Skip to main content

Advertisement

Log in

Methodological Considerations Which Could Improve Spinal Cord Injury Research

  • Commentary
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Advances in spinal cord injury-based research in the last 50 years have resulted in significant improvements to therapy options. However, the efficacy of such research could be further enhanced if threats to internal and external validity were addressed. To provide perspective, a sample topic was identified: the effects of acute and chronic exercise on clinical and sub-clinical markers of cardiovascular health. The intention was not a systematic review, nor a critique of exercise-based research, but rather a means to generate further discussion. Thirty-one articles were identified, and four common issues were found relating to: (1) sampling; (2) study design; (3) control group; and (4) clinical inference. These concerns were largely attributed to insufficient resources, and challenges associated with recruiting individuals with spinal cord injury. Overcoming these challenges will be difficult, but some opportunities include: (1) implementing multi-center trials; (2) sampling from subject groups appropriate to the research question; (3) including an appropriate control group; and (4) clearly defining clinical inference. These opportunities are not always feasible, and some easier to implement than others. However, addressing these concerns may assist in progressing spinal cord injury-based research, thereby helping to ensure steady advancement of therapy options for persons with spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alves ES, Santos RV, Ruiz FS, Lira FS, Almeida AA, Lima G, Goni TC, Oyama L, Edwards KM, Tufik S, De Mello MT. Physiological and lipid profile response to acute exercise at different intensities in individuals with spinal cord injury. Spinal Cord Ser Cases. 2017;3:17037. https://doi.org/10.1038/scsandc.2017.37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson KD, Cowan RE, Horsewell J. Facilitators and barriers to spinal cord injury clinical trial participation: multi-national perspective of people living with spinal cord injury. J Neurotrauma. 2016;33(5):493–9. https://doi.org/10.1089/neu.2015.4064.

    Article  PubMed  Google Scholar 

  3. Bakkum A, Paulson T, Bishop N, Goosey-Tolfrey VL, Stolwijk-Swüste JM, van Kuppevelt DJ, de Groot S, Janssen TW. Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med. 2015;47(6):523–30. https://doi.org/10.2340/16501977-1946.

    Article  PubMed  Google Scholar 

  4. Brurok B, Helgerud J, Karlsen T, Leivseth G, Hoff J. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil. 2011;90(5):407–14. https://doi.org/10.1097/PHM.0b013e31820f960f.

    Article  PubMed  Google Scholar 

  5. Claydon VE, Hol AT, Eng JJ, Krassioukov AV. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil. 2006;87(8):1106–14. https://doi.org/10.1016/j.apmr.2006.05.011.

    Article  PubMed  Google Scholar 

  6. Currie KD, West CR, Hubli M, Gee CM, Krassioukov AV. Peak heart rates and sympathetic function in tetraplegic nonathletes and athletes. Med Sci Sports Exerc. 2015;47(6):1259–64. https://doi.org/10.1249/MSS.0000000000000514.

    Article  PubMed  Google Scholar 

  7. DeVivo MJ, Kartus PL, Stover SL, Rutt RD, Fine PR. Cause of death for patients with spinal cord injuries. Arch Intern Med. 1989;149(8):1761–1766. http://www.ncbi.nlm.nih.gov/pubmed/2669663.

    Article  CAS  Google Scholar 

  8. DeVivo MJ, Black KJ, Stover SL. Causes of death during the first 12 years after spinal cord injury. Arch Phys Med Rehabil. 1993;74(3):248–54.

    CAS  PubMed  Google Scholar 

  9. Gorgey AS, Martin H, Metz A, Khalil RE, Dolbow DR, Gater DR. Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J Spinal Cord Med. 2016;39(6):699–712. https://doi.org/10.1080/10790268.2016.1157970.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, Ivy JL. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009;19(4):614–22. https://doi.org/10.1016/j.jelekin.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  11. Guerrera F, Renaud S, Tabbò F, Filosso PL. How to design a randomized clinical trial: tips and tricks for conduct a successful study in thoracic disease domain. J Thorac Dis. 2017. https://doi.org/10.21037/jtd.2017.06.147.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han D-S, Hsiao M-Y, Wang T-G, Chen S-Y, Yang W-S. Association of serum myokines and aerobic exercise training in patients with spinal cord injury: an observational study. BMC Neurol. 2016;16(1):142. https://doi.org/10.1186/s12883-016-0661-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harvey LA, Dunlop SA, Churilov L, Galea MP. Spinal cord injury physical activity (SCIPA) hands on trial collaborators Early intensive hand rehabilitation is not more effective than usual care plus one-to-one hand therapy in people with sub-acute spinal cord injury (‘Hands On’): a randomised trial. J Physiother. 2017;63(4):197–204. https://doi.org/10.1016/j.jphys.2017.08.005.

    Article  PubMed  Google Scholar 

  14. Hasnan N, Ektas N, Tanhoffer AIP, Tanhoffer R, Fornusek C, Middleton JW, Husain R, Davis GM. Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury. Med Sci Sports Exerc. 2013;45(6):1131–8. https://doi.org/10.1249/MSS.0b013e3182805d5a.

    Article  PubMed  Google Scholar 

  15. Horiuchi M, Okita K. Arm-cranking exercise training reduces plasminogen activator inhibitor 1 in people with spinal cord injury. Arch Phys Med Rehabil. 2017;98(11):2174–80. https://doi.org/10.1016/j.apmr.2017.02.007.

    Article  PubMed  Google Scholar 

  16. International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonized tripartite guideline: Guideline for Good Clinical Practice. J Postgrad Med. 47(1):45–50.

  17. Karlsson A-K. Overview: Autonomic dysfunction in spinal cord injury: clinical presentation of symptoms and signs. Progress Brain Res. 2006;152:1–8. https://doi.org/10.1016/s0079-6123(05)52034-x.

    Article  Google Scholar 

  18. Kinoshita T, Nakamura T, Umemoto Y, Kojima D, Moriki T, Mitsui T, Goto M, Ishida Y, Tajima F. Increase in interleukin-6 immediately after wheelchair basketball games in persons with spinal cord injury: preliminary report. Spinal Cord. 2013;51(6):508–10. https://doi.org/10.1038/sc.2013.4.

    Article  CAS  PubMed  Google Scholar 

  19. Kouda K, Furusawa K, Sugiyama H, Sumiya T, Ito T, Tajima F, Shimizu K. Does 20-min arm crank ergometer exercise increase plasma interleukin-6 in individuals with cervical spinal cord injury? Eur J Appl Physiol. 2012;112(2):597–604. https://doi.org/10.1007/s00421-011-2004-2.

    Article  PubMed  Google Scholar 

  20. Lee YH, Lee JH, Kim SH, Yi D, Oh KJ, Kim JH, Park TJ, Kim H, Chang JS, Kong ID. Hemodynamic adaptations to regular exercise in people with spinal cord injury. Ann Rehabil Med. 2017;41(1):25. https://doi.org/10.5535/arm.2017.41.1.25.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lifshutz J, Colohan A. A brief history of therapy for traumatic spinal cord injury. Neurosurg Focus. 2004;16(1):E5. https://doi.org/10.3171/foc.2004.16.1.6.

    Article  PubMed  Google Scholar 

  22. Machač S, Radvanský J, Kolář P, Kříž J. Cardiovascular response to peak voluntary exercise in males with cervical spinal cord injury. J Spinal Cord Med. 2016;39(4):412–20. https://doi.org/10.1080/10790268.2015.1126939.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mitsui T, Nakamura T, Ito T, Umemoto Y, Sakamoto K, Kinoshita T, Nakagawa M, Tajima F. Exercise significantly increases plasma adrenaline and oxidized low-density lipoprotein in normal healthy subjects but not in persons with spinal cord injury. Arch Phys Med Rehabil. 2012;93(4):725–7. https://doi.org/10.1016/j.apmr.2011.08.046.

    Article  PubMed  Google Scholar 

  24. Norman GR, Streiner DL. PDQ (pretty darned quick) statistics. 3rd ed. Lewiston: BC Decker; 2003.

    Google Scholar 

  25. Rosety-Rodriguez M, Camacho A, Rosety I, Fornieles G, Rosety MA, Diaz AJ, Bernardi M, Rosety M, Ordonez FJ. Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2014;95(2):297–302. https://doi.org/10.1016/j.apmr.2013.08.246.

    Article  PubMed  Google Scholar 

  26. Rosety-Rodriguez M, Camacho-Molina A, Rosety I, Fornieles G, Rosety MA, Ordonez FJ. Reduction of exercise-mediated endothelial dysfunction markers in sedentary adults with chronic spinal cord injury. Med Clin (Barc). 2015;144(2):59–61. https://doi.org/10.1016/j.medcli.2013.10.021.

    Article  PubMed  Google Scholar 

  27. Rothman K, Greenland S, Lash T. Modern Epidemiology. Third. Lippincott Williams & Williams. 2008.

  28. Sasso E, Backus D. Home-based circuit resistance training to overcome barriers to exercise for people with spinal cord injury. J Neurol Phys Ther. 2013;37(2):65–71. https://doi.org/10.1097/NPT.0b013e31829247a9.

    Article  PubMed  Google Scholar 

  29. Silva FTG, Rêgo JTP, Raulino FR, Silva MR, Reynaud F, Egito ES, Dantas PM. Transcranial direct current stimulation on the autonomic modulation and exercise time in individuals with spinal cord injury. A case report. Auton Neurosci. 2015;193:152–5. https://doi.org/10.1016/j.autneu.2015.08.007.

    Article  PubMed  Google Scholar 

  30. Spengler C, Hostettler S, Leuthold L, Brechbühl J, Mueller G, Illi S. Maximal cardiac output during arm exercise in the sitting position after cervical spinal cord injury. J Rehabil Med. 2012;44(2):131–6. https://doi.org/10.2340/16501977-0913.

    Article  PubMed  Google Scholar 

  31. Stoner L, Credeur D, Dolbow DR, Gater DR. Vascular health toolbox for spinal cord injury: recommendations for clinical practice. Atherosclerosis. 2015;243:373–82. https://doi.org/10.1016/j.atherosclerosis.2015.10.013.

    Article  CAS  PubMed  Google Scholar 

  32. Stoner L, Sabatier MJ, Mahoney ET, Dudley GA, McCully KK. Electrical stimulation-evoked resistance exercise therapy improves arterial health after chronic spinal cord injury. Spinal Cord. 2007;45(1):49–56. https://doi.org/10.1038/sj.sc.3101940.

    Article  CAS  PubMed  Google Scholar 

  33. Sullivan GM, Feinn R. Using Effect Size-or Why the P Value Is Not Enough. J Grad Med Educ. 2012. https://doi.org/10.4300/jgme-d-12-00156.1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ter Woerds W, De Groot PCE, van Kuppevelt DHJM, Hopman MTE. Passive leg movements and passive cycling do not alter arterial leg blood flow in subjects with spinal cord injury. Phys Ther. 2006;86(5):636–645. http://www.ncbi.nlm.nih.gov/pubmed/16649888. Accessed Oct 10 2017.

    Article  Google Scholar 

  35. Thijssen DH, Ellenkamp R, Smits P, Hopman MT. Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Arch Phys Med Rehabil. 2006;87(4):474–81. https://doi.org/10.1016/j.apmr.2005.11.005.

    Article  PubMed  Google Scholar 

  36. Thijssen DHJ, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MTE, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol. 2010;108(5):845–75. https://doi.org/10.1007/s00421-009-1260-x.

    Article  PubMed  Google Scholar 

  37. Tordi N, Mourot L, Chapuis A, Parratte B, Regnard J. Effects of a primary rehabilitation programme on arterial vascular adaptations in an individual with paraplegia. Ann Phys Rehabil Med. 2009;52(1):66–73. https://doi.org/10.1016/j.rehab.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  38. Totosy de Zepetnek JO, Pelletier CA, Hicks AL, MacDonald MJ. Following the physical activity guidelines for adults with spinal cord injury for 16 weeks does not improve vascular health: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(9):1566–75. https://doi.org/10.1016/j.apmr.2015.05.019.

    Article  PubMed  Google Scholar 

  39. Turiel M, Sitia S, Cicala S, Magagnin V, Bo I, Porta A, Caiani E, Ricci C, Licari V, De Gennaro Colonna V, Tomasoni L. Robotic treadmill training improves cardiovascular function in spinal cord injury patients. Int J Cardiol. 2011;149(3):323–9. https://doi.org/10.1016/j.ijcard.2010.02.010.

    Article  PubMed  Google Scholar 

  40. Umemoto Y, Furusawa K, Kouda K, Sasaki Y, Kanno N, Kojima D, Tajima F. Plasma IL-6 levels during arm exercise in persons with spinal cord injury. Spinal Cord. 2011;49(12):1182–7. https://doi.org/10.1038/sc.2011.74.

    Article  CAS  PubMed  Google Scholar 

  41. Vasiliadis AV, Zafeiridis A, Dipla K, Galanis N, Chatzidimitriou D, Kyparos A, Nikolaidis MG, Vrabas IS. Circulating angiogenic biomolecules at rest and in response to upper-limb exercise in individuals with spinal cord injury. J Spinal Cord Med. 2014;37(2):226–32. https://doi.org/10.1179/2045772313Y.0000000141.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process, and purpose. Am Stat. 2016;1305:0–17. https://doi.org/10.1080/00031305.2016.1154108.

    Article  Google Scholar 

  43. Wecht JM, Marsico R, Weir JP, Spungen AM, Bauman WA, De Meersman RE. Autonomic recovery from peak arm exercise in fit and unfit individuals with paraplegia. Med Sci Sports Exerc. 2006;38(7):1223–8. https://doi.org/10.1249/01.mss.0000227306.34149.ba.

    Article  PubMed  Google Scholar 

  44. West CR, Currie KD, Gee C, Krassioukov AV, Borisoff J. Active-arm passive-leg exercise improves cardiovascular function in spinal cord injury. Am J Phys Med Rehabil. 2015;94(11):e102–6. https://doi.org/10.1097/PHM.0000000000000358.

    Article  PubMed  Google Scholar 

  45. van der Woude LHV, de Groot S, Postema K, Bussmann JB, Janssen TW; ALLRISC, Post MW. Active life style rehabilitation interventions in aging spinal cord injury (ALLRISC): a multicentre research program. Disabil Rehabil. 2013;35(13):1097–103. https://doi.org/10.3109/09638288.2012.718407.

    Article  PubMed  Google Scholar 

  46. Zbogar D, Eng JJ, Krassioukov AV, Scott JM, Esch BTA, Warburton DER. The effects of functional electrical stimulation leg cycle ergometry training on arterial compliance in individuals with spinal cord injury. Spinal Cord. 2008;46(11):722–6. https://doi.org/10.1038/sc.2008.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Stoner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieff, G., Miller, S., Credeur, D. et al. Methodological Considerations Which Could Improve Spinal Cord Injury Research. J. of SCI. IN SPORT AND EXERCISE 2, 38–46 (2020). https://doi.org/10.1007/s42978-019-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0020-9

Keywords

Navigation