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Abstract
As the confidentiality and integrity of modern health infrastructures is threatened by intrusions and real-time attacks related 
to privacy and cyber-security, there is a need for proposing novel methodologies to predict future incidents and identify new 
threat patterns. The main scope of this article is to propose an advanced extension to current Intrusion Detection System 
(IDS) solutions, which (i) harvests the knowledge out of health data sources or network monitoring to construct models for 
new threat patterns and (ii) encompasses methods for detecting threat patterns utilizing also advanced unsupervised machine 
learning data analytic methodologies. Although the work is motivated by the health sector, it is developed in a manner that 
is directly applicable to other domains.
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Introduction

The landscape of cyber-attacks is wide and extremely 
diverse, since attacks differ in multiple dimensions, such as 
their source [18, 26], the technique details and actor [19, 32, 
33], the affected Open System Interconnection (OSI) layer 
[18] and the system infrastructure targeted [33]. The protec-
tion of any computing system encompasses the integrity, 
confidentiality and availability of its resources [17]; when 
these three security conditions are met, the system is con-
sidered safeguarded against intrusions.

To this end, organisations typically set up preventative 
infrastructures, with Intrusion Detection Systems (IDS) and 
Intrusion Prevention Systems (IPS) lying at their core. An 
IDS comes as a hardware or/and software-based solution 
responsible for the prompt detection of real-time attacks 
and notification of the system or administrators about the 
attempted intrusion [24]. IPSs are server- or appliance equip-
ment-based products that initiate the appropriate prevention 
responses to block the detected attack [24]. The real activity 
of an IPS starts when the role of an IDS finishes, that is, 
upon the detection of an intrusion, although some IPSs may 
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incorporate IDS functionalities like monitoring and attack 
detection [12]. However, such systems, and broader modern 
SIEM (Security Information and Event Management) solu-
tions, fall short in meeting modern requirements in modern 
health sector’s infrastructures, as will be illustrated shortly.

Background

Knowledge extraction from available data for identification 
of attacks is closely related to the attack detection approaches 
and techniques used in IDSs. The field of intrusion detection 
has been widely studied in literature and multiple techniques 
have been developed to address this challenging cyberworld 
problem. IDSs, seen from a research and industry perspec-
tive, are generally complex systems that vary across many 
dimensions, such as the source of audit data, applied detec-
tion techniques, provided decision-making functionalities 
and so on. According to [26], IDSs can be

–	 Host based, which are locally installed IDSs on host 
machines and act as agents constantly monitoring the 
individual host for malevolent activities, such as changes 
to critical system files, an unwanted sequence of sys-
tem calls, unusual CPU activity and more [9]. They are 
mainly concerned with events like process identifiers and 
system calls related to OS information [13].

–	 Network based, which are usually placed at strategic 
points of the network, such as gateways and routers, and 
monitor inbound and outbound traffic to detect possible 
attacks. Their focus is on network-related information, as 
for example traffic volume, IP addresses, service ports, 
protocols.

–	 Hybrid, which, combine features of the two categories 
above.

In terms of the methods and algorithms employed, a high-
level categorization of the detection approaches used in IDSs 
includes two types: misuse detection and anomaly-based 
detection [12, 26, 27]. Misuse detection deals with known 
attacks, while anomaly detection aims to recognize novel 
attacks.

A misuse detection IDS generates attack signatures (pro-
files) from previously known attacks, which serve as a ref-
erence to detect future attacks. The term “signature-based 
detection” is often used interchangeably with misuse detec-
tion [9, 18]. These systems provide accurate predictions of 
known attacks and demonstrate low false-positive rate. How-
ever, they are not capable of catching novel attacks. Another 
drawback of misuse detection is its reliance on the system for 
regular knowledge maintenance and constant updates. Tech-
niques for misuse detection can be further categorized as 
knowledge- and machine learning-based. Knowledge-based 
systems depend on predefined patterns and rules in order to 

audit network traffic and host logs [26]. In machine learn-
ing-based systems, models are trained based on established 
methodologies, e.g., Artificial Neural Networks (ANNs), 
Decision Trees (DTs), Support Vector Machines (SVMs), 
and so on [4]. These systems rely on training data; as such, 
their performance deteriorates in the absence of a labelled 
training set, rendering single classifiers inadequate to cope 
with zero-day and other unknown attacks [23] and [7].

Anomaly-based detection IDSs depend on learned normal 
patterns in order to flag any deviation from normality in 
scanned data as anomaly. IDSs designed for anomaly detec-
tion are based on the assumption that an attacker behaves 
differently from a normal user [6]. They perform behavioural 
modelling and are thus accurate and consistent in networks 
that follow static behavioural patterns [9]. In other cases, 
they show a high false-positive rate. Anomaly detection is 
implemented using statistical, knowledge-based or machine 
learning techniques [9, 13] and [18].

Motivation and Contributions

Our research is motivated by the current vulnerability of 
health sector’s infrastructures to threats related to privacy 
and cybersecurity. It is conducted in the context of the EU 
H2020 CUREX project, the main goal of which is to produce 
a novel, flexible and scalable situational awareness-oriented 
platform that can address comprehensively the protection 
of the confidentiality and integrity of health data focus-
ing on health data exchange cases [11]. The IDS solutions 
mentioned above are inadequate to address privacy-related 
threats combined with more commonly encountered cyber-
security risks.

Targeted example Imagine a scenario where an external 
audit detects that in a handful of cases, during transfer of 
personal health records, more personal data were revealed 
than necessary. What is the pattern that need to be monitored 
to avoid future occurrences, while not putting unnecessary 
burden on the system in terms of security measures? Modern 
IDS and SIEM systems do not include mechanisms for such 
cases that typically involve inappropriate system usage at 
multiple layers of a health IT system and call for techniques 
for pattern construction for threats not known a priori.

In this work, we propose a hybrid IDS that consumes 
both network monitoring logs and manually extracted times-
tamped annotated events that may refer to host machines as 
well. Our solution, termed as Knowledge Extraction Ana-
lytics (KEA) component, adopts methodologies to predict 
future incidents and identify new threat patterns. More 
specifically, it applies both misuse and anomaly detection 
techniques. In the misuse detection case, the techniques that 
have adopted are both knowledge and ML-based, while in 
the anomaly detection case, it uses ML-based techniques. 
The algorithms that we support are inspired by predictive 
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maintenance in Industry 4.0 [28, 29] and emphasize on (i) 
continuously monitoring for known patterns; (ii) continu-
ously monitoring for unusual behavior following an unsu-
pervised learning approach; and (iii) quick and easy model 
building for new threats at arbitrary combinations of system 
layers, provided that logs exist.

In summary, the novelty of our proposal lies in the novel 
application of items (ii) and (iii) above in a IDS system 
and on the provision of a unified solution for monitoring 
for known patterns, training for new attacks and detecting 
anomalous behavior without previous training. An addi-
tional strong point is that it can be easily combined with 
existing IDS solutions and transferred to other settings 
than the health sector. We explain the architecture and the 
main techniques, while we provide a reference prototype 
implementation.

The remainder of this article is structured as follows. In 
Sect.  2, we present the main functionality and the architec-
ture of our solution. The technical details are in Sects.  3 and 
4. In Sect. 5, we present the prototype implementation along 
with evaluation results. Additional related work is discussed 
in Sect. 6, while we conclude in Sect. 7.

Overview of Our Proposal

Functionality

The Knowledge Extraction Analytics (KEA) component har-
vests knowledge out of systems, sub-components and net-
work communication interfaces that deal with sensitive data 
sources (assets) to construct models and design methods 
capable of detecting threat patterns. Machine learning and 
broader data analytic methodologies are utilized to develop 
classification models for revealing vulnerabilities and profil-
ing threats; these models, along with known rules, are then 
used for runtime threat detection and prediction. In addition, 
runtime anomaly detection is continuously performed with-
out the need of any prior model training.

Semantically, KEA processes two types of input data: 

	rm 1.	infrastructure status logs and raw measurements of 
relevance; and

	rm 2.	timestamps of intrusion incidents and suspicious 
actions.

The former is received either through direct monitoring of 
assets, e.g., pcap files containing information about the net-
work traffic, or through post-processing and relying on other 
logging mechanisms, e.g., intrusion incidents logs provided 
by an existing SIEM suite. In terms of data formats, typi-
cally the status logs belong to a vocabulary of a length in 
the orders of thousands, while raw measurements are most 

commonly time-series of (multi-dimensional) points. This 
input data type is used to perform both complex event pro-
cessing (CEP) [10] and anomaly detection, and to train mod-
els capable of detecting new threats. The second type of 
input data concerns timestamps of suspicious actions and 
incidents not detected by the system. Along with the relevant 
logs, it is used to train additional models so that patterns for 
these threats are extracted as well.

Architecture

In this section, we introduce the architecture of the KEA 
component, analyze its individual modules and describe how 
they structure and communicate. Figure 1 shows the KEA 
architecture and its key modules.

The KEA analytics functionality introduced above is 
mainly implemented in three components: 

	rm 1.	Complex event processing-based threat detection 
(CEPTD),

	rm 2.	Machine learning-based threat detection (MLTD) and
	rm 3.	Outlier detection (OD).

More specifically, the CEPTD uses the Common Attack Pat-
terns Enumeration and Classification (CAPEC) [1] database 
as a source of predefined threat profiles for the construc-
tion of threat detection rules, used to process network traf-
fic metrics and audit logs from existing Intrusion Detection 
Systems (IDSs) to detect threats. The MLTD utilizes ML 
algorithms and more specifically, event-based prediction 
algorithms, which are trained with timestamped annotated 
events and intrusion incidents obtained by the systems that 
deal with health data, to identify new threat patterns, pre-
dict prominent threats and produce reports about the pat-
terns and the threats. The mapping of the identified threat 

Fig. 1   The KEA architecture
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patterns from the MLTD component to the CAPEC database 
is examined to provide a fully CAPEC-compatible analytics 
solution. Finally, the latter main KEA component, namely 
OD, encapsulates the outlier detection technique based on 
unsupervised learning. This mechanism acts as a comple-
mentary tool to the deployed CEPTD and MLTD subcompo-
nents to detect threats outside the CAPEC sphere. The final 
KEA solution is an ensemble one, as multiple algorithms 
are employed.

The output of the KEA component is in the form of pat-
terns describing threats and vulnerabilities and early detected 
or predicted intrusion incidents or preceding patterns, using 
the CEPTD, MLTD and outlier detection approach.

Apart from the main components implementing the ana-
lytics functionality, KEA, as a complete working system, 
comprises additional auxiliary modules. In the following, 
we present all the components of KEA as depicted in Fig. 1 
and their functionalities.

Machine learning-based threat detection (MLTD) com-
ponent The MLTD component combines multiple sources 
of information and uses event-based prediction algorithms 
to predict future incidents and identify new threat patterns 
to assist the IDS (intrusion detection system) rule genera-
tion process. More specifically, the MLTD aims to detect 
and predict current or prominent security threats of special 
importance and to identify new threat patterns combining 
timestamped annotated events and network traffic informa-
tion data. It conforms to the supervised machine learning 
paradigm, which implies that it requires (periodic) retrain-
ing. Multiple ML algorithms can be encapsulated in this 
component. Its main technique is transferred from Industry 
4.0 [28, 29].

CAPEC rules manipulation component This component 
is responsible for the mapping of the CAPEC rules to Com-
mon Vulnerabilities and Exposures (CVEs) and the gen-
eration of Suricata [3] compatible rules (see below). The 
CVE list1 provides a reference method for publicly known 
information-security vulnerabilities and exposures. In gen-
eral, this component assists the rule generation process for 
the IDS running in the CEPTD. Leveraging CAPEC rules is 
essential for both the systematic treatment of threats accord-
ing to the de facto standard approaches, and the exploitation 
of existing threat and vulnerability knowledge to the largest 
possible extent.

Complex event processing-based threat detection 
(CEPTD) component The CEPTD sub-component is based 
on a SELKS framework [3] installation, which is essentially 
a CEP system tailored to security issues, to identify online 
and report possible threats/intrusions. Specifically, the Suri-
cata part of the SELKS framework processes the input pcap 

files to identify threats based on a set of rules. Complex 
event processing techniques build upon trained models and 
are responsible for the online operation to detect/predict 
incidents and threats on the fly.

Outlier detection (OD) component. The OD component 
monitors the network traffic and uses stream processing 
methodologies for detecting anomalous behavior in a scala-
ble manner. Complementary, OD is applied offline to histori-
cal data for threat detection purposes and online, to detect 
suspicious behavior at runtime. In this setting, we employ 
unsupervised learning techniques, such as the MCOD tech-
nique [5, 21], to act in parallel with the supervised learning 
ones to support cases where training is not possible.

Event generation component This component extends the 
applicability of the afore-mentioned solutions not to work 
solely on annotated events but also on stream sensor data in 
the form of time series. The latter format is very common in 
several network monitoring applications [15].

Threat reporting component The threat reporting sub-
component is a Kibana-based [3] user interface, which vis-
ualizes the identified threat patterns from the MLTD, and 
the detected events from the CEPTD and OD components.

Controller component The orchestration of all the previ-
ously presented components along their communication is 
handled by the controller (CTRLER) component (not shown 
in Fig.  1). This components offers three main services: (i) 
an API providing the needed endpoints for the data exchange 
and the execution handling of the KEA components, (ii) a 
time series database for the persistent storage of the pro-
cessed information needed for the training of the ML models 
of the MLTD sub-component, and (iii) a message queueing 
system for the exchange of the processed information serv-
ing the online analysis needs.

Based on the above, existing IDS functionality is covered 
by CEPTD. The main novelty of our methodology is that 
CEPTD is accompanied by MLTD and OD, which are exam-
ined in more detail in the next two sections, respectively. 
Also, the CAPEC rule manipulation and event generation 
components provide extra functionality.

Identifying and Detecting Threats

This section describes our novel approach to (i) identifying 
new threat patterns inspired by techniques used in predictive 
maintenance for Industry 4.0 [22, 28, 29] and (ii) applying 
CAPEC-compliant CEP and exploiting publicly available 
threat profile repositories.

Extracting New Threat Patterns from Logs

As discussed in Sect. 2, the MLTD sub-component applies 
event-based prediction algorithms to predict future incidents 1  https​://cve.mitre​.org/

https://cve.mitre.org/
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and identify new threat patterns that will contribute to the 
rule generation process. Event-based prediction is a well-
studied field of machine learning, where series of events 
are fed into prediction models to estimate the occurrence of 
an unwanted incident. Event-based prediction is based on 
the assumption that there exist preceding patterns of “warn-
ing” events before the occurrence of a security incident with 
special severity. Hence, identifying and training on these 
patterns may assist the avoidance of such incidents.

One of the key roles of KEA is to obtain event logs, such 
as the (timestamped) annotated events, whether these are 
extracted semi-automatically, e.g., from security experts 
accessing system logs, or automatically, as the output from 
IDSs. Having events obtained from various sources, we are 
able to apply event-based prediction approaches in order, 
at a first stage, to identify unknown threat patterns, and, at 
second stage, to predict security incidents at runtime and as 
we are going to explain in the following.

Pre‑processing Phase

There are two input requirements to apply our technique: 
(i) timestamped events, which essentially form a (partially 
ordered) sequence < E1,E2,E3,⋯ > , where Ei is a set of 
events with timestamp i and (ii) timestamps of occurrences 
of severe security incidents. Each event evx ∈ Ei belongs to 
a type, denoted by its annotation x, and the event dictionary, 
i.e., the domain of x, is large but finite. Initially, the collected 
events are partitioned into ranges defined by the occurrences 
of known security incidents of special severity, which will be 
called for the rest of this paper as target events [22]. These 
ranges are further partitioned into time segments, the size 
of which (i.e., minutes, hours, days) correspond to the time 
granularity of the analysis. The rationale behind the time 
segmentation is that the segments that are closer to the end 
of the range may contain suspicious events that are poten-
tially indicative of the target event (main threat). The goal 
is to learn a function that quantifies the risk of the targeted 
incident occurring in the near future, given the events that 
precede it. Once such a function is learned, then events are 
monitored on the fly to raise early alarms before the target 
event occurs.

The technique involves several pre-processing steps. 
First, one or more consecutive segments are grouped and 
the events they contain form a bag. Then each such group 
of coalesced segments ending at timestamp t is assigned a 
risk factor according to a sigmoid function F(t), which maps 
higher values to the segments that are closer to a security 
incident as it is presented in Fig.  2. The steepness and shift 
of the sigmoid function are configured to better map the 
expectation of the time before the incident at which cor-
related events will start occurring. This technique has been 
successfully applied in the aviation industry for predictive 

maintenance purposes [22] and is tested in other predictive 
maintenance cases in [28, 29].

A second step deals with dimensionality reduction. In 
practice, the event types are hundreds if not thousands. 
Essentially, each (coalesced) segment forms a vector 
(b1, b2,… , b|x|) , where each event type corresponds to a dif-
ferent dimension. The binary variables b1, b2,… , b|x| denote 
whether event types ev1, ev2,… , ev|x| appear in the segment, 
respectively. Therefore, to increase the effectiveness of the 
approach, standard preprocessing techniques can be applied: 
(i) very rare or very common events compared to the fre-
quency of the target events are pruned. (ii) Multiple occur-
rences of the same event in the same segment can either be 
noise or may not provide useful information; hence, multiple 
occurrences can be collapsed into a single one; this is done 
through the usage of binary variables. (iii) Standard feature 
selection (e.g., techniques like Relief) can also be used to 
further reduce the dimensionality of the data.

Finally, to deal with the imbalance of the labels (given 
that the actual security incidents are rare) and as several 
events appear shortly before the occurrence of the incident, 
but only a small subset of them is related to them, a Multiple 
Instance Learning (MIL) can be used for bagging the events 
and to facilitate the detection of the event patterns that can 
act as predictors. This rationale is implemented through con-
sidering more segments groups close to the target events; 
i.e., the data closer to the incidents (according to a specified 
threshold) are over-sampled, so that training is improved.

Model Training

The segmented data in combination with the risk quantifica-
tion values are fed into a Random Forests (RF) algorithm [8] 
as a training set to form a regression problem. More specifi-
cally, we have a set of segment vectors, each associated with 

Fig. 2   Examples of sigmoid functions for the risk assessment of the 
events
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a risk score, as given by the sigmoid function based on the 
timestamp the segment ends. The aim of the training is to 
learn the weights assigned to each vector dimension, i.e., 
to each event type. Having this dataset prepared, there are 
two options:

–	 the first one is to train a RF model with all the different 
types of target events;

–	 the second one is to train multiple RF models one for 
each one of the target event types.

The former provides a general solution capable of handling 
all the known incidents, while the latter provides more 
targeted solution for each type of target event. While the 
former is more practical and easier to handle, the latter is 
the most appropriate one for new threat identification. RF 
has an inherited capability of extracting the importance of 
the features based on two methods, namely mean decrease 
impurity and mean decrease accuracy [25]. Using one of 
these two methods, we are able to select the top-k important 
features identifying indirectly new threat patterns to create 
new rules for monitoring for specific threats. Overall, this 
allows, except from security incident detection and predic-
tion, the KEA component to offer a functionality of identi-
fying new threat patterns, which are not covered by known 
CVEs. This also explains our choice of RF, because we are 
also interested in combining the usage of a powerful tech-
nique with constructing a human-understandable pattern of 
the threat corresponding to the target events.

Transforming Time Series to Event Sequences

An optional functionality of the KEA component is the 
artificial event generation, so that the afore-mentioned tech-
nique, which requires event sequences as input, is applicable 
to time series data as well. To this end, an option could be 
to utilize a time-series discretization methodology, which 
generates events out of time series extracted from net-
work monitoring tools, following established techniques as 
described in [4].

However, we propose the application a novel time-series 
discretization methodology tailored to extracting patterns 
capable of predicting rare events [29]. Our key novelty is 
that, instead of classifying time-series as a discrete set of 
events, we map time-series to a sequence of artificial events 
thus placing no burden to security experts to annotate the 
sensor measurements or to select and deploy the most effi-
cient IDS. We only require information about the time of 
several critical incidents to train our methods, as previously.

To this end, we employ the Matrix Profile (MP) [2], which 
is a data structure that annotates time series. The application 
of the MP can provide efficient solutions to demanding data 
mining problems on time series. More specifically, problems 

with high complexity, such as anomaly detection and motif 
discovery can be reduced to trivial problems after applying 
MP. This methodology is based on the estimation of the 
(normalized) Euclidean distances between the subsequences 
of a time series to define similarities between them; these 
similarities in turn form the basis of several analytics tasks, 
as explained below.

For a time series T of length n, we estimate MP, which is 
a vector of length (n − PL + 1) , where PL is the predefined 
pattern length taken as a user-defined input parameter. MP(i) 
denotes the distance of the sub-sequence of length PL start-
ing at the ith position in T to its nearest neighbor. Any dis-
tance metric can be used, but as explained in [34], the default 
option is the z-normalized Euclidean distance. The MP vec-
tor is accompanied by the Matrix Profile Index (MPI), which 
is of same size as MP. MPI(i) keeps the pointer to the posi-
tion of the closest neighbor of the subsequence of length PL 
starting at T(i). The lower the values in the MP, the higher 
the similarity of the PL-size pattern beginning at the cor-
responding point to its closest neighbor.

With the help of the MP and MPI vectors, we transform 
T to a fully ordered sequence of events of length n − PL + 1 , 
i.e., each timestamp between PL and n is associated with a 
single event. To do so, we consider that the MPI is essen-
tially a directed graph, where each edge points to the most 
similar subsequence. We consider the MPI as a graph 
G = (V ,E) , where the V = v1, ..., vn denotes a set of nodes 
and E = e1, ..., ez defines the edges of the graph G weighted 
by the values in MP. In this graph, each vertex has exactly 
one outgoing edge. As a following step, we estimate the 
weakly connected components (sub-graphs) of the MPI 
graph and map each such component to a distinct artificial 
event, i.e., in this step, we disregard edge directions. We can 
either stop at this step or apply some pruning reasoning in 
order to shrink the number of generated events. The pruning 
refers to both edges with high weights and components with 
very few elements. Finally, every point of the time series 
that is part of a connected component is labeled by the id of 
that component; this id becomes the x annotation in evx . The 
generated set of artificial events is fed into the MLTD com-
ponent as all the other inputs, to be processed accordingly.

Leveraging Established Databases

The classification of detected threats using the knowledge 
extracted from the CAPEC database is another aspect of 
threat analysis. This is the result of a connection path, where 
a Suricata rule links to a CVE, then the CVE to a CWE and 
finally the CWE to a CAPEC.

More specifically, as already mentioned, the CEPTD 
component is based on the SELKS framework, which is a 
free and open source IDS/IPS platform and includes as a 
sub-component the Suricata system (see Fig. 3). Suricata 
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IDS supports two running modes, an online and an offline. In 
the online mode, the input to the threat detection mechanism 
is the real-time network traffic. On the other hand, in the 
offline mode, the input is a pcap file, i.e. a sequence of cap-
tured network packets for a specific time period. The latter 
is useful in cases such as profiling and evaluating new rules. 
For Suricata to log any suspicious activity, a mechanism 
called EVE is used. The EVE output facility outputs alerts, 
which may include metadata, file info and protocol specific 
records in JSON format. Alerts are essentially event records 
for rule matches. EVE can output to multiple methods, such 
as syslog and redis. However, the simplest approach is to 
store all alerts into a single file. Subsequently, third party 
tools such as Logstash can process this file.

Due to the constantly emerging CVEs and the complex 
relations among CAPECs and CWE (Common Weakness 
Enumeration)2 , there is no automatic way of linking a 
Suricata logged alert to a CAPEC category. Furthermore, 
a CAPEC could consist of other CAPECs (the same also 
applies for CWEs). This results into a non-intuitive end-to-
end connection. In most cases, further input by a domain 
expert is required. To this end, we have developed a semi-
automated mapping alternative.

An example is shown in Fig. 4. In this example, Suricata 
detects a threat based on the rule with id 2004408 which is 
linked with CVE-2007-1409 and concerns the WordPress 
platform. More specifically, it describes that WordPress 
allows remote attackers to obtain sensitive information via 
a direct request, which reveals the path in an error mes-
sage. This CVE in turn is linked directly with CWE-200 and 
with CWE-668, CWE-664 indirectly. Finally, using the most 
generic CWE, we can classify the threat to CAPEC-21. This 
is not the only possible mapping. For example, one could 
avoid CWE-664 and link CWE-668 with CAPEC-21. Each 

mapping mainly depends on the interpretation of the domain 
expert. However, it allows IT operators to use a globally 
accepted terminology.

Finally, in the context of KEA, we additionally employ 
the SELKS framework as follows:

Step 1: We receive the asset information from ADT.
Step 2: We then search CVE lists for relevant rules.
Step 3: We feed these rules to the SELKS framework for 
runtime detection.

To this end, we access publicly available repositories of pre-
identified Suricata rules.3

Outlier Detection

The KEA component incorporates an outlier detection (OD) 
approach to enhance its detection capabilities. The output 
of the detection tool is consumed internally by the MLTD 
component.

Outlier detection techniques are used to identify noise and 
anomalies in a dataset. In a streaming environment, because 
of the infinite nature of the data, detecting outliers needs 
to be done in combination with windowing techniques. A 
window splits the data stream into either overlapping or 
non-overlapping finite sets of data-points based either on the 
arrival of each point or the number of points. It is important 
to apply the OD process online in order to spot suspicious 
behaviour on time. Of course, offline deployment on historic 
data is also useful to produce events for model training in the 
MLTD component. To satisfy both requirements, we have 

Fig. 3   The SELKS framework

Fig. 4   Example of Suricata rule and CAPEC linkage

2  https​://cwe.mitre​.org/ 3  e.g., http://emerg​ingth​reats​.net

https://cwe.mitre.org/
http://emergingthreats.net
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selected the application of an unsupervised outlier detection 
algorithm applied on streaming data, capable of handling big 
loads of data streams.

We have selected a distance-based outlier detection algo-
rithm called MCOD, in which the number of a data point’s 
neighbors represent its status as an anomaly or a normal 
point based on the following definition [20]:

“Given a set of objects O and the threshold parameters 
R and k, report all the objects oi for which the number of 
neighbors oi.nn < k , i.e., the number of objects oj , j ≠ i for 
which dist(oi, oj) ≤ R is less than k. The report should be 
updated after each window slide.”

In this definition, there is a sliding window containing 
the latest measurements, e.g., the measurements of the last 
hour or the last 100K measurements. Each object that devi-
ates significantly from the rest of the window contents is 
reported. As such, abnormal behavior is contextualized with 
respect to the majority of the other behavioral logs in the 
same time period. A full description of MCOD is described 
in [21], while in [30], there exist efficient parallel imple-
mentations to handle intensive streams. Additionally, [31] 
provides impartial information about MCOD efficiency and 
superiority over competitors.

Implementation Aspects and Evaluation

Here we provide further implementation details about the 
system aspects of KEA along with some evaluation results. 
The source code and the required files for the reproduction 

of the results presented in this section are openly available 
in our git repository4

The MLTD Sub‑component

The MLTD component is responsible for maintaining his-
torical data for the training of the utilized machine learn-
ing models. The training process is repeated periodically as 
more incidents are collected in order to enhance the model 
efficiency. The processed information is in the form of times-
tamp annotated events like some of the input; hence a time 
series database is required. In the KEA prototype, we have 
employed TimescaleDB5. Figure  5 shows an example of 
input and output of the MLTD component. The input from 
external sources, such as network monitoring tools is col-
lected and pipelined to the MLTD component using a mes-
sage queuing mechanism; we have employed MQTT6.

The key novelty of MLTD is that it offers a threat pattern 
identification functionality, providing access to the internal 
information of the trained model and more specifically to the 
importance of each event (i.e., feature). An IT admin obtains 
the k top important features, obtained possibly from different 
sources and utilizing the mapping between the event ids and 
the actual event details is able to define new threat patterns 
for known security incidents, which are not currently taken 
into consideration by the deployed IDSs.

As a proof of concept, a dataset with artificial/hypo-
thetical event ids (male names in our case) is created and 
stored in a TimescaleDB deployment. We have infused 

Fig. 5   TimescaleDB examples: input timestamped annotated events (top) and predicted threats with associated quantified risk (bottom)

4  http://inter​lab.csd.auth.gr/anask​os/curex​-knowl​edge-extra​ction​
-analy​tics-kea
5  https​://www.times​cale.com/
6  http://mqtt.org/

http://interlab.csd.auth.gr/anaskos/curex-knowledge-extraction-analytics-kea
http://interlab.csd.auth.gr/anaskos/curex-knowledge-extraction-analytics-kea
https://www.timescale.com/
http://mqtt.org/
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hidden pre-specified threat event patterns, to resemble a 
scenario in which, before a major security incident, minor 
warning incidents might occur. We consider that in a real-
world scenario, there exists a mapping between each event 
id and the actual event details (i.e., origin, description, 
etc.). The dataset spans for 1.5 months with event rate 
2 events per minute. Every 2 days, (hence in 22 days in 
total), 6 h before a specific date time, 4 occurrences of the 
same pattern of events are infused with 20 min distance 
with each other. The goal is to train a model with this data-
set and using the feature importance feature of the Random 
Forest algorithm, to check if the events of the pattern are 
included in most important ones.

The events of the repeated pattern are ‘carrillo’, ‘men-
doza’, ‘hawkins’, ‘frank-lopez’, ‘vasquez-ford’, ‘young’, 
‘contreras’, ‘dawson’, ‘chandler’, ‘everett’, ‘arias-grif-
fin’, ‘coleman’, ‘olson-scott’, ‘powell’, ‘branch-frank’, 
‘melendez’, ‘flynn-davidson’, ‘morgan’, ‘turner-white’, 
‘robertson’.

We have marked with bold the events that are included 
in the top-10 of the most important features of the Random 
Forest model. The first 8 out of the top-10 most important 
events are included in the pattern, i.e., despite having many 
irrelevant events between the warning events, our approach 
is capable of constructing a valid pattern.

The OD Sub‑component

Regarding the OD component, MCOD is publicly available 
by authors of this work, as explained in [21, 30]. Here we 
provide an example execution of the OD sub-component for 
a given pcap file. For this example, a pcap file was extracted 
through the monitoring of the wireless network interface of 
a PC. The file captured 689 packet transmissions. A part of 
this pcap file is presented in Fig.  6(top). As it is shown in 
the protocol column, there are multiple protocols monitored; 
however, for the specific use case, only the TCP protocol is 
taken into consideration. Figure  6(bottom) plots the TCP 
packet traffic (black line) and the packet retransmissions 
(black bars). As it is presented, there is an increase in the 
retransmission rate after the 80th second. For the specific 

Fig. 6   Outlier detection example scenario: input pcap file (top) and TCP packet traffic (bottom)

Table 1   OD sub-component load test results for different threads

Threads Iterations MCOD mean time Request 
mean 
time

1 100 1.3 ms 1.15 s
10 10 0.82 ms 4.39 s
20 10 0.45 ms 8.55 s
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example, we have configured the MCOD algorithm with a 
small radius R and a large k parameter (i.e. a point is con-
sidered inlier only if it has a high number of neighbours in a 
“small” area) to become more sensitive and catch the small 
number of retransmissions included in this pcap file. The 
tool was able to identify an outlier value providing the fol-
lowing output: “Arrival time (seconds): 89 -Actual arrival 
time of the packet 2019-10-28T14:08:23Z”

Given that the OD runs continuously, to evaluate its per-
formance, we have used the Apache JMeter7 to produce mul-
tiple sequential and parallel requests to the OD, using the 
presented pcap file. For the experiments, an Intel 6 core (12 
threads) server is used with 32GB of RAM and 256GB SSD.

Table 1 presents the results of the load test. We have 
used the default configuration in the repository, where the 
MCOD employs a sliding window containing the last 60 
measurements and slides every 10 new items. The first col-
umn shows the number of parallel threads applying requests 
(i.e., uploading the pcap file for analysis) to the OD sub-
component. The second column presents the number of 
iterations of the experiment to compute the mean response 
time presented in the 3rd and 4th columns. The 3rd column 
presents the mean response time (in milliseconds) of the 
MCOD algorithm, while the 4th column presents the mean 
value of the total response time (in seconds) of the OD to 
process the pcap file (i.e., includes the pcap file parsing time, 
the data preprocessing steps, and the reporting of the results 
to the TimescaleDB).

We have repeated the single thread experiment using a 
smaller pcap file (28 captured packets) to present the change 
in the performance regarding the MCOD and the total OD 
response time; Table 2 presents the results. As we observe, 
the MCOD response time is reduced by 97% (from 1.3ms 
to 0.04ms) while the total response time is reduced by 46% 
(from 1.15s to 0.62s). The above results support the claim 
that MCOD is a lightweight, efficient solution in terms of 
performance.

The CEPTD Sub‑component

Finally, as explained above, KEA encapsulates SELKS, 
which also comes with visualization components, e.g., Fig.  
7 shows a visualised report about alerts signatures and des-
tination ports based on incoming traffic. Since SELKS is not 
a solution developed by our team, and we simply re-use it as 
a basic component in the KEA overall architecture, we do 
not include any further evaluation.

Additional Related Work

In Sect. 1, we have already explained the scope of modern 
IDS solutions and how we go beyond them. In this section, 
we present more concrete state of the art regarding SIEM 
systems [14, 16].

IBM Qradar8 is a tool that offers support for threat intelli-
gence feeds and can optionally be extended with IBM Secu-
rity X-Force Threat Intelligence, a module for identifying 
malicious IP address, URLs, and so on. The main weakness 
of this tool is that the endpoint monitoring for threat detec-
tion and response, or basic file integrity requires the use of 
third-party technologies. This SIEM provides basic reaction 
capabilities that include reporting and alerting functions. 
Dell technologies (RSA)9 provides an evolved SIEM that 
analyzes data and behavior across a company’s logs, pack-
ets and end-points, keeping at the same time an analysis on 
the behavior of people and processes within a network. The 
solution focuses on advanced threat detection and looks for 
integrating capabilities including network monitoring and 
analysis, end-point detection and response (EDR), and user 
and event behavior analytics (UEBA). In addition, the solu-
tion provides strong coverage of advanced threat defense, 
including real-time network and endpoint monitoring, foren-
sic network and endpoint investigation. The main drawback 
of this solution is that although the number of technical com-
ponents and the licensing models provide extensive flex-
ibility in designing the deployment architecture, it requires 
understanding of the breadth of the options and the implica-
tions for cost, functionality and scalability. LogRhythm10 is 
a tool that provides advanced SIEM features such as end-
point monitoring, network forensics, user and entity behav-
ior analytics, and response capabilities. Although extensions 
and optional tools can be deployed to enhance the SIEM 
capabilities, e.g., network forensics, NetFlow monitoring, 
full-packet capture, the solution seems to be unsuitable for 

Table 2   OD sub-component load test results for different pcap file 
sizes

# of packets Threads Iterations MCOD mean time Request 
mean 
time

689 1 100 1.3ms 1.15s
28 1 100 0.04ms 0.62s

8  https​://www.ibm.com/secur​ity/secur​ity-intel​ligen​ce/qrada​r
9  https​://www.rsa.com/en-us/produ​cts/threa​t-detec​tion-respo​nse/
siem-secur​ity-infor​matio​n-event​-manag​ement​
10  https​://logrh​ythm.com/solut​ions/secur​ity/siem/7  https://jmeter.apache.org/

https://www.ibm.com/security/security-intelligence/qradar
https://www.rsa.com/en-us/products/threat-detection-response/siem-security-information-event-management
https://www.rsa.com/en-us/products/threat-detection-response/siem-security-information-event-management
https://logrhythm.com/solutions/security/siem/
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organizations with critical infrastructures. The reason is that 
LogRhythm is an ideal tool for organizations with resource-
restricted security teams requiring a high degree of automa-
tion and out-of-the-box content, which is not the case for 
organizations with critical IT and network operations that 
require manual intervention in their daily activities.

AT& T Cybersecurity11 offers both commercial and open 
source SIEM solutions. The main drawback of this solu-
tion is the limited user or entity behavior analytics as well 
as machine learning capabilities. In addition, basic reaction 
capabilities (e.g., send email, execute script, open ticket) are 

supported by both OSSIM and USM solutions but limited 
to the pre-defined set of conditions associated with a given 
security policy. Also, C-S Prelude12 is able to recover several 
types of logs (e.g., system logs, syslog, flat files, etc.) and 
benefits from a native support with a number of systems 
dedicated to enriching information even further (e.g., snort9, 
ossec10). The tool provides powerful correlation engines 
that help operators to identify suspicious behaviors in huge 
volumes of data. Real-time data analysis, forensics, and 
research of APT (advanced persistent threats) are, therefore, 
intuitive and fast. Although Prelude is able to alert operators 

Fig. 7   Example alerts signatures (top) and destination ports histogram (bottom)

11  https​://cyber​secur​ity.att.com/ 12  http://www.prelu​de-siem.com

https://cybersecurity.att.com/
http://www.prelude-siem.com
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when an anomalous event is detected, reaction capabilities 
are limited to notifications and the execution of basic scripts 
based on correlation results. In addition, no user behavior 
or machine learning capabilities have been integrated to the 
current available versions.

Splunk13 offers the capability to capture, monitor and 
report on data from systems, applications and security 
devices, and gives admins the possibility to quickly inves-
tigate raised issues and resolve security threats across dif-
ferent domains (e.g., network protection domain, access 
domain). One of the main limitations of Splunk is the use of 
basic predefined correlation rules for monitoring and report-
ing requirements. In addition, license models are based on 
data volume in gigabytes indexed per day, which makes this 
a costlier solution than other SIEM products where high 
volumes are expected. Sufficient planning and prioritization 
of data sources is required to avoid unnecessary consump-
tion of data volumes. Exabeam14 allows analysts to collect 
unlimited log data, use behavioral analytics to detect attacks, 
and automate incident response. Exabeam provides granular 
role-based data access and workflow to support privacy con-
cerns which can be predefined and customized. Other tools 
that are less advanced as the ones mentioned above include 
Micro Focus15, Fortinet16, and Solarwinds17.

We differ in the manner we employ (i) machine learning 
techniques to learn and extract potentially cross-layer hidden 
patterns and (ii) unsupervised outlier detection techniques 
to detect at runtime anomalous behavior. More importantly, 
our techniques can be seen as complementary to the ones 
already in practice, i.e., the proposed KEA solution can be 
combined and extend the tools above.

Conclusions

Nowadays, the IT infrastructure in health organisations not 
only have to enforce strict security mechanisms, but also to 
prevent any disclosure of personal data. To achieve this, the 
system processes activity logs at different layers and relies 
on continuous training for threats, since it is impossible 
to have defined all possible threat patterns a priori. This 
work presents a novel methodology to mitigate cybersecu-
rity and privacy risks in IT infrastructures, motivated by 
the afore-mentioned challenges in the health sector. Apart 
from employing standard techniques in modern intrusion 

detection systems, we employ (i) advanced data analytics 
to extract hidden patterns corresponding to new threats that 
span different network and system layers and (ii) unsuper-
vised outlier detection in parallel with complex event pro-
cessing. Moreover, we apply complex event processing in a 
CAPEC-compliant manner, whereas our solution can lever-
age both logs and time series in training machine learning 
models for detecting unknown threats. Our methodology has 
been prototyped, made publicly available and can enhance 
capabilities of current solutions.
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