Skip to main content
Log in

Computer Simulation of Protein Materials at Multiple Length Scales: From Single Proteins to Protein Assemblies

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Computer simulation of protein materials and their dynamic or mechanical behavior is of high significance, as proteins perform their functions through their structural changes in response to a force (or stimulus). The computer simulation enables the detailed insight into the structure and behavior of proteins at atomistic resolution, which is inaccessible with experimental toolkits such as single-molecule experiments. With the advancement of computing resources, the computer simulation has recently played a vital role as a virtual microscopy in understanding and characterizing the structure and behaviors of protein materials at atomistic resolution. For examples, computer simulations allow for gaining insight into how some protein domains can exhibit the remarkable mechanical properties and functions. In this article, we would like to address the current state-of-arts of computer simulations that have been employed for studying the structure and properties (or behaviors) of proteins at multiple length scales ranging from single proteins to protein assemblies. Specifically, we summarize various computational modeling techniques, ranging from atomistic models to coarse-grained models and continuum models, applicable for modeling protein structures at multiple length scales from single proteins to protein assemblies. This paper discusses how such various computational modeling/simulation techniques can be employed for studying the structure and properties of protein materials at multiple length scales. This paper sheds light on computer simulations, which are able to unveil the hidden, complex mechanisms related to the structure and properties of protein materials at multiple length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Figure is adopted with permission from Ref. [4]. Copyright (1997) The American Association for the Advancement of Science

Fig. 2
Fig. 3

Figures are adopted from Ref. [92] under Creative Commons Attribution License

Fig. 4

Figures are adopted with permission from Ref. [104]. Copyright (2012) AIP Publishing

Fig. 5

Figures are adopted with permission from Ref. [110]. Copyright (2005) National Academy of Sciences, U.S.A (color figure online)

Fig. 6

Figures are adopted from Ref. [132] under Creative Commons Attribution License

Fig. 7

Figures are adopted with permission from Ref. [137]. Copyright (2018) Royal Society of Chemistry

Fig. 8

Figures are adopted with permission from Ref. [139]. Copyright (2007) The American Association for the Advancement of Science

Fig. 9

Figures are adopted from Ref. [136] under Creative Commons Attribution License

Fig. 10

Figures are adopted with permission from Ref. [25]. Copyright (2010) Springer Nature

Fig. 11

Figures are adopted with permission from Ref. [150]. Copyright (2005) Elsevier

Fig. 12

Figures are adopted with permission from Ref. [156]. Copyright (2010) Elsevier

Similar content being viewed by others

References

  1. J. Monod, J. Wyman, J.P. Changeux, J. Mol. Biol. 12, 88 (1965)

    Google Scholar 

  2. H. Frauenfelder, S.G. Sligar, P.G. Wolynes, Science 254, 1598 (1991)

    Google Scholar 

  3. K. Arora, C.L. Brooks III, Proc. Natl. Acad. Sci. USA 104, 18496 (2007)

    Google Scholar 

  4. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science 276, 1109 (1997)

    Google Scholar 

  5. L. Tskhovrebova, J. Trinick, J. Biol. Chem. 279, 46351 (2004)

    Google Scholar 

  6. M. Rief, M. Gautel, A. Schemmel, H.E. Gaub, Biophys. J. 75, 3008 (1998)

    Google Scholar 

  7. H. Lu, B. Isralewitz, A. Krammer, V. Vogel, K. Schulten, Biophys. J. 75, 662 (1998)

    Google Scholar 

  8. B.L. Smith et al., Nature 399, 761 (1999)

    Google Scholar 

  9. G. Merlini, V. Bellotti, N. Engl. J. Med. 349, 583 (2003)

    Google Scholar 

  10. I. Cherny, E. Gazit, Angew. Chem. Int. Ed. 47, 4062 (2008)

    Google Scholar 

  11. I.W. Hamley, Chem. Rev. 112, 5147 (2012)

    Google Scholar 

  12. P.C. Ke et al., Chem. Soc. Rev. 46, 6492 (2017)

    Google Scholar 

  13. A.M. Kushner, Z. Guan, Angew. Chem. Int. Ed. 50, 9026 (2011)

    Google Scholar 

  14. M.I. Solar, M.J. Buehler, Nat. Nanotechnol. 7, 417 (2012)

    Google Scholar 

  15. A.R. Studart, Adv. Mater. 24, 5024 (2012)

    Google Scholar 

  16. F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333 (2006)

    Google Scholar 

  17. M.B. Pepys, Annu. Rev. Med. 57, 223 (2006)

    Google Scholar 

  18. J.W.M. Hoppener, B. Ahren, C.J.M. Lips, N. Engl. J. Med. 343, 411 (2000)

    Google Scholar 

  19. C. Rapezzi et al., Nat. Rev. Cardiol. 7, 398 (2010)

    Google Scholar 

  20. T.P.J. Knowles, M.J. Buehler, Nat. Nanotechnol. 6, 469 (2011)

    Google Scholar 

  21. B. Choi, T. Kim, S.W. Lee, K. Eom, J. Nanomater. 2016, 5873695 (2016)

    Google Scholar 

  22. J. Adamcik, R. Mezzenga, Curr. Opin. Collid Interface Sci. 17, 369 (2012)

    Google Scholar 

  23. M.F.M. Engel et al., Proc. Natl. Acad. Sci. USA 105, 6033 (2008)

    Google Scholar 

  24. A.W.P. Fitzpatrick, S.T. Park, A.H. Zewail, Proc. Natl. Acad. Sci. USA 110, 10976 (2013)

    Google Scholar 

  25. S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nat. Mater. 9, 359 (2010)

    Google Scholar 

  26. K.C. Neuman, T. Lionnet, J.F. Allemand, Annu. Rev. Mater. Res. 37, 33 (2007)

    Google Scholar 

  27. D.J. Muller, M. Krieg, D. Alsteens, Y.F. Dufrene, Curr. Opin. Biotechnol. 20, 4 (2009)

    Google Scholar 

  28. D.J. Muller, Y.F. Dufrene, Nat. Nanotechnol. 3, 261 (2008)

    Google Scholar 

  29. E.M. Puchner, H.E. Gaub, Curr. Opin. Struct. Biol. 19, 605 (2009)

    Google Scholar 

  30. C. Bustamante, Z. Bryant, S.B. Smith, Nature 421, 423 (2003)

    Google Scholar 

  31. M. Karplus, G.A. Petsko, Nature 347, 631 (1990)

    Google Scholar 

  32. M. Karplus, J.A. McCammon, Nat. Struct. Mol. Biol. 9, 646 (2002)

    Google Scholar 

  33. M. Bathe, Proteins Struct. Funct. Bioinform. 70, 1595 (2008)

    Google Scholar 

  34. G. Yun, J. Kim, D.-N. Kim, J. Comput. Aided Mol. Des. 31, 609 (2017)

    Google Scholar 

  35. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)

    Google Scholar 

  36. J.A. McCammon, B.R. Gelin, M. Karplus, Nature 267, 585 (1977)

    Google Scholar 

  37. M. Karplus, Annu. Rev. Biophys. Biomol. Struct. 35, 1 (2006)

    Google Scholar 

  38. M. Levitt, Nat. Struct. Biol. 8, 392 (2001)

    Google Scholar 

  39. R. Van Noorden, Nature 502, 280 (2013)

    Google Scholar 

  40. J.A. McCammon, S. Harvey, Dynamics of proteins and nucleic acids (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  41. S.W. Cranford, M.J. Buehler, Biomateriomics (Springer, New York, 2012)

    Google Scholar 

  42. J. Norberg, L. Nilsson, Acc. Chem. Res. 35, 465 (2002)

    Google Scholar 

  43. P. Auffinger, E. Westhof, Curr. Opin. Struct. Biol. 8, 227 (1998)

    Google Scholar 

  44. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  45. A. Amadei, A.B.M. Linssen, H.J.C. Berendsen, Proteins Struct. Funct. Genet. 17, 412 (1993)

    Google Scholar 

  46. M. Sotomayor, K. Schulten, Science 316, 1144 (2007)

    Google Scholar 

  47. Q. Cui, I. Bahar, Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems (CRC Press, Boca Raton, 2005)

    Google Scholar 

  48. M.M. Teeter, D.A. Case, J. Phys. Chem. 94, 8091 (1990)

    Google Scholar 

  49. B. Brooks, M. Karplus, Proc. Natl. Acad. Sci. USA 80, 6571 (1983)

    Google Scholar 

  50. S. Hayward, N. Go, Annu. Rev. Phys. Chem. 46, 223 (1995)

    Google Scholar 

  51. G.A. Voth, Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, Boca Raton, 2009)

    Google Scholar 

  52. A.J. Rader, Curr. Opin. Pharmacol. 10, 753 (2010)

    Google Scholar 

  53. G.S. Ayton, W.G. Noid, G.A. Voth, MRS Bull. 32, 929 (2007)

    Google Scholar 

  54. D.E. Shaw et al., Science 330, 341 (2010)

    Google Scholar 

  55. H.S. Chung, S. Piana-Agostinetti, D.E. Shaw, W.A. Eaton, Science 349, 1504 (2015)

    Google Scholar 

  56. R.O. Dror, R.M. Dirks, J.P. Grossman, H. Xu, D.E. Shaw, Annu. Rev. Biophys. 41, 429 (2012)

    Google Scholar 

  57. Y. Suezaki, N. Go, Int. J. Peptid. Protein Res. 7, 333 (1975)

    Google Scholar 

  58. Y. Ueda, N. Go, Int. J. Peptid. Protein Res. 8, 551 (1976)

    Google Scholar 

  59. Y. Ueda, H. Taketomi, N. Go, Biopolymers 17, 1531 (1978)

    Google Scholar 

  60. M. Cieplak, T.X. Hoang, M.O. Robbins, Proteins Struct. Funct. Genet. 49, 114 (2002)

    Google Scholar 

  61. M.M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)

    Google Scholar 

  62. T. Haliloglu, I. Bahar, B. Erman, Phys. Rev. Lett. 79, 3090 (1997)

    Google Scholar 

  63. A.R. Atilgan et al., Biophys. J. 80, 505 (2001)

    Google Scholar 

  64. K. Eom, G. Yoon, J.-I. Kim, S. Na, J. Comput. Theor. Nanosci. 7, 1210 (2010)

    Google Scholar 

  65. K. Eom, S.-C. Baek, J.-H. Ahn, S. Na, J. Comput. Chem. 28, 1400 (2007)

    Google Scholar 

  66. M. Fixman, J. Kovac, J. Chem. Phys. 58, 1564 (1973)

    Google Scholar 

  67. C. Rivetti, M. Guthold, C. Bustamante, J. Mol. Biol. 264, 919 (1996)

    Google Scholar 

  68. J. Adamcik et al., Nat. Nanotechnol. 5, 423 (2010)

    Google Scholar 

  69. F. Pampaloni et al., Proc. Natl. Acad. Sci. USA 103, 10248 (2006)

    Google Scholar 

  70. P.E. Marszalek et al., Nature 402, 100 (1999)

    Google Scholar 

  71. L. Tskhovrebova, J. Trinick, J.A. Sleep, R.M. Simmons, Nature 387, 308 (1997)

    Google Scholar 

  72. P.M. Williams et al., Nature 422, 446 (2003)

    Google Scholar 

  73. M.S. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante, Science 276, 1112 (1997)

    Google Scholar 

  74. J. Gore et al., Nature 442, 836 (2006)

    Google Scholar 

  75. C. Baumann, S. Smith, V. Bloomfield, C. Bustamante, Proc. Natl. Acad. Sci. USA 94, 6185 (1997)

    Google Scholar 

  76. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1599 (1994)

    Google Scholar 

  77. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995)

    Google Scholar 

  78. A. Kis et al., Phys. Rev. Lett. 89, 248101 (2002)

    Google Scholar 

  79. K. Eom, H.S. Park, D.S. Yoon, T. Kwon, Phys. Rep. 503, 115 (2011)

    Google Scholar 

  80. L. Meirovitch, Analytical Methods in Vibrations (Macmillan, New York, 1967)

    MATH  Google Scholar 

  81. J.M. Gere, Mechanics of Materials, 6th edn. (Thomson Learning, Boston, 2003)

    Google Scholar 

  82. S.P. Timoshenko, Philos. Mag. 41, 744 (1921)

    Google Scholar 

  83. J.F. Allemand, D. Bensimon, V. Croquette, Curr. Opin. Struct. Biol. 13, 266 (2003)

    Google Scholar 

  84. W.K. Olson, V.B. Zhurkin, Curr. Opin. Struct. Biol. 10, 286 (2000)

    Google Scholar 

  85. H. Li et al., Nature 418, 998 (2002)

    Google Scholar 

  86. S.P. Ng, R.W. Rounsevell, A. Steward, C.D. Geierhaas, P.M. Williams, J. Mol. Biol. 350, 776 (2005)

    Google Scholar 

  87. A. Krammer, H. Lu, B. Isralewitz, K. Schulten, V. Vogel, Proc. Natl. Acad. Sci. USA 96, 1351 (1999)

    Google Scholar 

  88. M. Gao, M. Wilmanns, K. Schulten, Biophys. J. 83, 3435 (2002)

    Google Scholar 

  89. H. Lu, K. Schulten, Proteins 35, 453 (1999)

    Google Scholar 

  90. M. Gao, D. Craig, V. Vogel, K. Schulten, J. Mol. Biol. 323, 939 (2002)

    Google Scholar 

  91. M. Cieplak, T.X. Hoang, M.O. Robbins, Proteins Struct. Funct. Genet. 49, 104 (2002)

    Google Scholar 

  92. M. Sikora, J.I. Sulkowska, M. Cieplak, PLoS Comput. Biol. 5, e1000547 (2009)

    Google Scholar 

  93. J.I. Sułkowska, P. Sułkowski, P. Szymczak, M. Cieplak, J. Am. Chem. Soc. 132, 13954 (2010)

    Google Scholar 

  94. J.I. Sulkowska, P. Sulkowski, J.N. Onuchic, Phys. Rev. Lett. 103, 268103 (2009)

    Google Scholar 

  95. M. Mickler et al., Proc. Natl. Acad. Sci. USA 104, 20268 (2007)

    Google Scholar 

  96. C. Hyeon, G. Morrison, D. Thirumalai, Proc. Natl. Acad. Sci. USA 105, 9604 (2008)

    Google Scholar 

  97. R.I. Dima, H. Joshi, Proc. Natl. Acad. Sci. USA 105, 15743 (2008)

    Google Scholar 

  98. C. Hyeon, G. Morrison, D.L. Pincus, D. Thirumalai, Proc. Natl. Acad. Sci. USA 106, 20288 (2009)

    Google Scholar 

  99. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Nature 397, 50 (1999)

    Google Scholar 

  100. G.I. Bell, Science 200, 618 (1978)

    Google Scholar 

  101. L.B. Freund, Proc. Natl. Acad. Sci. USA 106, 8818 (2009)

    Google Scholar 

  102. A. Maitra, G. Arya, Phys. Rev. Lett. 104, 108301 (2010)

    Google Scholar 

  103. P. Hanggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Google Scholar 

  104. G. Yoon, S. Na, K. Eom, J. Chem. Phys. 137, 025102 (2012)

    Google Scholar 

  105. R.G. Smock, L.M. Gierasch, Science 324, 198 (2009)

    Google Scholar 

  106. T. Force, D.S. Krause, R.A. Van Etten, Nat. Rev. Cancer 7, 332 (2007)

    Google Scholar 

  107. S. Piana, K. Lindorff-Larsen, D.E. Shaw, Proc. Natl. Acad. Sci. USA 110, 5915 (2013)

    Google Scholar 

  108. E. Paci, M. Karplus, Proc. Natl. Acad. Sci. USA 97, 6521 (2000)

    Google Scholar 

  109. M.Y. Lu, J.P. Ma, Biophys. J. 89, 2395 (2005)

    Google Scholar 

  110. D. Tobi, I. Bahar, Proc. Natl. Acad. Sci. USA 102, 18908 (2005)

    Google Scholar 

  111. A. Bakan, I. Bahar, Proc. Natl. Acad. Sci. USA 106, 14349 (2009)

    Google Scholar 

  112. C. Chennubhotla, A.J. Rader, L.W. Yang, I. Bahar, Phys. Biol. 2, S173 (2005)

    Google Scholar 

  113. M. Cecchini, A. Houdusse, M. Karplus, PLoS Comput. Biol. 4, e1000129 (2008)

    Google Scholar 

  114. O. Miyashita, J.N. Onuchic, P.G. Wolynes, Proc. Natl. Acad. Sci. USA 100, 12570 (2003)

    Google Scholar 

  115. P. Maragakis, M. Karplus, J. Mol. Biol. 352, 807 (2005)

    Google Scholar 

  116. F. Takagi, M. Kikuchi, Biophys. J. 93, 3820 (2007)

    Google Scholar 

  117. W. Zheng, B.R. Brooks, G. Hummer, Proteins Struct. Funct. Bioinform. 69, 43 (2007)

    Google Scholar 

  118. M.K. Kim, W. Li, B.A. Shapiro, G.S. Chirikjian, J. Biomol. Struct. Dyn. 21, 395 (2003)

    Google Scholar 

  119. M.K. Kim, R.L. Jernigan, G.S. Chirikjian, Biophys. J. 89, 43 (2005)

    Google Scholar 

  120. B.H. Lee et al., PLoS One 12, e0185658 (2017)

    Google Scholar 

  121. M. Ikeguchi, J. Ueno, M. Sato, A. Kidera, Phys. Rev. Lett. 94, 078102 (2005)

    Google Scholar 

  122. M.C. Demirel, A.M. Lesk, Phys. Rev. Lett. 95, 208106 (2005)

    Google Scholar 

  123. B. Isin, K. Schulten, E. Tajkhorshid, I. Bahar, Biophys. J. 95, 789 (2008)

    Google Scholar 

  124. N. Kantarci-Carsibasi, T. Haliloglu, P. Doruker, Biophys. J. 95, 5862 (2008)

    Google Scholar 

  125. W. Hwang, S. Zhang, R.D. Kamm, M. Karplus, Proc. Natl. Acad. Sci. USA 101, 12916 (2004)

    Google Scholar 

  126. M. DeMarco, V. Daggett, Proc. Natl. Acad. Sci. USA 101, 2293 (2004)

    Google Scholar 

  127. S.-H. Chong, S. Ham, Proc. Natl. Acad. Sci. USA 109, 7636 (2012)

    Google Scholar 

  128. Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999)

    Google Scholar 

  129. B. Alessandro, B. Massimiliano, P. Michele, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 826 (2011)

    Google Scholar 

  130. L. Alessandro, L.G. Francesco, Rep. Prog. Phys. 71, 126601 (2008)

    Google Scholar 

  131. L.E. Buchanan et al., Proc. Natl. Acad. Sci. USA 110, 19285 (2013)

    Google Scholar 

  132. C. Wu, J.-E. Shea, PLoS Comput. Biol. 9, e1003211 (2013)

    Google Scholar 

  133. S. Chakraborty, P. Das, Sci. Rep. 7, 9941 (2017)

    Google Scholar 

  134. Z.A. Levine, L. Larini, N.E. LaPointe, S.C. Feinstein, J.-E. Shea, Proc. Natl. Acad. Sci. USA 112, 2758 (2015)

    Google Scholar 

  135. M. Tanaka, S.R. Collins, B.H. Toyama, J.S. Weissman, Nature 442, 585 (2006)

    Google Scholar 

  136. G. Yoon, M. Lee, J.I. Kim, S. Na, K. Eom, PLoS ONE 9, e88502 (2014)

    Google Scholar 

  137. M. Lee, J.I. Kim, S. Na, K. Eom, Phys. Chem. Chem. Phys. 20, 8951 (2018)

    Google Scholar 

  138. M. Porrini, U. Zachriae, P.E. Barran, C.E. MacPhee, J. Phys. Chem. Lett. 4, 1233 (2013)

    Google Scholar 

  139. T.P. Knowles et al., Science 318, 1900 (2007)

    Google Scholar 

  140. Z.P. Xu, R. Paparcone, M.J. Buehler, Biophys. J. 98, 2053 (2010)

    Google Scholar 

  141. G. Yoon, J. Kwak, J.I. Kim, S. Na, K. Eom, Adv. Funct. Mater. 21, 3454 (2011)

    Google Scholar 

  142. G. Yoon, Y.K. Kim, K. Eom, S. Na, Appl. Phys. Lett. 102, 011914 (2013)

    Google Scholar 

  143. H. Choi et al., RSC Adv. 5, 49263 (2015)

    Google Scholar 

  144. G. Yoon et al., Phys. Biol. 12, 066021 (2015)

    Google Scholar 

  145. S. Xiao, S. Xiao, F. Grater, Phys. Chem. Chem. Phys. 15, 8765 (2013)

    Google Scholar 

  146. B. Choi, G. Yoon, S.W. Lee, K. Eom, Phys. Chem. Chem. Phys. 17, 1379 (2015)

    Google Scholar 

  147. B. Choi, T. Kim, E.S. Ahn, S.W. Lee, K. Eom, Nanoscale Res. Lett. 12, 228 (2017)

    Google Scholar 

  148. M. Solar, M.J. Buehler, Nanotechnology 25, 105703 (2014)

    Google Scholar 

  149. W.H. Roos, R. Bruinsma, G.J.L. Wuite, Nat. Phys. 6, 733 (2010)

    Google Scholar 

  150. F. Tama, C.L. Brooks, J. Mol. Biol. 345, 299 (2005)

    Google Scholar 

  151. H.W.T. van Vlijmen, M. Karplus, J. Mol. Biol. 350, 528 (2005)

    Google Scholar 

  152. A.J. Rader, D.H. Vlad, I. Bahar, Structure 13, 413 (2005)

    Google Scholar 

  153. A. Arkhipov, P.L. Freddolino, K. Schulten, Structure 14, 1767 (2006)

    Google Scholar 

  154. J.R. Perilla, K. Schulten, Nat. Commun. 8, 15959 (2017)

    Google Scholar 

  155. Z. Yang, I. Bahar, M. Widom, Biophys. J. 96, 4438 (2009)

    Google Scholar 

  156. W.H. Roos et al., Biophys. J. 99, 1175 (2010)

    Google Scholar 

  157. P. Cao, G. Yoon, W. Tao, K. Eom, H.S. Park, Sci. Rep. 5, 8757 (2015)

    Google Scholar 

  158. W. Tao, G. Yoon, P. Cao, K. Eom, H.S. Park, J. Chem. Phys. 143, 125101 (2015)

    Google Scholar 

  159. R. Phillips, M. Dittrich, K. Schulten, Annu. Rev. Mater. Res. 32, 219 (2002)

    Google Scholar 

  160. R.V. Mannige et al., Nature 526, 415 (2015)

    Google Scholar 

  161. Y. Mou, J.-Y. Yu, T.M. Wannier, C.-L. Guo, S.L. Mayo, Nature 525, 230 (2015)

    Google Scholar 

  162. B. Dai et al., Proc. Natl. Acad. Sci. USA 112, 2996 (2015)

    Google Scholar 

  163. G. Grigoryan et al., Science 332, 1071 (2011)

    Google Scholar 

  164. K.-H. Kim et al., Nat. Commun. 7, 11429 (2016)

    Google Scholar 

  165. Y.H. No et al., J. Phys. Chem. Lett. 8, 3734 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) under Grant no. NRF-2015R1A2A2A04002453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilho Eom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, K. Computer Simulation of Protein Materials at Multiple Length Scales: From Single Proteins to Protein Assemblies. Multiscale Sci. Eng. 1, 1–25 (2019). https://doi.org/10.1007/s42493-018-00009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00009-7

Keywords

Navigation