Skip to main content
Log in

A Survey on Blockchain Technology Concepts, Applications, and Issues

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The blockchain technology first emerged with the Bitcoin whitepaper, which was the first successful proposal to implement a decentralized digital currency with ability to execute completely non-reversible transactions without a trusted and centralized third party. Blockchain concept provided an inherent part of this decentralization together with hash-based proof-of-work, public key cryptography, and peer-to-peer network. Even though blockchain technology was introduced to solve the double-spending problem of electronic money without relying on a trusted third party, this particular concept is being researched and already used to solve problems in many other areas. This paper captures concepts of blockchain, its applications, issues, and suggested improvements referring to blockchain-related subsequent publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008.

  2. Buterin V. A next generation smart contract and decentralized application platform. 2013.

  3. Croman K, Decker C, Eyal I, Gencer AE, Juels A, Kosba A, Miller A, Saxena P, Shi E, Gün E. On scaling decentralized blockchains. Lecture Notes in Computer Science. 2016;106–25. https://doi.org/10.1007/978-3-662-53357-4_8.

  4. Chaum D. Blind signatures for untraceable payments. Adv Cryptol. 1983;. https://doi.org/10.1007/978-1-4757-0602-4_18.

    Article  MATH  Google Scholar 

  5. Bitcoin Wiki. E-gold. 2018. https://en.bitcoin.it/wiki/E-gold. Accessed Jan 2019.

  6. Dai W. B-Money. 1998.

  7. Finney H. RPOW—reusable proofs of work. 1999. https://nakamotoinstitute.org/finney/rpow/index.html. Accessed Jan 2019.

  8. Back A. Hashcash—a denial of service counter-measure. 2002. http://www.hashcash.org/hashcash.pdf. Accessed Jan 2019.

  9. Wood G. Ethereum: a secure decentralised generalised transaction ledger. 2014.

  10. Fenu G, Marchesi L, Marchesi M, Tonelli R. The ICO phenomenon and its relationships with ethereum smart contract environment. In: 2018 international workshop on blockchain oriented software engineering (IWBOSE), Campobasso, Italy, 2018 (pp. 26–32). https://doi.org/10.1109/iwbose.2018.8327568.

  11. Bonneau J, Miller A, Clark J, Narayanan A, Kroll JA, Felten EW. SoK: Research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE symposium on security and privacy, 2015. https://doi.org/10.1109/sp.2015.14.

  12. Christin N. Traveling the Silk Road: A measurement analysis of a large anonymous online marketplace. 2013.

  13. Huang DY, Dharmdasani H, Meiklejohn S, Dave V, Grier C, McCoy D, Savage S, Weaver N, Snoeren AC, Levchenko K. Botcoin: monetizing stolen cycles. 2014.

  14. Le Jamtel E. Swimming in the Monero pools. In: 2018 11th international conference on IT security incident management & IT forensics (IMF), 2018. https://doi.org/10.1109/imf.2018.00016.

  15. Garber L. Government officials disrupt two major cyberattack systems. News Briefs. 2014;47(7):16–21. https://doi.org/10.1109/mc.2014.189.

    Article  Google Scholar 

  16. Moore T, Christin N. Beware the middleman: empirical analysis of bitcoin-exchange risk. Lecture Notes in Computer Science. 2013;2013(7859):25–33. https://doi.org/10.1007/978-3-642-39884-1_3.

  17. Grigg I. Tripple entry accounting. 2005.

  18. Merkle RC. Protocols for public key cryptosystems. In: 1980 IEEE symposium on security and privacy. IEEE, 1980. https://doi.org/10.1109/SP.1980.10006.

  19. Merkle RC. A certified digital signature. Lecture Notes in Computer Science. 1979;435:218–38. https://doi.org/10.1007/0-387-34805-0_21.

  20. Buterin V. Merkling in Ethereum. 2015. https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/. Accessed Mar 2020.

  21. Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans Program Lang Syst. 1982;4(3):382–401. https://doi.org/10.1145/357172.357176.

    Article  MATH  Google Scholar 

  22. Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S. On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security - CCS’16, 2016; 16: 3–16. https://doi.org/10.1145/2976749.2978341.

  23. Kiayias A, Panagiotakos G. Speed-security tradeoffs in bitcoin protocols. 2016.

  24. King S. Primecoin: cryptocurrency with prime number proof-of-work. 2013.

  25. King S, Nadal S. PPCoin: peer-to-peer crypto-currency with proof-of-stake. 2012.

  26. Bentov I, Gabizon A, Mizrahi A. Cryptocurrencies without proof of work. Lecture Notes in Computer Science. 2016;9604:142–57. https://doi.org/10.1007/978-3-662-53357-4_10.

  27. Buterin V, Reijsbergen D, Leonardos S, Piliouras G. Incentives in Ethereum’s hybrid casper protocol. In: 2019 IEEE international conference on blockchain and cryptocurrency (ICBC), 2019. https://doi.org/10.1109/bloc.2019.8751241.

  28. BitShares Blockchain Foundation. The bitshares blockchain. 2015. https://www.bitshares.foundation/papers/BitSharesBlockchain.pdf. Accessed May 2019.

  29. Dantheman. DPOS consensus algorithm—the missing whitepaper. 2017. https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper. Accessed Apr 2019.

  30. NEM. NEM Technical Reference. 2018. https://nem.io/NEM_techRef.pdf. Accessed May 2019.

  31. Popov S. The Tangle. 2019. https://iota.org/IOTA_Whitepaper.pdf. Accessed May 2019.

  32. Castro M, Liskov B. Practical byzantine fault tolerance. In: Proceedings of the symposium on operating system design and implementation. 1999;20:398–461. https://doi.org/10.1145/571637.571640.

  33. Vukolić M. Rethinking permissioned blockchains. In: BCC 2017—Proceedings of the ACM workshop on blockchain, cryptocurrencies and contracts, co-located with ASIA CCS 2017. https://doi.org/10.1145/3055518.3055526.

  34. Buterin V. On public and private blockchains. 2015. https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/. Accessed Jun 2019.

  35. Monégro J. Fat protocols. 2016. http://www.usv.com/blog/fat-protocols. Accessed June 2019.

  36. CoinMarketCap. 2019. https://coinmarketcap.com. Accessed July 2019.

  37. Moore W, Stephen J. Should cryptocurrencies be included in the portfolio of international reserves held by central banks? Cogent Econ Finance. 2016;1:4. https://doi.org/10.1080/23322039.2016.1147119.

    Article  Google Scholar 

  38. Tron Foundation. Advanced decentralized platform. White Paper: Version 2.0. 2018. https://tron.network/static/doc/white_paper_v_2_0.pdf. Accessed July 2019.

  39. Szabo N. The idea of smart contracts. 1997.

  40. Kosba A, Miller A, Shi E, Wen Z, Papamanthou C. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE symposium on security and privacy (SP), 2016. https://doi.org/10.1109/sp.2016.55.

  41. The Zilliqa Team. The Zilliqa technical white paper. Version 0.1. 2017. https://docs.zilliqa.com/whitepaper.pdf. Accessed July 2019.

  42. Block.one. EOS.IO technical white paper v2. 2018. https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md. Accessed July 2019.

  43. Szabo N. Secure property titles with owner authority. 1998.

  44. CBInsights. How blockchain could secure elections. 2018. https://www.cbinsights.com/research/report/blockchain-election-security/. Accessed Aug 2019.

  45. Moore N, Sawhney N. Under the Hood, The West Virginia Mobile Voting Pilot. 2019. https://sos.wv.gov/FormSearch/Elections/Informational/West-Virginia-Mobile-Voting-White-Paper-NASS-Submission.pdf. Accessed Aug 2019.

  46. Makridakis S, Polemitis A, Giaglis G, Louca S. Blockchain: The next breakthrough in the rapid progress of AI. In: Artificial intelligence—emerging trends and applications, InTech, 2018. https://doi.org/10.5772/intechopen.75668.

  47. Kshetri N. 1 Blockchain’s roles in meeting key supply chain management objectives. Int J Inf Manag. 2018;39:80–9. https://doi.org/10.1016/j.ijinfomgt.2017.12.005.

    Article  Google Scholar 

  48. Zīle K, Strazdiņa R. Blockchain use cases and their feasibility. Appl Comput Syst. 2018;23(1):12–20. https://doi.org/10.2478/acss-2018-0002.

    Article  Google Scholar 

  49. E-Estonia. KSI Blockchain. 2017. https://e-estonia.com/solutions/security-and-safety/ksi-blockchain/. Accessed Aug 2019.

  50. Hileman G, Rauchs M. Global blockchain benchmarking study. SSRN Electron J. 2017;. https://doi.org/10.2139/ssrn.3040224.

    Article  Google Scholar 

  51. Blockchain.com. Blockchain Size. 2019. https://www.blockchain.com/charts/blocks-size. Accessed Aug 2019.

  52. Etherscan.io. Ethereum chain data size (Geth w/FAST Sync). 2019. https://etherscan.io/chart2/chaindatasizefast. Accessed Aug 2019.

  53. Ethereum Wiki. Sharding FAQ. 2019. https://github.com/ethereum/wiki/wiki/Sharding-FAQ. Accessed Mar 2020.

  54. Ripple.com. XRP | Ripple. 2019. https://ripple.com/xrp/. Accessed Mar 2020.

  55. Herrera-Joancomartí J, Pérez-Solà C. Privacy in bitcoin transactions: new challenges from blockchain scalability solutions. Lecture Notes in Computer Science. 2016;26–44. https://doi.org/10.1007/978-3-319-45656-0_3.

  56. Visa Inc. Visa: 56,582 transaction messages per second! 2014. http://visatechmatters.tumblr.com/post/108952718025/56582-transaction-messages-per-second. Accessed Mar 2020.

  57. Eyal I, Gencer AE, Sirer EG, Renesse R. Bitcoin-NG: A Scalable Blockchain Protocol. In: Proceedings of the 13th USENIX symposium on networked systems design and implementation (NSDI ’16), 2016.

  58. Decker C, Wattenhofer R. A fast and scalable payment network with bitcoin duplex micropayment channels. Stabilization, safety, and security of distributed systems. SSS 2015. Lecture Notes in Computer Science, 2015; 9212: 3–18. https://doi.org/10.1007/978-3-319-21741-3_1.

  59. Poon J, Dryja T. The bitcoin lightning network: scalable off-chain instant payments. 2016.

  60. MacManus R. Blockchain speeds and the scalability debate. 2018. https://blocksplain.com/2018/02/28/transaction-speeds/. Accessed Aug 2019.

  61. Bradbury D. The problem with bitcoin. Comput Fraud Secur. 2013;2013(11):5–8. https://doi.org/10.1016/s1361-3723(13)70101-5.

    Article  Google Scholar 

  62. Saleh F. Blockchain without waste: proof-of-stake. SSRN Electron J. 2019;. https://doi.org/10.2139/ssrn.3183935.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. M. Gamage.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamage, H.T.M., Weerasinghe, H.D. & Dias, N.G.J. A Survey on Blockchain Technology Concepts, Applications, and Issues. SN COMPUT. SCI. 1, 114 (2020). https://doi.org/10.1007/s42979-020-00123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00123-0

Keywords

Navigation