
https://doi.org/10.1007/s42803-023-00076-9

ORIG INAL PAPER

Committing to reproducibility and explainability: using Git
as a research journal

Samuel J. Huskey1

Received: 28 February 2023 / Accepted: 27 October 2023
© The Author(s) 2024

Abstract
Traditional critical editions in print offer a model for creating a culture of reproducible
and explainable research in Digital Humanities. In addition to explaining their editorial
methods and practices in a preface, editors provide a critical apparatus to allow readers
to evaluate the evidence and decide for themselves whether the editor’s judgment is
sound. This paper will argue for viewing distributed, version-controlled data reposito-
ries (e.g., Git) in the same way, to empower users to follow the choices and methods of
DH researchers and to reproduce their work. Using examples from a current project,
this paper will propose some guidelines for using Git to promote reproducibility and
explainability in the publication of DH research of all kinds.

Keywords Git · Version control · Digital humanities · Reproducibility ·
Explainability

1 Introduction

Over the centuries, textual scholars have developed an efficient and effective system
for summarizing how and where the sources for texts differ from one another. That
information traditionally accompanies the text of a critical edition in the apparatus
criticus, or critical apparatus, the goal being to give readers the opportunity to evaluate
the evidence for themselves and to provide support for the edition’s argument. In other
words, the aims of a critical apparatus are explainability and reproducibility. But one’s
first encounter with a critical apparatus can be anything but understandable, owing to
the symbols and other typographical conventions unique to this system of scholarly

B Samuel J. Huskey
huskey@ou.edu

1 Department of Classics and Letters, University of Oklahoma, 650 Parrington Oval, CARN 100,
Norman, OK 73019, USA

123

International Journal of Digital Humanities (2024) 6:9–21

/ Published online: 19 Decemeber 2023 

http://crossmark.crossref.org/dialog/?doi=10.1007/s42803-023-00076-9&domain=pdf


communication, which is why readers must look to an edition’s preface or a separate
commentary for help.

In the effort to promote explainability and reproducibility in Digital Humanities
(DH) research, we would do well to bear in mind the tension between the terse form
of the critical apparatus and the narrative style of commentaries and notes on the text.
Both have their place in explaining an editor’s work and in aiding individual readers
to evaluate the evidence for themselves. Whether we are working on digital editions,
information visualizations, GIS mapping, natural language processing, or articifial
intelligence and machine learning applications, the simple act of keeping a research
journal would go a long way to making our work explainable and understandable to
others. Because so much of that work occurs in the open on the internet, it is in the
best interest of DH researchers to “aim to be at the forefront of documenting and
sharing [their] processes and successes and failures in negotiating knowledge creation
between very different epistemic cultures” (Edmond & Lehmann, 2021 ii105).

Elsewhere in this issue, Sarah Middle discusses the need for better documentation of
DH research in general. This article complements hers by describing how the features
of Git, a tool already in wide use in DH projects, could be leveraged in pursuit of that
goal.

My observation of DH practice over the years is that projects make use of Git
primarily to share their data. Presentations about DH research often include a reference
to the project’s data repository or repositories on a site such as GitHub (https://github.
com/) or GitLab (https://gitlab.com/). So common are these references, in fact, that
their absence, although not enough to impugn a scholar’s DH bona fides, is noteworthy.
But making data available in a Git repository is one thing; making the repository useful
to other researchers is something else entirely.

In what follows, I advocate for the purposeful usage of Git as a tool not just for ver-
sion control, but also for documenting DH research. Specifically, I call for widespread
adoption of the practices of semantic commits and semantic versioning in DH projects,
with a view to building intentional and meaningful research journaling into the Git
workflow.

2 Case study: the Library of Digital Latin Texts

The context for this discussion is The Library of Digital Latin Texts (LDLT, https://ldlt.
digitallatin.org/) a component of the Digital Latin Library (DLL, https://digitallatin.
org/). The LDLT is a platform for publishing peer-reviewed, openly available, born-
digital critical editions of Latin texts. LDLT editions are published under the authority
of the University of Oklahoma, with sponsorship from three learned societies that
manage the peer review process: The Society for Classical Studies, The Medieval
Academy of America, and the Renaissance Society of America. The published prod-
ucts of the LDLT are not books or web pages, but Git repositories that contain the
TEI XML file(s) for the edition and any other ancillary files the editor might want to
include (e.g., transcriptions and/or collations of manuscripts; see Wittern (2013) for
more on this concept). Using Git in this way supports the DLL’s larger mission of

123

10 S.J. Huskey

https://github.com/
https://github.com/
https://gitlab.com/
https://ldlt.digitallatin.org/
https://ldlt.digitallatin.org/
https://digitallatin.org/
https://digitallatin.org/


encouraging a shift toward considering critical editions as databases (Huskey, 2020).
It has the added benefit of separating the rendering and visualization of the informa-
tion in those databases as scholarly concerns in and of themselves (Witt, 2018). It also
allows us to guarantee that a specific version of an edition has been peer-reviewed
(Huskey & Witt, 2019).

Just as Git has influenced the way I approach digital critical editions, the nature of
critical editions has influenced the way I think about Git. I will begin with a discus-
sion of what Git has in common with the traditional humanities discipline of textual
criticism. I will then turn to Git as a tool for documenting the decisions made in the
development of an edition. I will conclude with suggestions for applying this Git-based
approach to other kinds of DH projects.

2.1 Background: critical editions and Git

When searching for a text to encode as proof of concept for the LDLT, the DLL team
settled on Caesar Giarratano’s 1910 edition of Calpurnius Siculus’ Bucolica (Giar-
ratano, 1910) because it is relatively short, yet complex. As it happens, Giarratano’s
lifetime of work on the text of Calpurnius Siculus’ Bucolica—he published four other
editions of the text (Giarratano, 1924, 1939, 1943, 1951)—also offers a good basis for
thinking about how to use Git in the development and publication of LDLT editions.

What interested the DLL team most about Giarratano’s 1910 edition was its critical
apparatus. A collection of variant readings, conjectures, abbreviations for manuscripts
and previous editions, and other arcana traditionally printed in small type and occu-
pying no more than a small fraction of the page, it takes up nearly half of every page
in Giarratano’s edition because it is positively bristling with variant readings from
every source. It is, in fact, a positive critical apparatus, meaning that it reports not only
variant readings and their sources, but also sources for the words printed in the main
text of the edition (see West, 1973 87, note 14 on the use of “positive” and “negative”
to describe a critical apparatus).

For example, vaccae (“the cows”) is the last word in the fourth line of the first poem
in the 1910 edition:

cernis ut ecce pater quas tradidit, Ornyte, vaccae

The critical apparatus at that point in the text has the following:

vaccae edd., vacce rp, bacce G, vaccas .

To the experienced reader, that is a clear and economical summary of how the
sources differ at this point in the text. It communicates that eight manuscripts (denoted
by the lower-case Greek letters) and most previous printed editions (“edd.”) support
Giarratano’s decision to print vaccae as the lemma. There are also three alternative
readings, in descending order of likelihood of being what Calpurnius Siculus wrote.
The first of these alternatives (vacce) is found in six manuscripts

123

11Committing to reproducibility and explainability...



and two early editions (r and p). The second and third alternatives (bacce and vaccas)
have one witness each (G and , respectively).

The foregoing explanation of a single entry in the critical apparatus of an edition of
a minor Latin poet may seem to have strayed rather far from the subject at hand, but
it is relevant because it illustrates a fundamental concept of Git: Instead of tracking
multiple copies of entire files in a project, Git tracks only what has changed. This is
different, of course, from representing multiple documents with varying versions of
the same text, as the apparatus of a critical edition does, but the principle is the same:
Focus on the differences.

Giarratano’s 1924 edition of Calpurnius Siculus’ Bucolica gives us an opportunity
to consider differences on a larger scale. The main text of the poem has not changed
much, but the critical apparatus is entirely different. For one thing, instead of appearing
at the bottom of every page, it appears at the back of the book as endnotes—much
less convenient for scholarly readers. But that is not as significant as the change in
the actual content. Looking at the first poem in this edition, we see that Giarratano
still prints vaccae as the last word in line four, but the entry in the critical apparatus is
noticeably different:

vacce N, bacce G, vaccas ps, vaccae vel vacce V .

Most of the differences reflect Giarratano’s decision to switch from a positive
apparatus to a negative one, which reports only significant variant readings, leaving
readers to conclude for themselves that any unmentioned manuscripts and previous
editions must support the editor’s choice to print vaccae.

There are other, more subtle, differences: Giarratano makes better use of the siglum
V to represent the consensus of manuscripts in the second family. Moreover, when
he needs to refer to individual manuscripts of that family, he uses lower-case Latin
characters (e.g., p and s above) instead of the lower-case Greek characters from the
1910 edition. That is a potential source of confusion, since “r”, for example, stands for
the editio Romana of 1471 in the 1910 edition and for the manuscript Vratislaviensis
Rehdigeranus I 4, 10 in the 1924 edition.

Unfortunately, the preface to the 1924 edition does not explain the reasons for
these changes from the 1910 edition. In fact, the preface is mostly unchanged from
one edition to the next, and Giarratano did not publish an explanation elsewhere.

2.1.1 If Git had been an option…

Although all the changes catalogued in the previous section were introduced at the
same time in the 1924 edition, they are the result of several individual decisions to
improve upon aspects of the initial version. Each time that Giarratano committed to
implementing one of those decisions, he created a new version of the initial work.
Eventually he had a version that he could tag as “final” and release into the world.
Later he returned to the project and decided that a new version was needed, so he
committed to doing the work, tagged it as a new version, and released it into the world

123

12 S.J. Huskey



in 1939. He continued to work on the project, releasing two more versions of it in
1943 and 1951.

I selected the words in the previous paragraph from the vocabulary of Git to
describe the steps in the publication of Giarratano’s editions. “Initial version” is the
basis of comparison for successive changes introduced to a project tracked by Git.
“Commit” is one of the most common and important commands in Git. In the con-
text of Git, “commit” is both a verb and a noun. As a verb, “to commit” simply
means “to record changes to the repository”; a “commit”, however, is a “single point
in the Git history” (https://git-scm.com/docs/gitglossary#Documentation/gitglossary.
txt-aiddefcommitacommit). In other words, a “commit” is a reference point for change
or difference in a project; “to commit” is to add a reference point to a project’s history.
A “tag” is a label assigned to a specific commit to mark it as important. For example,
it is common to tag a specific commit to mark a milestone in a project. Finally, a
“release” is a bundle of all of a project’s files in the state they were in at the time a
specific commit was tagged.

Since Giarratano was working on a purely print paradigm for publishing his
research, anyone wanting to compare his five editions of Calpurnius Siculus’ Bucolica
must find them in libraries or online and leaf through them manually to identify how
they are different from each other. One could scan them, perform Optical Character
Recognition, and write a program to compare the results, but it is doubtful that the
resulting text of the critical apparatus would be reliable.

But if Giarratano were alive today and using Git to track his research project in a
publicly available repository, anyone with access to the internet could view all five
editions as releases, and they could use Git’s commands to investigate precisely how
they differ. Depending on how the repository is configured, they could also alert
Giarratano to any problems with the edition through the issues queue. They could
even contribute to the project by creating pull requests to incorporate their own work
into the edition.

One simple, yet powerful, feature of Git has the potential to do more than any of the
others to make Giarratano’s research reproducible and explainable: the commit log,
also known as a repository’s history. The commit log is underused in many projects,
yet it has great potential for bringing clarity to DH research projects for scholars,
collaborators, peer reviewers, students, and others.

3 Using git as a research journal

I do not know whether Giarratano kept a journal of his work on the text of Calpurnius
Siculus’ Bucolica. If he did, I cannot imagine spending the time trying to track it
down, if it still exists. Even if it does exist, and even if I could find it, there is no telling
whether his notes to himself would mean anything to me. Even though he committed a
significant portion of his life to the project, it takes extra commitment to keep a journal
of one’s research accurate and up to date. Myriad excuses offer themselves for putting
off writing the next entry in a journal, particularly if you are keeping notes only for
yourself.

123

13Committing to reproducibility and explainability...

https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddefcommitacommit
https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddefcommitacommit


Working in Git, however, makes shirking this responsibility difficult, since every
commit requires a message, unless the user specifically overrides it with the
--allow-empty-message option. That means that journaling is built into the
workflow.

But that in itself does not solve the problem of haphazard record-keeping. In the
absence of any project guidelines for using Git, contributors can make as few or as many
commits as they please. And since there are few rules about the content of a commit
message, it is possible, and unfortunately common, for contributors to do the bare
minimum by writing generic messages (e.g., “Adding some files” or “Fixed a bug”)
without any further documentation, greatly reducing the usefulness of a project’s log,
as Randall Munroe humorously illustrates (https://xkcd.com/1296/). That represents
a lost opportunity to cultivate practices that support reproducibility and explainability.

In the rest of this article, I argue for making better, more effective use of Git’s commit
log as a research journal. For examples, I will show how these guidelines would be
implemented if the DLL were to update its pilot edition of Calpurnius Siculus’Bucolica
to reflect the differences between Giarratano’s 1910 and 1924 editions. The following
proposals illustrate how I would use Git now, with the benefit of hindsight, not how I
used Git when encoding the DLL’s pilot edition.

3.1 Use clear and simple language

Elsewhere in this volume, Middle, building on Gibbs and Owens (2012), urges the use
of clear and simple language in project documentation, without assuming anything
about the technical abilities of end users. There is no denying that even with the avail-
ability of graphical user interfaces for Git, some will find it intractable. Researchers
can mitigate that problem by providing the output of the Git log as a text file (e.g., git
log > gitlog.txt) and by striving to make the content of commit messages as
clear as possible. That means being thoughtful and deliberate about what a commit
contains and how it is described.

3.2 Make one commit for each significant change

In English usage, the verb “commit” often occurs in connection with a significant
change in status: a relationship (“to commit to one another”), finance (“to commit
funds”), mental health (“to commit to treatment”), and law (“to commit a crime”).
In Git, a commit should mark a single significant change in the project. A single
significant change can affect one character or thousands of lines: it all depends on the
nature of the change.

For example, one of the most noticeable differences between Giarratano’s 1910
and 1924 editions is the switch from lower-case Greek letters to lower-case Latin
letters to stand for eighteen of the manuscripts. A series of simple find-and-replace
operations would seem to be called for here, but the process is complicated by the
fact that Giarratano already used many of the same lower-case Latin letters in his
1910 edition to stand for previously published editions, so those must be changed

123

14 S.J. Huskey

https://xkcd.com/1296/


first to avoid serious confusion. In LDLT editions, moreover, sigla are also used as
machine-readable identifiers (i.e., as values of the attribute xml:id) of manuscripts and
editions (Huskey & Cayless, 2022 §7.2), so changes to those identifiers will break
any references to them. Accordingly, the change of each siglum and its references is
significant, so each one should be committed. The same is true of Giarratano’s addition
of two manuscripts as evidence for the 1924 edition.

Let us return to the cows in line 1.4 of Giarratano’s 1910 edition, this time as
encoded for the DLL’s proof-of-concept edition. Here is the TEI XML for that line in
its currently published state:

<app>
<lem wit="#ε #χ #λ #β #ρ #α #η #γ"
xml:id="lem−1.4−vaccae">

vaccae
</lem>
<rdg wit="#N #ν #ϕ #π #κ #μ #r" source="#p"
xml:id="rdg−1.4−vacce">

vacce
</ rdg>
<rdg wit="#G" xml:id="rdg−1.4−bacce">

bacce
</ rdg>
<rdg wit="#δ" xml:id="rdg−1.4−vaccas">

vaccas
</ rdg>

</app>

The updates to the sigla and their references described above, not to mention the
transformation of the critical apparatus from positive to negative, would require the
refactoring of hundreds of lines of XML code.

It would be tedious and a waste of precious time to commit each one separately. It
would be much more sensible to consider the updates to all of the apparatus entries
for a single poem as a significant change worthy of a commit. Those interested in
reviewing the individual changes could scroll through the output of the git diff
command, which concisely displays the differences between any two commits.

In some places, however, Giarratano changes the text of the poems themselves, not
just the way he reports the variant readings. Since he does not point out these changes
anywhere in the preface to the 1924 edition, they can easily escape the notice of
casual readers. Nevertheless, they alter the main text that scholars and major reference
works cite. For example, The Oxford Latin Dictionary cites the 1924 edition, but the
Packard Humanities Institute’s Classical Latin Texts (https://latin.packhum.org/) uses
the 1943 edition. In other words, the differences between Giarratano’s editions make

123

15Committing to reproducibility and explainability...

https://latin.packhum.org/


a difference outside of their covers, so each one is significant and worthy of its own
commit.

Some of the most noticeable differences between the 1910 and 1924 editions have
to do with layout, but those differences affect the rendering of the edition’s data, not
the data themselves. Since the DLL treats the visualization of its editions as a separate
scholarly concern, how to render the data in the format of the 1924 edition is a matter
for a visualization project.

3.3 Write meaningful commit messages

The community of developers working on the Angular web development framework
(https://angular.io/) has adopted the practice of adding a keyword or phrase at the
beginning of each commit message and using a specific format for both short and
long messages (https://angular.io/guide/doc-pr-prep#format-commit-messages-for-
a-pull-request). These “semantic commits” make Git logs easier for humans and
machines to use, particularly in situations where there are many human collabora-
tors. The practice has spread to the wider development community. For example, the
Conventional Commits specification (https://conventionalcommits.org/) recommends
the following format for commit messages (elements in angle brackets are required;
those in square brackets are optional):

<type>[optional scope] : <description>

[optional body]

[optional footer (s )]

It might make sense for some DH projects simply to adopt the Conventional Com-
mits specification and recommendations without alteration, especially if the project
is large and complex enough to benefit from automated continuous integration pro-
cesses. But hewing to a standard designed for software engineers does not make good
sense for many smaller projects, particularly those with few collaborators; and it is
doubtful whether developing a separate standard with a list of <type> values for all
humanities projects would be a good use of time and resources, given the range of
knowledge domains that would need to be accommodated. Instead, simply following
the basic pattern of the Conventional Commit standard (i.e., <type>[scope]:
<description>) would greatly improve the usefulness of Git histories in individ-
ual DH projects of any type.

In the case of updating the sigla in Giarratano’s edition, one might do the following:

change: siglum α to a for Ambrosianus O.74 sup .

123

16 S.J. Huskey

https://angular.io/
https://angular.io/guide/doc-pr-prep#format-commit-messages-for-a-pull-request
https://angular.io/guide/doc-pr-prep#format-commit-messages-for-a-pull-request
https://conventionalcommits.org/


Since the documentation for git-commit recommends keeping the subject
within fifty characters, an (optional) description could be added to explain more com-
plex changes:

change: siglum η to r for Vrat . Rehdig. I 4, 10

Note that r was previously used for the editio Romana,
whose siglum is now 'Romana'.

In the case of updating the critical apparatus for an entire poem, one could use the
name of the TEI XML element <app> as the <type>:

app: Overhaul poem 1

For more complex changes, the various options allow more detail:

app(lem): Change 'umbras' to 'ulmos' at 2.5

Favoring the reading of P and V, which Jacoby
and Tolkhien support , over N and G.

MAJORCHANGE TO EDITION TEXT

In this case, app(lem) identifies the scope of the change as a <lem> inside
an <app> tag. A brief <description> summarizes the change. The optional
[body] explains the reason for the change, and the optional[footer] alerts readers
that this is a major change to the edition’s text.

All of these details would be included in the output of git log, but, depending
on the project, that output could extend to several screens. If someone wants to see
only the major changes in the text, they could filter the output. For example, using the
--grep option built into Git, one could enter the following on the command line:

$ git log --grep="MAJOR CHANGE"

The output of that command would be only the log entries with “MAJOR
CHANGE”.

3.4 Use annotated tags for milestones

Semantic Versioning, or SemVer (Preston-Werner, n.d.), another practice from the
world of software development, complements this use of Conventional Commits.

123

17Committing to reproducibility and explainability...



Broyles (2022) recommends using a two-part system for the version numbers of digital
editions: [major version].[minor version]. In that system, the major version number
increases when an editor makes “a large number of changes systematically across
the text that have a significant effect on its markup or on the way it is edited as a
whole.” The minor version number increases for any other change (e.g., corrections,
minor adjustments to notes, etc.). Other DH projects might value the granularity of
the tripartite pattern of the original SemVer specification: [major version].[minor ver-
sion].[patch]. Regardless of a project’s usage of SemVer, the version numbers should
be used as the values for Git’s tag command (https://git-scm.com/docs/git-tag) to
label an accumulation of commits as a milestone in the project’s development.

It is important to note here the importance of deciding when to mark a project
milestone and how to label it. A simple way to do it in the Calpurnius Siculus project
would be to use the publication years of Giarratano’s editions as milestones, but that
would imply that Giarratano’s editions, not the text of Calpurnius Siculus’ Bucolica,
are the focus of the project. The adaptation of SemVer described by Broyles (2022) is
a better approach for the main branch of the repository. If it is important to have the
publication years as reference points, it would be trivial to name other branches after
them. That would allow curious users to check out the 1910 branch or to use git
diff 1910..1924 to see the differences between the 1910 and 1924 editions. But
in the main branch, the TEI XML encoding of the 1910 edition would be tagged as
1.0. It would make sense to create another tag when all of the changes in the 1924
edition have been merged into the main branch. Certainly the change from a positive
to a negative critical apparatus is a significant milestone, since it marks a change
in editorial method. Accordingly, the 1924 edition in which that change was first
implemented should be tagged as a major version change (i.e., 2.0). But the changes
introduced in editions after 1924 were not as dramatic. It is true that the printed layout
changed significantly between the 1924 and 1943 editions, but the content did not
change as much. Giarratano did, however, change his mind about some readings in
the main text of the edition, so that might be enough to increment the version to 3.0.
But an argument could be made that the changes in the 1943 edition are minor and
should be tagged as such (e.g., 2.1) It all depends on what the project’s maintainers
consider a “breaking change” (see Broyles, 2022 161).

Above all, it is important to annotate a project’s tags so that users can make sense
of the project’s milestones (https://git-scm.com/book/en/v2/Git-Basics-Tagging). It
is not necessary to provide a summary of all of the changes between tags, since
users have access to the Git log and can view those changes however they wish. But
knowing what the project’s contributors consider to be important milestones can help
users understand the project’s history. For example, after merging the 1924 branch
into the main branch of the edition of Calpurnius Siculus’ Bucolica, I might issue the
following command:

$ git tag −a 2.0 −m "Merge 1924 branch into main"

123

18 S.J. Huskey

https://git-scm.com/docs/git-tag
https://git-scm.com/book/en/v2/Git-Basics-Tagging


The simple message is enough to give a general sense of why the version number
was elevated. Anyone looking for more information can look at the intervening commit
messages or use git diff as described above.

4 Conclusion

The examples I have drawn on throughout this article come from only one branch
of DH (i.e., digital philology), but the use of Git I have described here is well suited
to DH projects of any kind, because it plays to the strengths of the best humanities
scholarship, digital or otherwise: explanatory writing (through Conventional Commits)
and systematic thinking (through Semantic Versioning and Git tags). It also buttresses
efforts to improve the reproducibility, explainability, equitability, and sustainability of
DH research.

For evidence that reproducibility is built into Git, I point to its clone command,
used to make a complete copy of a project’s data, including every commit message and
annotated tag. Provided that the project’s contributors have been intentional and dis-
ciplined about committing single significant changes, writing clear commit messages,
and using annotated tags to label milestones, anyone who clones the project from an
openly available repository will be able to follow the project’s development, evaluate
the contributions of different scholars on the project, interrogate the methodology, and
attempt to reproduce the results.

That proviso also applies to explainability. There is no question that an explanation
of any project should be published in a polished narrative form, but access to a project’s
Git history that has been kept as a step-by-step research log can yield different insights
into the method and process behind that narrative description.

As for equitability and sustainability, the intentional use of Git can enhance those
efforts, too. After all, Git is a free and open source software package that is available
on all of the major computing platforms (Mac, Windows, Linux/Unix). Although it
is most commonly invoked through a command line interface (CLI) such as the Ter-
minal app, many graphical user interfaces or clients are available, many of them free
of charge, for users who prefer a more visual experience. Git is also part of many
integrated development environments (IDEs) popular with DH scholars, such as the
free Visual Studio Code (https://code.visualstudio.com/). Remote storage and publi-
cation of Git repositories is also available at no charge at many research institutions
and on the Open Science Framework (https://www.cos.io/products/osf). Commercial
sites such as GitLab (https://gitlab.com/) and GitHub (https://github.com/, owned by
Microsoft) also offer free hosting of Git repositories. Indeed, the repository for Git
itself is on GitHub. For the sake of long-term availability and accessibility, researchers
should consider hosting their own Git repositories on more than one of these services.
And since Git works best with text-based files (e.g., XML, Markdown, CSV, etc.),
it encourages scholars to work in formats with maximum accessibility. Indeed, Git’s
own files are easily viewed with any text editor. And since a Git repository includes
both the project’s data and its Git history, every clone of a repository, regardless of
where it is hosted, is a potential backup.

123

19Committing to reproducibility and explainability...

https://code.visualstudio.com/
https://www.cos.io/products/osf
https://gitlab.com/
https://github.com/


To return to the example of textual criticism, the main purpose of a critical apparatus
is to give readers access to the evidence for the text so that they can evaluate it for
themselves. As opaque as it might seem at first sight, its purpose is to bring clarity
to the argument advanced by the edition. It fulfills that purpose by recording and
highlighting different versions of the text as printed in the edition. And yet, there are
times when it would be helpful to see more details about the decisions represented in
the critical apparatus; in those cases, scholars reach for commentaries and notes on the
text. In a way, Git is a project’s critical apparatus: a powerful tool for tracking different
versions of files. But there are times when a narrative description would help us to
understand the reasons for those changes, which is why thoughtful and systematic use
of Git’s log functionality should be an important part of the effort to document DH
research, scholarship, and creative activity.

Author Contributions S.H. wrote the manuscript.

Funding Part of this work was supported by grants 21500706, 21400643, and 11200693 from the Andrew
W. Mellon Foundation in support of the Digital Latin Library.

Availability of data andmaterials Not applicable.

Declarations

Ethical Approval Not applicable.

Competing interests The authors declare no competing interests.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Broyles, P. A. (2022). Electronic versioning and digital editions. In M. Vareschi & H. Wacha (Eds.), Inter-
mediate horizons (pp. 147–166). Madison: University of Wisconsin Press. https://doi.org/10.2307/j.
ctv2rh2cnh.12

Chacon, S., & Straub, B. (2014). Pro Git. Retrieved from https://git-scm.com/book/en/v2
Edmond, J., & Lehmann, J. (2021). Digital humanities, knowledge complexity, and the five ‘aporias’ of

digital research.Digital Scholarship in the Humanities, 36(Supplement_2), ii95–ii108. https://doi.org/
10.1093/llc/fqab031

Giarratano, C. (Ed.). (1910). Calpurnii et nemesiani bucolica. Neapoli: Apud Detken et Rocholl.
Giarratano, C. (Ed.). (1924). Calpurnii et nemesiani bucolica. Aug Taurinorum: In aedibus I.B. Paraviae.
Giarratano, C. (Ed.). (1939). Calpurnii et nemesiani bucolica. Aug Taurinorum: In aedibus I.B. Paraviae.
Giarratano, C. (Ed.). (1943). Calpurnii et nemesiani bucolica. Aug Taurinorum: In aedibus I.B. Paraviae.
Giarratano, C. (Ed.). (1951). Calpurnii et nemesiani bucolica. Aug Taurinorum: In aedibus I.B. Paraviae.

123

20 S.J. Huskey

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/j.ctv2rh2cnh.12
https://doi.org/10.2307/j.ctv2rh2cnh.12
https://git-scm.com/book/en/v2
https://doi.org/10.1093/llc/fqab031
https://doi.org/10.1093/llc/fqab031


Gibbs, F., & Owens, T. (2012). Building better digital humanities tools: Toward broader audiences and
user-centered designs. Digital Humanities Quarterly, 6. Retrieved from http://www.digitalhumanities.
org/dhq/vol/6/2/000136/000136.html

Huskey, S. J., & Cayless, H. (2022). Guidelines for Encoding Critical Editions for the Library of Digital
Latin Texts. Retrieved from https://digitallatin.github.io/guidelines/LDLT-Guidelines.html

Huskey, S. J., & Witt, J. C. (2019). Decoupling quality control and publication: The Digital Latin library and
the traveling imprimatur. Digital Humanities Quarterly, 13(4). Retrived from http://digitalhumanities.
org/dhq/vol/13/4/000438/000438.html

Huskey, S. J. (2020). Scholarly digital editions: A wise investment for scholars and institutions. In S.
Chronopoulos, F. K. Maier, & A. Novokhatko (Eds.), Digitale altertumswissenschaften: Thesen und
debatten zu methoden und anwendungen (pp. 43–54). Heidelberg: Propylaeum.

Preston-Werner, T. (n.d). Semantic Versioning 2.0.0. Retrieved 2023-02-28, from https://semver.org/
West, M. L. (1973). Textual Criticism and Editorial Technique: Applicable to Greek and Latin Texts.

Stuttgart: Walter de Gruyter.
Witt, J. C. (2018). Digital scholarly editions and API consuming applications. In R. Bleier, M. Bürgermeister,

H. W. Klug, F. Neuber, & G. Schneider (Eds.), Digital scholarly editions as interfaces (pp. 219–247).
Norderstedt: BoD.

Wittern, C. (2013). Beyond TEI: Returning the text to the reader. Journal of the Text Encoding Initiative, 4.
https://doi.org/10.4000/jtei.691

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

21Committing to reproducibility and explainability...

http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html
http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html
https://digitallatin.github.io/guidelines/LDLT-Guidelines.html
http://digitalhumanities.org/dhq/vol/13/4/000438/000438.html
http://digitalhumanities.org/dhq/vol/13/4/000438/000438.html
https://semver.org/
https://doi.org/10.4000/jtei.691

	Committing to reproducibility and explainability: using Git as a research journal
	Abstract
	1 Introduction
	2 Case study: the Library of Digital Latin Texts
	2.1 Background: critical editions and Git
	2.1.1 If Git had been an option …


	3 Using git as a research journal
	3.1 Use clear and simple language
	3.2 Make one commit for each significant change
	3.3 Write meaningful commit messages
	3.4 Use annotated tags for milestones

	4 Conclusion
	References


