgu.de

	 Abdulrahman Nahhas
	 abdulrahman.nahhas@ovgu.de

	 Sascha Bosse
	 sascha.bosse@ovgu.de

	 Klaus Turowski
	 klaus.turowski@ovgu.de

1	 Faculty of Computer Science, Otto von Guericke University,
Universitätsplatz 2, 39106 Magdeburg, Germany

http://orcid.org/0000-0002-5083-536X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00862-8&domain=pdf

	 SN Computer Science (2022) 3:2626  Page 2 of 15

SN Computer Science

are severely affected by automation and data-driven deci-
sions [28], which necessitate the transformation of IT. One
of the crucial IT processes to support cost-effective opera-
tions is the capacity management process [31]. This paper,
therefore, investigates the utility of machine learning tech-
niques to support typical capacity management scenarios
in the domain of enterprise applications (EA). Analyses
of machine learning techniques and corresponding related
work, described in “Related work”, “Performance predic-
tion model” and “Performance prediction model”, are based
on our previous work presented in [52] and originally pub-
lished in [48]. We studied the utility of machine learning
techniques to deal with capacity management related tasks
such as the sizing of new servers (also referred to as capac-
ity planning) and the consolidation of existing servers (e.g.,
in the fields of orchestration and allocation). In “Anomaly
detection model”, we extend our analyses further to address
anomaly detection problems in the field of capacity manage-
ment. After server sizing, load testing, and server consolida-
tion, the capacity planner must take into account the detec-
tion of potentially anomalous behavior of business-critical
transactions to avoid degradation in the overall performance
of a system.

An essential requirement for many learning algorithms
is the existence of (labeled) training data to learn rules
and patterns from historical observations. By means of the
data, objective values are to be explained, enabling clas-
sification or regression. In capacity management, the main
objective is to ensure acceptable levels of performance at
the lowest costs taking into account possible anomalies in
the required computational power. Strategies to achieve the
objective currently rely on the implementation and testing
of planned systems or their prototypes [24, 43]. Hence, per-
formance is evaluated rather reactively when a system is
about to go live [2]; engineers claim to require something
running to measure to evaluate performance aspects of an
application [66]. Furthermore, discovering and amending
performance bottlenecks through measuring a running sys-
tem is inefficient and expensive due to the high correction
costs in the late stages of the development lifecycle [44,
65]. Therefore, model-based approaches were developed
to rely on simulation engines or analytical solvers. How-
ever, such concepts are largely unused in practice due to
their complexity, and personnel costs of modeling [4, 46].
Furthermore, the credibility of results remains questionable
until validation in later stages. To combine the advantages
of model-based approaches (early applicability) with the
ease of measurement-based approaches, machine learning is
proposed as an alternative technique to predict performance
aspects of planned or managed systems in their design stage.
Those predictions can also account for anomaly behaviors of
the designated planned or managed systems in their design
stage. Here, the main challenges lie in the data acquisition

and data preparation phase to generate a sufficient amount
of training data for subsequent learning of models.

In the domain of EAs, commercial-of-the-shelf (COTS)
software is widely used [56, 64]. Consequently, a system
similar to the one which is being planned most likely is
already in production. Furthermore, EAs are required to
be monitored continuously due to their exceptional signifi-
cance for business continuity [49]. Therefore, observations
that describe the system behavior under particular load and
hardware conditions are present and may be used as train-
ing data for some machine learning techniques to suggest
the required server sizing, load testing, server consolidation,
and anomaly detection. The subsequent learning phase runs
in a black-box manner without the need for costly expert
knowledge. Error metrics that describe the model’s accu-
racy provide clear indicators for the credibility of results. In
order to evaluate the outlined strategy, extensive evaluation
of different machine learning techniques for performance
prediction, and anomaly detection in response time is con-
ducted and presented in this paper. We further apply the
investigated machine learning models that delivered suffi-
cient quality to address different problems in the field of
capacity management.

In “Related work”, related work is studied by classify-
ing existing means to predict EA performance. In addition,
the utilization of machine learning techniques for anomaly
detection in the field of EA is examined. Then, four typi-
cal scenarios of capacity management are introduced in
“Capacity management scenarios”. To address the sce-
narios, performance models, and anomaly detection models
are to be constructed. In “Training data”, we discuss data
preparation and model training by means of three different
machine learning techniques for performance prediction and
four machine learning techniques for anomaly detection. All
algorithms are trained using real monitoring data. The sub-
sequent model evaluation, discussed in “Model evaluation”,
provides insights into the model accuracy and applicability
for each technique to predict performance and detect anoma-
lies in response time. In “Model application”, the utility of
the models is demonstrated on the basis of the introduced
capacity management scenarios in which the models are
applied. Finally, the proposed strategy is discussed in “Con-
clusion”. A number of future research activities are outlined
in “Limitations and future work” with intention to carry
forward the novel field of model-based capacity management
using machine-learning.

Related Work

The essential challenge of capacity management is to pre-
dict the performance of a studied system under varying load
patterns [31]. The complex component-based architecture

SN Computer Science (2022) 3:26	 Page 3 of 15  26

SN Computer Science

of EAs hampers to predict user performance as requests
are affected by tightly integrated components on both the
application and the database layer [71]. On a high level, the
following two quantitative strategies may be carried out to
evaluate EA performance [3, 12]:

•	 Measurement-based performance evaluation,
•	 Model-based performance evaluation.

The former requires the implementation of a system proto-
type. Its performance is then tested by means of scripts that
generate workload in a configurable manner. The process is
also referred to as benchmarking. Standardized benchmarks
exist for different types of COTS EAs, e.g., the sales and
distribution (SD) benchmark in the domain of SAP [62].
Relevant performance metrics, termed performance coun-
ters, are measured during the benchmark, e.g., by means of
built-in monitors (software instrumentation), by distributed
software agents, or by passive monitoring systems [31, 72].
In the IT infrastructure library (ITIL), this strategy is also
referred to as simulation modeling.

Model-based performance evaluation, on the other hand,
deals with the construction of models that represent the sys-
tem behavior. Commonly, these models are distinguished
regarding their solving technique. Simple models may be
formulated mathematically in a closed form and, accord-
ingly, are solved analytically. However, due to the complex-
ity of today’s EAs, the non-linear application behavior, in
many cases, must be simulated, e.g., by means of queuing
networks. The model-based strategy does not necessarily
involve setting up real systems or prototypes but may require
measured data for model calibration.

Hence, measurement-based approaches provide accu-
rate and credible evaluation results but involve costly
setups of prototypes. These are to be tested in a various
number of load scenarios and configurations to identify
cost-effective and suitable designs [16]. Model-based
approaches overcome the effort of actual system imple-
mentation and testing but introduce modeling effort in
terms of time and expert knowledge [10]. The latter refers
to both modeling experts and software architects who are
aware of the planned system, and its dependencies [68].
For this reason, model-based approaches that are solved
analytically or on the basis of simulation represent white-
box approaches. A popular white-box modeling technique
is the Palladio component model (PCM), proposed by [4].
The technique covers the system architecture, its execu-
tion environment, and the usage profile in separate models,
which are combined with a PCM instance. The instance
may be transformed into analytical solvers or simulation
models, which allow making performance predictions. The
technique was used in the domain of EAs by [11]. In this
domain, [69] proposed another white-box technique which

particularly addresses SAP software. The approach relies
on queuing networks that are built on the basis of moni-
toring data and must be calibrated in multiple iterations.

To reduce the costs of white-box modeling, different
strategies evolved to reduce modeling effort. For example,
[16, 17] built non-linear models while the coefficients are
automatically obtained from existing measurement data.
However, application-specific attributes were disregarded
although known to significantly affect execution times
[41, 55]. Furthermore, the model was tested using its own
training data, which does not prove the model’s capa-
bilities of generalization to unseen data. A similar idea
was followed by [33] who research on the automation of
building PCM instances. As the approach requires access
to the application’s source code, [34, 35] developed an
alternative approach which only requires bytecode access.
Here, a reference platform is to be implemented whose
measured performance metrics are used to feed a genetic
algorithm (GA). The GA is used to translate user input into
bytecode counts and, this way builds the basis of a plat-
form-independent performance model. While the amount
of required expertise is effectively reduced, an additional
platform-dependent model is still to be constructed manu-
ally. Furthermore, application bytecode access may not
be given. The detection of performance anomalies and
changes in CPU demand patterns was automated by [18]
by means of an analytical approach which uses regression.
However, the prediction of actual execution times is not
supported. The outlined approaches increase automation
but still require considerable expert knowledge. Therefore,
those are termed gray-box strategies.

In contrast, black-box strategies automate the construc-
tion of models by means of machine learning. The technique
was successfully applied in the domains of job scheduling
and load balancing to predict execution times or resource
requirements of incoming requests [20, 29, 53, 67]. The
application of traditional supervised and unsupervised
machine learning techniques, classification and cluster-
ing, respectively, is relatively straightforward when using
historical data for performance anomalies detection [32].
Such approaches are well suited for processing past perfor-
mance metrics during overall system health analysis. For
instance, clustering algorithms are useful in cases when no
specific anomaly patterns are known in advance. Statistical
analysis is performed on the historical data while grouping
data points in related clusters. Data points that find them-
selves outside of the major clusters, outliers, are likely to be
anomalies and should be analyzed additionally. This task is
assisted by the anomaly detection specific algorithms such as
isolation forest (IF) [40] or its modifications. While IF is not
a new algorithm, it is shown that with certain modifications
it is applicable to the solutions based on modern technolo-
gies such as containers [73].

	 SN Computer Science (2022) 3:2626  Page 4 of 15

SN Computer Science

Further analysis can be performed by applying clas-
sification [59] if specific types of anomalies are known.
Anomalous data points can be compared with a pre-trained
classification model to assist the deduction of the cause for
analyzed anomalous events. It is worth noting that the previ-
ous examples are based on the batch analysis of historical
data. These approaches can be useful to discover anomalous
events in a later audit. For example, an approach based on
recurrent neural networks (RNN) [30] allows one to predict
the state of the system at any time point and compare it to
the actual values. If the actual state of the system strays
too far from the predicted, it can be considered anomalous.
Of course, this is but a single example out of a variety of
approaches for anomaly detection based on neural networks
[36]. As the applicability and accuracy of machine-learning-
based approaches strongly depend on the amount of training
data, some of the related artifacts involve to feed knowledge
bases continuously with historical observations [53, 67, 72].
However, model applicability is still limited by the variety
of data. As concluded by [67], it is an open challenge to
collect and prepare a sufficient amount of training data in a
cost-effective way.

To address these drawbacks of machine-learning-based
approaches, we propose an approach that leverages the
dominating use of COTS software in the domain of EAs. A
pre-analysis to this paper across 1.230 data centers, in the
domain of SAP, has shown a mean customization degree of
only 20% [48]. In other words, around 80% of the executed
business transactions refer to standard features that are
offered by the software vendor to a large group of custom-
ers. By means of software instrumentation, these executions
are typically logged in the background and performance-
related metrics are stored in the file system. These data are
rarely analyzed statistically, although highly valuable for the
outlined purpose [12]. Therefore, we argue for a domain-
specific knowledge base to integrate measurement data of
different environments that utilize the same type of COTS

software. As investigated in our preliminary studies, these
data may be used to train standardized performance mod-
els for the application in various capacity management sce-
narios [48, 51]. Hence, initial model training and evalua-
tion surely involves expertise from the data science domain.
However, required domain expertise with respect to the field
of EA capacity management is significantly reduced when
compared to existing white- and gray-box strategies. Fur-
thermore, the approach scales with unknown hardware con-
figurations and evaluated models may be used for a variety
of use cases in different environments of the same COTS
EA, e.g., sizing, load testing, and server consolidation. We
refer to this technique as machine-learning-based using per-
formance counters. In this paper, model training and appli-
cation is demonstrated using real measurement data from
productively operated EAs and by means of a scenario-based
evaluation [27]. Table 1 summarizes the characteristics of
the outlined techniques to evaluate EA performance.

Capacity Management Scenarios

Capacity management, in accordance with the ITIL service
design, is typically carried out in a top–down manner on the
following three layers [31]:

•	 Business capacity management,
•	 Service capacity management,
•	 Component capacity management.

It is at the heart of capacity management to provide a sufficient
amount of capacity on the component level, which meets the
requirements on the business level in a cost-effective man-
ner. In other words, it is the objective to balance performance
and costs. Hence, performance predictions are beneficial to
answer various what-if questions within capacity management
exercises [22, 41]. Input to these questions may be changes of

Table 1   Classification of techniques for predicting EA performance

Technique Measurement-based Model-based using simula-
tion engines

Model-based using analyti-
cal solvers

Machine learning-based
using performance counters

Model type examples None (implemented proto-
type)

Queueing networks, Petri
nets, Markov chains

Closed-form expressions
such as (non)linear models

Random forests, support
vector machines

Domain expertise High High (white-box modeling) Medium (gray-box mod-
eling)

Low (black-box modeling)

Training data No model training None or low amount to
calibrate models

Few user-generated or meas-
ured top level parameters

Large amount of low level
counters

Degrees of freedom Low High Medium High
Number of testable

design alternatives
Limited to implemented

designs
Limited to modeled designs Limited to modeled designs Models generalize to unseen

designs
Analyzability High High Medium Low
Literature examples [39, 44, 45, 62] [4, 5, 8, 70] [15, 17, 18] [20, 22, 26, 29, 53, 67, 72]

SN Computer Science (2022) 3:26	 Page 5 of 15  26

SN Computer Science

workload or hardware characteristics. To demonstrate the util-
ity of machine learning-based techniques which utilize perfor-
mance counters, the following four scenarios will be addressed
in the course of this paper:

Server sizing Before EAs are deployed, their capacity
demands are to be estimated. Hence, for workload character-
istics which are given on the business layer, suitable hardware
components are to be identified. This process is defined as
capacity planning [12] and practitioners also refer to it by the
term sizing.

Load testing Another example, raised in the ITIL service
design publication, refers to workload changes: “What if the
throughput [of a service] doubles? [...] What will be the effect
on the response times [...]?” [31, p. 173] Performance models
allow to predict response times under varying workload condi-
tions and, this way, to explore the borders of a given design.

Server consolidation The management of existing EAs
involves to optimize the allocation of running services to serv-
ers in a periodical (offline) or continuous (online) manner. To
improve utilization levels, services with orthogonal work-
loads are to be identified. Subsequent relocations, however,
are subject to uncertainties since the effect on the service per-
formance is rarely analyzed before solution deployment [51].
Here, machine-learning techniques which were trained on a
large number of different hardware configurations may sup-
port decisions with respect to the expected quality of service
performance.

Anomaly detection Performance analysis and prediction for
enterprise applications are sufficient to manage normal opera-
tions. However, accounting for the events and behavior that fall
outside of the enterprise application landscape’s normal opera-
tional patterns is equally important. Such events are called
anomalies. Anomaly detection is a mature but still active field
of research. Anomalies in normal operations of an application
or the entire landscape can vary in nature. Anomalies in the
system behavior can be caused by security breaches, which
can result in abnormal access patterns and transaction execu-
tions. Failing hardware or software errors can be the cause of
anomalies in increased response times. Additionally, anoma-
lies, specifically in response times, can be caused by sudden
load spikes that fall outside of the planned capacity to a large
margin. Such spikes are not malicious and not a sign of failing
hardware but signify a shortcoming in planning and managing
available capacity. Therefore, detection and analysis of anoma-
lies is important in managing capacity and planning further
advancement of the applications landscape and infrastructure.

Training Data

The accuracy of the performance model and anomaly
detection model highly depends on the variety and quality
of the training data. As argued earlier, running EAs often

integrate software monitors to track business transaction
performance. While the approach benefits from usage
profiles that mainly rely on standard business transac-
tions as opposed to custom ones, variety is achieved by
a large number of observations on diverse infrastructure
environments. The resulting data may undergo an extract-
transform-load (ETL) process before being integrated
into a central knowledge base that provides the model’s
attribute space. For this paper’s evaluation, we made use
of software instrumentation functionality where perfor-
mance metrics are logged by the EA itself. In the area of
SAP, so called statistical records track a number of per-
formance metrics for each screen change, invoked by any
user activity. These records include resource utilization
metrics with respect to CPU and memory, as provided by
the operating system via an additional middleware that
typically runs once per server within an SAP landscape
[60, 61]. Information on the underlying infrastructure
and its capacity was collected as part of additional con-
sulting activities. As a final step of the ETL process, the
extracted data sets have been anonymized and structured
in a comma-separated format to be loaded into a relational
database schema that serves as the knowledge base. This
way, real monitoring data from more than 18,000 running
SAP instances were extracted. The data refer to applica-
tion and database instances from different environments,
each of them monitored for a period of up to 3 weeks. In
total, more than 16,000 servers are covered, ensuring a
large number of permutations of workload and hardware
parameters.

In a study conducted by [41], several machine learning
techniques were explored to facilitate EA execution times.
The authors concluded that model accuracy improves if
application-specific parameters are included in the training
data. Accordingly, the complete set of utilized data com-
prises attributes from the following dimensions:

•	 Workload characteristics: A number of application-
specific performance indicators are grouped by business
transaction type for each monitored hour. Data include
the number of dialog steps for each transaction as well
as associated CPU time, queue time, lock time, and total
response time.

•	 Resource capacity: Each hardware component is associ-
ated with a maximum CPU and memory capacity. While
memory capacity is measured in Gigabytes, CPU capac-
ity can be expressed in SAPS. It stands for SAP Applica-
tion Performance Standard and is a popular metric to nor-
malize the throughput of an SAP EA in business related
terms. Therefore, SAPS are derived from a benchmark in
the sales and distribution area and describe the number
of screen changes a system can handle per hour. These
screen changes are referred to as dialog steps. As an

	 SN Computer Science (2022) 3:2626  Page 6 of 15

SN Computer Science

example, a server which is associated with a throughput
of 1000 SAPS, may handle up to 20,000 fully business
processed order line items per hour [62].

•	 Meta data: Additional attributes characterize the meas-
ured data. For example, the year of the measurement may
be important to represent basic server generations. Fur-
thermore, system type labels allow to filter, e.g., for pro-
ductive EAs only. This dimension also includes system
topology information, that is the mapping of services to
components.

Model construction was carried out on the basis of the
Cross-industry standard process for data mining (CRISP-
DM) [14]. Therefore, one of the early steps, before actual
modeling, is to gain an understanding of the data and to
prepare the data. As part of these activities, observations
which describe abnormal application behavior (outliers) are
to be excluded from the input data.

For example, maintenance operations such as backup jobs
may interfere with performance. Preliminary investigations
by [18] have shown a doubled error if typical maintenance
time frames are present in the training data. Accordingly, we
performed an initial outlier analysis which exposed end user
dialog activity to occur typically during office hours while
time periods between 11 pm and 4 am show the least dialog
activity [48]. As these hours may provide suitable system
maintenance slots and periods of increased batch activity,
those were excluded from model training. Additional filters
were applied to ensure a minimum CPU activity on both
application and database instance, a minimum number of
active users, and to exclude test measurements of less than 2
days. The target variable describes the hourly mean response
time per dialog step, measured in ms. It ranges from 0 to
5000 ms and shows a standard deviation of 465.28. The
mean value equals 571.87 ms.

As mentioned earlier, the data used for model training
contain monitoring information for running SAP applica-
tion instances. These instances are grouped into a number
of potentially heterogeneous SAP system landscapes. Each
system landscape is an individual permutation of specific
applications and hardware, which in turn have differ-
ences in their workload profiles. However, as we mention
in “Related work”, the majority of transactions running
within such landscapes reflects standard enterprise applica-
tion logic. Therefore, the behavior of these transaction types
is expected to be comparable. We select and analyze only
data that reflect the common transaction types present in all
investigated system landscapes. This allows us to perform
reasonable comparison, as well as homogenize training data
contents across multiple landscapes.

Models were trained using different machine learning
techniques. The techniques were selected with the objective
to represent fundamentally varying strategies to investigate

their suitability for the given use cases. As stated by [53],
application behavior is hardly linear so that complex non-
linear models which support recursive partitioning were
focused. As a starting point, Support vector machines are
known to provide feasible results, as tested, e.g., by [41, 53].
Random forests, as a representative of Bagging strategies,
were proven to work well out of the box, too. Accordingly,
in [13] identified remarkable results using Random forests in
an empirical comparison of different ML techniques. Here,
another ensemble technique, based on the Boosting strategy,
obtained the best accuracy in most of the cases for predict-
ing response time. Both Bagging and Boosting techniques
combine a number of learners which are trained on subsets
of the data. If Bagging is applied in a regression use case,
the final prediction results from an average value across all
learners. Hence, model training allows being parallelized.
Boosting, on the other hand, follows a rather evolutionary
process where weak learners focus on parts of the data which
could not be explained by preceding learners. The following
machine learning techniques are applied in this paper:

Performance prediction

•	 Support vector machines with Radial basis function
(RBF) and with Polynomial kernel (PK)

•	 Random forests as representative of Bagging strategy
•	 AdaBoost as representative of Boosting strategy

Anomaly detection

•	 Isolation Forest as representative of application-specific
clustering strategy

•	 Elliptic envelope
•	 One-Class Support vector machines with Radial basis

kernel function
•	 Local Outlier Factor

For model training, we fed the three techniques with the
cleaned set of training data. For different business trans-
action types, individual models were trained. For the sake
of demonstration, we limited our analysis to the ten most
frequently used business transactions within the module of
sales and distribution. Model error metrics are provided in
the following for each business transaction.

Model Evaluation

In this section, the evaluation of the performance model
and the anomaly detection model is presented. We relied
on different approaches based on the considered scenario.
For evaluating the performance model, we relied on k-fold
cross-validation on separate training sets with k = 5. How-
ever, anomaly detection usually is an unsupervised learning

SN Computer Science (2022) 3:26	 Page 7 of 15  26

SN Computer Science

task. Especially when it comes to field evaluation, this task is
usually required to be performed using unlabeled data as we
present in this paper using real monitoring data. However,
many anomaly detection algorithms are evaluated using pre-
labeled datasets, such as KDD CUP 99 and similar datasets
[19]. To evaluate the applicability of considered machine
learning techniques for detecting anomalies in real workload
datasets, we must rely on expert knowledge. For implemen-
tation and execution, we relied on the publicly available,
open source reference algorithm implementations [54].

Performance Prediction Model

Typical error metrics that support the analysis of a model’s
accuracy include the mean absolute error (MAE), the mean
absolute percent error (MAPE), the root mean squared error
(RMSE), and the coefficient of determination ( R2 ). While
the RMSE may be compared to the standard deviation within
the training data, R2 describes the relation between the dis-
tances of measured and predicted values and measured val-
ues and their average. Hence, the closer R2 to one, the better
the model. All mentioned metrics were calculated as part
of model evaluation after appropriate hyperparameter opti-
mization, feature selection, and normalization. Acceptable
thresholds of errors are domain-specific and must be defined
by the modeler for a specific use case. In capacity manage-
ment, errors below 30% are generally acceptable for model-
based strategies [1, 47].A simple way to compare model
accuracy independent of the input data’s magnitude, specific
to regression use cases, was proposed by [6] as Regression
error characteristics (REC) curve. It was also used, e.g., by
[41]. The REC curve enables to read the frequency in which
a defined threshold of error was met during model testing.
Hence, the capacity manager may identify a tolerance level
of the error on the x-axis of Fig. 1.

The y-axis shows the percentage of records which were
predicted with an error below this value. The REC curve
in Fig. 1 refers to the models for the most frequently used
transaction type. In our data set, that is the transaction to
change sales orders. As shown, the most accurate predictions
were provided by AdaBoost. Here, the targeted level of error
( < 30% ) was met in around 80% of the cases. Worst results
were obtained using SVMs in conjunction with a polynomial
kernel (MAPE = 39.30%). Here, the RBF performed signifi-
cantly better with a MAPE of 25.90% . In our tests, Random
forests provide acceptable accuracy without much tuning,
using 500 trees and a subset of p/3 features which are tested
to decide for a tree split where p represents the total number
of features. In order to allow for the interpretation of the
approach with respect to generalization, Table 2 shows the
MAPE for the two best performing model types AdaBoost
and Random forest, grouped by the ten most frequently
used business transactions. While AdaBoost provides mean
percentage errors below 30% in all cases, Random forest
achieves the tolerance level in 3 out of 10 cases only. Con-
sequently, a Boosting strategy which utilizes trees with a
small depth (stumps) seems to be beneficial for predicting
mean response times of EAs on the basis of monitoring data.
As machine learning models are supposed to generalize to
unseen data, the trained model may be used in various sce-
narios where performance is to be estimated.

Anomaly Detection Model

For detecting anomalies, we adopted four machine learning
techniques, namely, Isolation forest [40], Elliptic envelope
[57], Local outlier factor [9] and one-class SVM with non-
linear kernel (RBF) [63]. We evaluate the performance of
these techniques for detecting anomalies by training two
types of models for each.

Fig. 1   REC curves for the busi-
ness transaction to change sales
orders

0 20 40 60 80 100

0
20

40
60

80
10

0

Absolute Percent Error

Ac
cu

ra
cy

Random Forest
SVM with Polynomial Kernel
SVM with Radial basis function Kernel
Boosted Trees with Adaboost

	 SN Computer Science (2022) 3:2626  Page 8 of 15

SN Computer Science

First, we construct generalized models which were trained
on the monitoring data for all available system landscapes at
the same time, while taking into account the data preparation
described in “Training data”. This model type incorporates
data not only from the specific single system landscape but
expands the pool of statistical data for the models to the
industry-wide level.

Second, we train the investigated algorithms to get mod-
els that are specific for each landscape and have no knowl-
edge about any other system landscape (single models). The
main narrative behind this analysis is to observe the percent-
age of intersected detected anomalies in both scenarios. A
high percentage of intersections in the detected anomalies
between the single model and the generalized model would
increase the confidence in the obtained results. This implies
that the applied machine learning techniques are trained

on sufficient monitoring data to detect the anomalies in the
desired system landscape successfully.

Additionally, different values for the relevant hyperpa-
rameters of the considered machine learning techniques are
tested to draw conclusions about their utility. In this con-
text, the tuned hyperparameters fundamentally control the
threshold that clusters data points as normal or anomaly data
points. Specifically, contamination for isolation forest, ellip-
tic envelope, and local outlier factor. One-class SVM was
tuned with � hyperparameter.

The computational results are presented in Table 3. In the
table we present the percentage of data points in the entire
considered dataset that was detected as anomalous by our
selected algorithms in generalized and single modes at dif-
ferent hyperparameter values. Additionally, we present the
percentage of the total number of data points that are were
commonly detected by both generalized and single models
at each algorithm and hyperparameter combinations. The
generalized and the single models that are based on Isola-
tion forest and Elliptic envelope reported good results for
detecting anomalies. 95.3% of the detected anomalies by
the single model of Isolation forest are also detected by the
generalized model of the same algorithm. Similarly, 97.4%
of the detected anomalies by the single model of Elliptic
envelope are also detected by the generalized model of the
same algorithm. Oddly, the generalized model of the Local
outlier factor algorithm results in a more restrictive detec-
tion of anomalies in contrast to Isolation forest and Elliptic
envelope generalized models. In addition, the percentage of
intersections in the detected anomalies in the generalized
model and the single model is fairly low around 57% . This

Table 2   Mean absolute percent errors

Business transaction Random forest AdaBoost

Create sales order 32.30 25.26
Change sales order 26.08 19.57
Display sales order 28.19 22.93
List of sales orders 26.44 21.95
Create billing document 39.04 28.66
Change billing document 38.97 29.34
Display billing document 33.74 25.75
Create outbound delivery 35.59 26.45
Change outbound delivery 36.25 27.01
Display outbound delivery 36.53 27.38

Table 3   Comparison of the selected anomaly detection algorithms

Algorithm Hyper-parameter Generalized
model (%)

Single model (%) Common
detected (%)

Intersection (%)

Isolation forest 0.1 14.31 10.01 9.55 95.41
0.05 9.24 5.01 4.69 93.70
0.01 1.89 1.01 0.96 94.81
0.005 0.92 0.51 0.5 97.44

Elliptic envelope 0.1 12.89 10.01 9.63 96.19
0.05 9.73 5.01 5.01 100
0.01 2.22 1.01 1 98.7
0.005 1.09 0.51 0.49 94.87

Local outlier factor 0.1 5.74 9.39 4.06 43.62
0.05 2.34 4.76 1.46 30.58
0.01 0.49 0.89 0.24 26.47
0.005 0.25 0.43 0.13 30.30

One-class SVM (RBF kernel) 0.1 56.61 53.86 30.69 56.98
0.05 47.25 39.21 19.22 49.01
0.01 54.2 52.25 27.56 52.75
0.005 44.15 57.48 27.48 47.82

SN Computer Science (2022) 3:26	 Page 9 of 15  26

SN Computer Science

implies that the nature of the detected anomalies by the gen-
eralized model is largely different from the one found by the
single model. Therefore, the confidence in the result of this
model cannot be guaranteed. Finally, the performance of the
one-class SVM was not sufficient for detecting anomalies in
the considered data.

Direct comparison of the anomalies detected by isolation
forest and elliptic envelope algorithms indicates that both of
the algorithms have a high degree of agreement. Results of
such comparison for a single model are presented in Fig. 2
and for generalized model in 3. Specifically, 78.9% of anom-
alies that were detected by a single model of isolation forest
were also detected by the single model of elliptic envelope.
A higher degree of agreement was displayed by the general-
ized models, where 86.5% of the anomalies detected by the
isolation forest, were also detected by the elliptic envelope.

We have conducted the hyperparameter evaluation, pre-
sented in Table 3 considering only the performance metrics,
excluding the temporal features because analysis for anom-
aly detection performed only on a time series with a limited
span of 2 weeks. It’s important to note that the inclusion of
the temporal features from the model did not result in radical
differences in the detection of anomalies in the considered
evaluation dataset. The percentage of detected anomalies
had no significant differences in both cases. The difference
between the sets of discovered anomalous data points did
not exceed 4%. The only exception is isolation forest at 0.1
contamination value in a single model, where the difference
between considering and not considering temporal features
led to up to 34% difference in the resulted datasets, however,
in both cases, the number of detected anomalies was exces-
sively high, rendering the model impractical to use for any
meaningful analysis. However, as can be seen from Figs. 2

and 3 the considered workload clearly correlates to office
hours. Interestingly, if we consider a workload with a highly
regular pattern, such as an automated task executed on a
schedule.

It is clear that the isolation forest, without considering
temporal features in highly regular workloads managed to
detect data points that clearly located outside of the regular
response time values, while the inclusion of these features
resulted in detection of false positive.

Exclusion of the temporal features in elliptic envelope led
to failure in detecting any anomalies at all for the given con-
tamination value of 0.005. However, increasing the contami-
nation value for elliptic envelope without including temporal
features, resulted in the detection values similar to these of
discussed above for isolation forest. Inclusion of temporal
features again led to detection of many false positives.

From this evaluation of inclusion or exclusion of temporal
features, we can draw the conclusion that the inclusion of
these features in anomaly detection limited to a short time
series is counterproductive. There is not enough statistical
data within our use case in a time series spanning 2 weeks
for the considered algorithms to establish strong time bound
relationships.

Model Application

Performance Prediction Model

To investigate the utility and applicability, we applied the
trained models in three capacity management scenarios,
which were introduced in “Capacity management scenarios”. Fig. 2   Compare isolation forest with elliptic envelope: Single model

Fig. 3   Compare isolation forest with elliptic envelope: generalized
model

	 SN Computer Science (2022) 3:2626  Page 10 of 15

SN Computer Science

The following subsections exemplify practical use cases for
each of the scenarios.

Server sizing As part of the service design, it is the objec-
tive of the sizing process to identify sufficient hardware com-
ponents for given business requirements. We illustrate this
scenario using the example of an SAP ERP system, which
is distributed vertically on an application server and a data-
base server. In the current server configuration, the system
provides mean response times around 800 ms under regular
load conditions (load factor = 1). However, in times of load
peaks, response times increase to more than 1.400 ms. To
address this issue, the capacity planner invokes a sizing pro-
cess which considers a number of alternative configurations.

The decision maker is interested to know the effect of
certain hardware upgrades on both the application and the
database layer before their actual deployment. If measure-
ment-based and classical model-based approaches are too
expensive due to the setup of a test system and the costs of
modeling, a machine learning-based approach may serve as
a cost-effective black-box approach. For the sake of demon-
stration, we transformed the alternative hardware configura-
tions into features of the previously trained models. Mean
prediction results are shown in Fig. 4 and allow for com-
parison of change effects. In accordance with historical load
profiles and future business requirements, upgrade decisions
may be supported. For example, the concept of a Pareto front
may be utilized to identify non-dominated solutions which
maximize performance and minimize investment costs.

Load testing Similar to the sizing scenario, alternative
load profiles may represent input features to the prediction
model. Since performance-related service level agreements
(SLA) typically invoke penalty costs for requests which do
not meet performance objectives, the prediction results can
be utilized to minimize the number (and costs) of SLA vio-
lations. To demonstrate the scenario, we define a sample
percentile-based SLA which invokes penalty costs c

sla
 of

150 $ for every percentage point of requests which were not
processed within less than one second. An additional dead-
line constraint d

2
 requires all requests to be processed within

1.500 ms; respective designs that cause higher response
times are to be rejected.

To predict the expected level of SLA fulfillment, we
applied the performance models on historical log data with
varying load attributes. As a result, Table 4 lists penalty
costs which may be associated with each of the load fac-
tors. If deadline constraint d

2
 applies, load factors of 2 and

above cannot be served by the design under study. Hence,
additional design alternatives are to be considered. On the
basis of the prediction results, Fig. 5 shows the expected
number of SLA violations for each of the designed alter-
natives for historical (load factor = 1) and alternative load
scenarios. Each design alternative is characterised by the
amount of SAPS it may handle (cf. “Training data”), as used

in SAP-based environments to describe a system’s through-
put in a hardware agnostic manner. As can be seen, addi-
tional capacity generally reduces the risk of SLA violations.
However, in our example, improvements are more significant
for higher load scenarios. Hence, decisions are to be made
in accordance with the business strategy and expected levels
of future workload [48].

Server consolidation In the course of server consolida-
tion efforts, service relocation may affect overall service per-
formance. In this regard, the evaluated performance model
supports questions similar to the following ITIL example:
“What if service B is moved from the current server onto a
new server? What will be the effect on the response times
[...]?” [31, p. 173] Server consolidation problems are known
to be NP-hard; they typically introduce a large solution space

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5

M
ea

n
re

sp
on

se
�m

e
pe

r D
S

in
 m

s

Load factor

Actual Configura�on Upgraded Configura�on

Average App & DB Server High End App Server

High End DB Server High End App & DB Server

Fig. 4   Predicted mean levels of performance for alternative server
designs

Table 4   Penalty costs for alternative load factors

Load factor Violated
hours
( d

2
)

Fulfill-
ment
degree

Violation degree Penalty costs

1 0 99.32 0.68 0
1.25 0 98.47 1.53 229.5
1.5 0 94.04 5.96 894
1.75 0 73.94 26.06 3,909
2 1 42.59 57.41 8,611.5
2.25 2 25.21 74.79 11,218.5

SN Computer Science (2022) 3:26	 Page 11 of 15  26

SN Computer Science

which cannot be explored manually [7, 50]. Hence, solution
candidates are identified, e.g., by means of heuristics and
metaheuristics. Models, as constructed in “Training data”,
allow to integrate performance aspects into the problem for-
mulation. A simple example is illustrated in Fig. 6.

Here, three design alternatives were computed by a
metaheuristic, which belongs to the class of grouping
genetic algorithms (GGA), as part of a preceding field study,
presented in [48]. To test the performance effects of these
solution candidates before their deployment, we fed our per-
formance model with the resulting allocations of services
(and their workload profiles) to servers (and their hardware
characteristics). In Fig. 6, Design A represents a solution
of lowest capacity and high server utilization. In contrast,
Design C provides highest amount of capacity with a rather
low mean utilization. In terms of utilization and capacity,
Design B lies between A and C. According to the box plots
in Fig. 6, higher capacity leads to more stable designs with
less variance across the predicted response times. Design
C seems to be beneficial, particularly for higher workloads,
and reliably catches load peaks. The scenario demonstrates
how machine-learning enables to integrate additional deci-
sion values into server consolidation problems. Illustrations
similar to the one in Fig. 6 effectively reveal change effects.
As a result, a great amount of uncertainties is eliminated and
decisions remain subject to the risk attitude of the decision
maker.

0

100

200

300

400

30000 40000 50000 60000
Server Capacity in SAPS

Pr
ed

ic
te

d
N

um
be

r o
f S

LA
 V

io
la

tio
ns

Load Factor
1

1.25

1.5

1.75

2

2.25

Fig. 5   Prediction of SLA violations for alternative designs

400

800

1200

1600

A B C
Design

R
es

po
ns

e
Ti

m
e

Load Factor

1

1.25

1.5

1.75

2

2.25

Fig. 6   Consolidation alternatives and their effect on the service performance

	 SN Computer Science (2022) 3:2626  Page 12 of 15

SN Computer Science

Anomaly Detection Model

A typical anomaly detection application is to discover mali-
cious attacks on the IT infrastructure or possible hardware
failures. In addition, anomaly detection can be applied
within the context of capacity management for standard
enterprise applications to avoid sudden degradation in per-
formance. Anomalous peaks in response time for different
services and transactions should be evaluated to design the
appropriate reactive measures. Even within a short observa-
tion period, a peak that occurs in a specific day and time, can
be a single-time event or, in fact, a rare but recurrent spike.
The use of anomaly detection algorithms allows for clear
identification of such spikes at various tasks running within
the landscape, as well as a correlation between the response
time duration between these.

In Fig. 7, we demonstrate the application of the designed
anomaly detection approach on the top transaction type.
From this representation, we can clearly observe a detected
anomalous spike in response time using, for instance, Isola-
tion forest. We also observed similar behaviour in five more
top transaction types in the same landscape. A clear cor-
relation between the increase of response time for different
transaction types, most likely indicates a design problem,
which requires the attention of the capacity planner to avoid
degradation in the overall performance of the system.

The suggested anomaly detection model can be eventually
applied to all business-critical transactions to avoid degra-
dation in performance. Detected anomalies in the system
can be used by the capacity planner in the forms of warning
notifications if those spikes exceed some predefined thresh-
old of response time. Eventually, an increase in response

time might lead to violations in the signed SLAs. Based on
the suggested system landscape design, the capacity plan-
ner need to react to such reoccurring peaks in the workload
through, for instance, triggering a new server sizing process.

Conclusion

In this paper, we investigated various machine learning tech-
niques to address different issues in the field of capacity
management. Our two-fold analysis showed a successful
utility of different machine learning techniques to predict
performance and detect anomalies in response time of EAs.
In a scenario-based evaluation, the application of machine
learning-based techniques could be demonstrated for the
domain of service capacity management. Performance
model as well as anomaly detection model that are trained
on a variety of monitoring data are evaluated to provide suf-
ficient accuracy to support decisions in the field of sizing,
load testing, server consolidation, and anomaly detection.
For COTS EAs, a Boosting strategy has proven to depict
existing patterns in the data most effectively. As for anom-
aly detection, Isolation forest and elliptic envelop delivered
correlated results between the generalized model and single
model, which increase the confidence in the obtained results.
In addition, a general agreement on the detected anomalies
through both techniques is observed, which in turn validates
more with expert knowledge the anomalous nature of the
detected points.

Across ten frequently used business transactions, Ada-
Boost has constantly shown mean absolute percent errors
below 30% when predicting the mean hourly response time
per dialog step for SAP enterprise applications. In addition,
Isolation forest is utilized to detect anomalies of response
time in all transactions and presented exemplary results for
six top used transactions. Due to the black-box nature of the
approach, costs of classical white-box modeling are elimi-
nated, and the dominating measurement-based approaches
are complemented by a less expert-driven and more data-
driven strategy. Therefore, the findings may be utilized by
consultancy organizations to establish cost-effective and
profound capacity management services.

Limitations and Future Work

In the investigated scenarios, the performance was ana-
lyzed on the level of business transactions. Hence, the most
relevant transaction types are to be provided by the deci-
sion maker. It is subject to future research to generalize the
transaction-based approach to higher levels such as applica-
tion instance or overall system performance. However, for
detecting anomalies of response time, all transactions are

Fig. 7   Application of anomaly detection on the top transaction type
in a landscape

SN Computer Science (2022) 3:26	 Page 13 of 15  26

SN Computer Science

analyzed. Furthermore, the performance prediction tech-
nique may be integrated into well-known problems in the
domain of capacity management. For example, prediction
models may be applied by metaheuristics during fitness
evaluation of alternative designs. As for anomaly detection,
the current analysis is rather designed and can be used as a
reactive measure to avoid major degradation in the overall
performance of the system. It is of a major interest to extend
the current implementation to address real-time anomaly
detection on standard enterprise applications. We encour-
age other researchers and practitioners to push forward the
outlined research direction to make ML-based performance
evaluation to become an integral part of various capacity
management exercises.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Declarations 

Conflict of interest  On behalf of all authors, Hendrik Müller states that
there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Almeida VA (2002) Capacity planning for web services tech-
niques and methodology. In: IFIP international symposium on
computer performance modeling. Measurement and evaluation.
Springer, Berlin, pp 142–57.

	 2.	 Balsamo S, Marco AD, Inverardi P, Simeoni M. Model-based
performance prediction in software development: a survey. IEEE
Trans Software Eng. 2004;30(5):295–310.

	 3.	 Becker S, Grunske L, Mirandola R, Overhage S. Performance
prediction of component-based systems. In: Architecting systems
with trustworthy components. Berlin: Springer; 2006. p. 169–92.

	 4.	 Becker S, Koziolek H, Reussner R. The palladio component
model for model-driven performance prediction. J Syst Softw.
2009;82(1):3–22.

	 5.	 Bertolino A, Mirandola R (2004) Cb-spe tool: putting component-
based performance engineering into practice. In: International
symposium on component-based software engineering. Springer,
pp 233–48.

	 6.	 Bi J, Bennett KP (2003) Regression error characteristic curves.
In: Proceedings of the 20th international conference on machine
learning (ICML-03), pp 43–50.

	 7.	 Bichler M, Setzer T, Speitkamp B (2006) Capacity planning for
virtualized servers. In: Workshop on information technologies and
systems (WITS), Milwaukee, WI, USA.

	 8.	 Bondarev E, de With P, Chaudron M, Muskens J (2005) Model-
ling of input-parameter dependency for performance predictions
of component-based embedded systems. In: 31st EUROMICRO
conference on software engineering and advanced applications,
IEEE, pp 36–43.

	 9.	 Breunig MM, Kriegel HP, Ng RT, Sander J. Lof: identifying
density-based local outliers. SIGMOD Rec. 2000;29(2):93–104.

	10.	 Brosig F, Huber N, Kounev S. Architecture-level software perfor-
mance abstractions for online performance prediction. Sci Comput
Program. 2014;90:71–92.

	11.	 Brunnert A, Krcmar H. Continuous performance evaluation and
capacity planning using resource profiles for enterprise applica-
tions. J Syst Softw. 2015;123:239–62.

	12.	 Brunnert A, van Hoorn A, Willnecker F, Danciu A, Hasselbring
W, Heger C, Herbst N, Jamshidi P, Jung R, von Kistowski J, et al
(2015) Performance-oriented devops: a research agenda. arXiv:​
15080​4752.

	13.	 Caruana R, Niculescu-Mizil A (2006) An empirical comparison
of supervised learning algorithms. In: Proceedings of the 23rd
international conference on Machine learning, ACM, pp 161–8.

	14.	 Chapman P, Clinton J, Kerber R, Khabaza T, Reinartz T, Shearer
C, Wirth R (2000) Crisp-dm 1.0 step-by-step data mining guide.
resreport, The CRISP-DM consortium. https://​www.​the-​model​
ing-​agency.​com/​crisp-​dm.​pdf.

	15.	 Chaudhuri S, Narasayya V, Ramamurthy R (2004) Estimating pro-
gress of execution for SQL queries. In: Proceedings of the 2004
ACM SIGMOD international conference on Management of data,
ACM, pp 803–14.

	16.	 Chen S, Gorto, Liu A, Liu Y (2002) Performance prediction of
cots component-based enterprise applications. In: ICSE work-
shop. 5th CBSE, Citeseer.

	17.	 Chen S, Liu Y, Gorton I, Liu A. Performance prediction of com-
ponent-based applications. J Syst Softw. 2005;74(1):35–43.

	18.	 Cherkasova L, Ozonat K, Mi N, Symons J, Smirni E. Automated
anomaly detection and performance modeling of enterprise appli-
cations. ACM Trans Comput Syst. 2009;27(3):6.

	19.	 Divekar A, Parekh M, Savla V, Mishra R, Shirole M (2018)
Benchmarking datasets for anomaly-based network intrusion
detection: Kdd cup 99 alternatives. In: 2018 IEEE 3rd interna-
tional conference on computing. IEEE: communication and secu-
rity (ICCCS), pp 1–8.

	20.	 Duan R, Nadeem F, Wang J, Zhang Y, Prodan R, Fahringer T
(2009) A hybrid intelligent method for performance modeling
and prediction of workflow activities in grids. In: Proceedings
of the 2009 9th IEEE/ACM international symposium on cluster
computing and the grid, IEEE Computer Society, pp 339–47.

	21.	 Frey CB, Osborne MA. The future of employment: how suscep-
tible are jobs to computerisation? Technol Forecast Soc Chang.
2017;114:254–80.

	22.	 Ganapathi A, Kuno H, Dayal U, Wiener JL, Fox A, Jordan M,
Patterson D (2009) Predicting multiple metrics for queries: bet-
ter decisions enabled by machine learning. In: Data engineering,
2009. ICDE’09. IEEE 25th international conference on, IEEE, pp
592–603.

	23.	 Gimpel H, Röglinger M (2015) Digital transformation: changes
and chances-insights based on an empirical study. Resreport,
Fraunhofer Institute for Applied Information Technology. https://​
eref.​uni-​bayre​uth.​de/​29908/.

	24.	 Gmach D, Krompass S, Scholz A, Wimmer M, Kemper A. Adap-
tive quality of service management for enterprise services. ACM
Trans Web. 2008;2(1):8.

	25.	 Goudarzi H, Ghasemazar M, Pedram M (2012) Sla-based opti-
mization of power and migration cost in cloud computing. In:

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/150804752
http://arxiv.org/abs/150804752
https://www.the-modeling-agency.com/crisp-dm.pdf
https://www.the-modeling-agency.com/crisp-dm.pdf
https://eref.uni-bayreuth.de/29908/
https://eref.uni-bayreuth.de/29908/

	 SN Computer Science (2022) 3:2626  Page 14 of 15

SN Computer Science

Proceedings of the 2012 12th IEEE/ACM international sympo-
sium on cluster, cloud and grid computing (CCGRID 2012), IEEE
Computer Society, pp 172–9.

	26.	 Gupta C, Mehta A, Dayal U (2008) PQR: Predicting query execu-
tion times for autonomous workload management. In: Autonomic
computing, 2008. ICAC’08. International conference on, IEEE,
pp 13–22.

	27.	 Hevner AR, March ST, Park J, Ram S. Design science in informa-
tion systems research. Manag Inf Syst Q. 2004;28(1):75–105.

	28.	 Heyme R, Menge AM (2017) Digitalisierung in Sachsen-Anhalt
erfolgreich gestalten. https://​libra​ry.​fes.​de/​pdf-​files/​bueros/​sachs​
en-​anhalt/​13749.​pdf. Accessed 14 Jan 2019.

	29.	 Huang L, Jia J, Yu B, Chun BG, Maniatis P, Naik M (2010) Pre-
dicting execution time of computer programs using sparse poly-
nomial regression. In: Advances in neural information processing
systems, pp 883–91.

	30.	 Huch F, Golagha M, Petrovska A, Krauss A (2018) Machine
learning-based run-time anomaly detection in software systems:
An industrial evaluation. In: IEEE workshop on machine learn-
ing techniques for software quality evaluation (MaLTeSQuE),
IEEE, pp 13–8.

	31.	 Hunnebeck L, Rudd C, Lacy S, Hanna A (2011) ITIL service
design. The Stationery Office (TSO).

	32.	 Ibidunmoye O, Hernández-Rodriguez F, Elmroth E. Perfor-
mance anomaly detection and bottleneck identification. ACM
Comput Surv. 2015;48(1):1–35.

	33.	 Kappler T, Koziolek H, Krogmann K, Reussner RH. Towards
automatic construction of reusable prediction models for
component-based performance engineering. Softw Eng.
2008;121:140–54.

	34.	 Krogmann K, Kuperberg M, Reussner R. Using genetic
search for reverse engineering of parametric behavior mod-
els for performance prediction. IEEE Trans Softw Eng.
2010;36(6):865–77.

	35.	 Kuperberg M, Krogmann K, Reussner R (2008) Performance pre-
diction for black-box components using reengineered parametric
behaviour models. In: International symposium on component-
based software engineering. Springer, pp 48–63.

	36.	 Kwon D, Kim H, Kim J, Suh SC, Kim I, Kim KJ. A survey of
deep learning-based network anomaly detection. Clust Comput.
2019;1–13.

	37.	 Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M. Industry 4.0.
Bus Inf Syst Eng. 2014;6(4):239–42.

	38.	 Lee J, Kao HA, Yang S. Service innovation and smart analytics for
industry 4.0 and big data environment. Proced Cirp. 2014;16:3–8.

	39.	 Lilja DJ. Measuring computer performance: a practitioner’s guide.
Cambridge: Cambridge University Press; 2005.

	40.	 Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: 2008
eighth IEEE international conference on data mining, IEEE, pp
413–22.

	41.	 Matsunaga A, Fortes JA (2010) On the use of machine learning
to predict the time and resources consumed by applications. In:
Proceedings of the 2010 10th IEEE/ACM international conference
on cluster, cloud and grid computing, IEEE Computer Society, pp
495–504.

	42.	 Matt C, Hess T, Benlian A. Digital transformation strategies. Bus
Inf Syst Eng. 2015;57(5):339–43.

	43.	 Menascé DA. Automatic QOS control. IEEE Internet Comput.
2003;7(1):92–5.

	44.	 Menascé DA. Composing web services: a QOS view. Internet
Comput IEEE. 2004;8(6):88–90.

	45.	 Menascé DA, Almeida VA. Capacity planning for web services:
metrics, models, and methods. Upper Saddle River: Prentice Hall;
2002.

	46.	 Menascé DA, Ngo P (2009) Understanding cloud computing:
experimentation and capacity planning. In: International confer-
ence on CMG conference.

	47.	 Menascé DA, Almeida VA, Dowdy LW, Dowdy L. Performance
by design: computer capacity planning by example. Upper Saddle
River: Prentice Hall Professional; 2004.

	48.	 Müller H (2019) Multi-dimensional server consolidation for
commercial off-the-shelf enterprise applications using shared
performance counters. PhD thesis, Otto von Guericke University
Magdeburg.

	49.	 Müller H, Turowski K (2015) Big data on performance logs—a
collaborative monitoring cloud for ERP systems. In: Proceedings
on the international conference on internet computing (ICOMP),
the steering committee of the world congress in computer science,
computer engineering and applied computing (WorldComp), p 75.

	50.	 Müller H, Bosse S, Turowski K (2016) Optimizing server consoli-
dation for enterprise application service providers. In: Proceed-
ings of the 2016 Pacific Asia conference on information systems.

	51.	 Müller H, Bosse S, Turowski K. Capacity management as a
service for enterprise standard software. Complex Syst Inform
Model Q. 2017;2:1–21.

	52.	 Müller H, Bosse S, Turowski K (2019) On the utility of machine
learning for service capacity management of enterprise applica-
tions. In: 2019 15th international conference on signal-image
technology and internet-based systems (SITIS), IEEE, pp
274–81.

	53.	 Niehorster O, Krieger A, Simon J, Brinkmann A (2011) Auto-
nomic resource management with support vector machines. In:
2011 12th IEEE/ACM international conference on grid comput-
ing (GRID), IEEE, pp 157–164.

	54.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay E. Scikit-learn: machine learning in python. J Mach
Learn Res. 2011;12:2825–30.

	55.	 Pinheiro E, Bianchini R, Carrera EV, Heath T (2001) Load bal-
ancing and unbalancing for power and performance in cluster-
based systems. Tech. rep, Rutgers University.

	56.	 Pollock N, Williams R, Procter R. Fitting standard software
packages to non-standard organizations: the b́iographyóf
an enterprise-wide system. Technol Anal Strat Manag.
2003;15(3):317–32.

	57.	 Rousseeuw PJ, Driessen KV. A fast algorithm for the mini-
mum covariance determinant estimator. Technometrics.
1999;41(3):212–23. https://​doi.​org/​10.​1080/​00401​706.​1999.​
10485​670.

	58.	 Rüßmann M, Lorenz M, Gerbert P, Waldner M, Justus J, Engel
P, Harnisch M (2015) Industry 4.0: the future of productivity and
growth in manufacturing industries. Boston Consulting Group 9 .

	59.	 Salman T, Bhamare D, Erbad A, Jain R, Samaka M (2017)
Machine learning for anomaly detection and categorization in
multi-cloud environments. In: 2017 IEEE 4th international con-
ference on cyber security and cloud computing (CSCloud), IEEE,
pp 97–103.

	60.	 SAP (2015) Workload monitor (st03 or st03n). https://​wiki.​scn.​
sap.​com/​wiki/​pages/​viewp​age.​action?​pageId=​17472. Accessed
04 May 2021.

	61.	 SAP (2021a) Os collector saposcol. https://​help.​sap.​com/​viewer/​
9a987​5f060​404c4​4a84e​2bad1​181f8​0f/​LATEST/​en-​US/​4b631​
75094​c6486​9e100​00000​a4417​6f.​html. Accessed 04 May 2021.

	62.	 SAP (2021b) Sap benchmark glossary. https://​www.​sap.​com/​
about/​bench​mark.​html. Accessed 04 May 2021.

	63.	 Schölkopf B, Smola AJ, Williamson RC, Bartlett PL. New support
vector algorithms. Neural Comput. 2000;12(5):1207–45. https://​
doi.​org/​10.​1162/​08997​66003​00015​565.

https://library.fes.de/pdf-files/bueros/sachsen-anhalt/13749.pdf
https://library.fes.de/pdf-files/bueros/sachsen-anhalt/13749.pdf
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1080/00401706.1999.10485670
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=17472
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=17472
https://help.sap.com/viewer/9a9875f060404c44a84e2bad1181f80f/LATEST/en-US/4b63175094c64869e10000000a44176f.html
https://help.sap.com/viewer/9a9875f060404c44a84e2bad1181f80f/LATEST/en-US/4b63175094c64869e10000000a44176f.html
https://help.sap.com/viewer/9a9875f060404c44a84e2bad1181f80f/LATEST/en-US/4b63175094c64869e10000000a44176f.html
https://www.sap.com/about/benchmark.html
https://www.sap.com/about/benchmark.html
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565

SN Computer Science (2022) 3:26	 Page 15 of 15  26

SN Computer Science

	64.	 Somers TM, Nelson K (2001) The impact of critical success fac-
tors across the stages of enterprise resource planning implementa-
tions. In: System sciences, 2001. Proceedings of the 34th annual
Hawaii international conference on, IEEE, p 10.

	65.	 Tertilt D, Krcmar H (2011) Generic performance prediction for
ERP and SOA applications. In: ECIS.

	66.	 Tudenhöfner E (2011) Integration of performance management
into the application lifecycle. diplom.de.

	67.	 Venkataraman S, Yang Z, Franklin M, Recht B, Stoica I (2016)
Ernest: efficient performance prediction for large-scale advanced
analytics. In: 13th USENIX symposium on networked systems
design and implementation (NSDI 16), pp 363–78.

	68.	 Westermann D, Happe J, Hauck M, Heupel C (2010) The perfor-
mance cockpit approach: a framework for systematic performance
evaluations. In: Software engineering and advanced applications
(SEAA), 2010 36th EUROMICRO conference on, IEEE, pp 31–8.

	69.	 Wilhelm K (2001) Capacity planning for sap-concepts and tools
for performance monitoring and modelling. CMG J Comput
Resour Manag.

	70.	 Wilhelm K (2003) Messung und modellierung von sap r/3-und
storage-systemen für die kapazitätsplanung. PhD thesis, Univer-
sity of Duisburg-Essen.

	71.	 Williams LG, Smith CU (1998) Performance evaluation of soft-
ware architectures. In: Proceedings of the 1st international work-
shop on software and performance, ACM, pp 164–177.

	72.	 Yoo W, Larson K, Baugh L, Kim S, Campbell RH. ADP:
automated diagnosis of performance pathologies using
hardware events. ACM SIGMETRICS Perform Eval Rev.
2012;40(1):283–94.

	73.	 Zou Z, Xie Y, Huang K, Xu G, Feng D, Long D. A docker con-
tainer anomaly monitoring system based on optimized isolation
forest. IEEE Trans Cloud Comput. 2019;20:19.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Addressing IT Capacity Management Concerns Using Machine Learning Techniques
	Abstract
	Introduction
	Related Work
	Capacity Management Scenarios
	Training Data
	Model Evaluation
	Performance Prediction Model
	Anomaly Detection Model

	Model Application
	Performance Prediction Model
	Anomaly Detection Model

	Conclusion
	Limitations and Future Work
	References

